1
|
Azam S, Liu S, Bhattacharyya S, Mishra DP. Prevalence of nano-sized coal mine dust in North and Central Appalachian coal mines - Insights from SEM-EDS imaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135226. [PMID: 39029186 DOI: 10.1016/j.jhazmat.2024.135226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/23/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The increasing prevalence of coal mine dust-related lung diseases in coal miners calls for urgent and meticulous scrutiny of airborne respirable coal mine dust (RCMD), specifically focusing on particles at the nano-level. This necessity is driven by expanding research, including the insights revealed in this paper, that establish the presence and significantly increased toxicity of nano-sized coal dust particles in contrast to their larger counterparts. This study presents an incontrovertible visual proof of these tiny particulates in samples collected from underground mines, utilizing advanced techniques such as scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The intricate elemental composition of nano-sized coal dust identified through EDS analysis reveals the presence of elements such as silica and iron, which are known to contribute to lung pathologies when inhaled over prolonged periods. The outcomes of the statistical analyses reveal significant relationships between particle size and elemental composition, highlighting that smaller particles tend to have higher carbon content, while larger particles exhibit increased concentrations of elements like silica and aluminum. These analyses underscore the complex interactions within nano-sized coal dust, providing critical insights into their behavior, transport, and health impacts. The nano-sized coal dust could invade the alveoli, carrying these toxic elements from where they are impossible to exhale. The revelation of nano-sized coal dust's existence and the associated health hazards necessitate their incorporation into the regulatory framework governing the coal mining industry. This study lays the groundwork for heightened protective measures for miners, urging the invention of state-of-the-art sampling instruments, comprehensive physicochemical profiling of RCMD nanoparticles, and the pursuit of groundbreaking remedies to neutralize their toxic impact. These findings advocate for a paradigm shift in how the coal mining industry views and handles particulate matter, proposing a re-evaluation of occupational health standards and a call to action for protecting coal miners worldwide.
Collapse
Affiliation(s)
- Sikandar Azam
- Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shimin Liu
- Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sekhar Bhattacharyya
- Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Devi Prasad Mishra
- Department of Mining Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
2
|
Kamanzi C, Becker M, Jacobs M, Konečný P, Von Holdt J, Broadhurst J. The impact of coal mine dust characteristics on pathways to respiratory harm: investigating the pneumoconiotic potency of coals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7363-7388. [PMID: 37131112 PMCID: PMC10517901 DOI: 10.1007/s10653-023-01583-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Exposure to dust from the mining environment has historically resulted in epidemic levels of mortality and morbidity from pneumoconiotic diseases such as silicosis, coal workers' pneumoconiosis (CWP), and asbestosis. Studies have shown that CWP remains a critical issue at collieries across the globe, with some countries facing resurgent patterns of the disease and additional pathologies from long-term exposure. Compliance measures to reduce dust exposure rely primarily on the assumption that all "fine" particles are equally toxic irrespective of source or chemical composition. For several ore types, but more specifically coal, such an assumption is not practical due to the complex and highly variable nature of the material. Additionally, several studies have identified possible mechanisms of pathogenesis from the minerals and deleterious metals in coal. The purpose of this review was to provide a reassessment of the perspectives and strategies used to evaluate the pneumoconiotic potency of coal mine dust. Emphasis is on the physicochemical characteristics of coal mine dust such as mineralogy/mineral chemistry, particle shape, size, specific surface area, and free surface area-all of which have been highlighted as contributing factors to the expression of pro-inflammatory responses in the lung. The review also highlights the potential opportunity for more holistic risk characterisation strategies for coal mine dust, which consider the mineralogical and physicochemical aspects of the dust as variables relevant to the current proposed mechanisms for CWP pathogenesis.
Collapse
Affiliation(s)
- Conchita Kamanzi
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa.
- Department of Chemical Engineering, Centre for Minerals Research, University of Cape Town, Cape Town, South Africa.
| | - Megan Becker
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa
- Department of Chemical Engineering, Centre for Minerals Research, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Petr Konečný
- Division of Immunology, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Johanna Von Holdt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Jennifer Broadhurst
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Pan B, Li H, Lang D, Xing B. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:320-331. [PMID: 30802746 DOI: 10.1016/j.envpol.2019.02.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 05/23/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are defined as organic free radicals stabilized on or inside particles. They are persistent because of the protection by the particles and show significant toxicity to organisms. Increasing research interests have been attracted to study the potential environmental implications of EPFRs. Because of their different physical forms from conventional contaminants, it is not applicable to use the commonly used technique and strategy to predict and assess the behavior and risks of EPFRs. Current studies on EPFRs are scattered and not systematic enough to draw clear conclusions. Therefore, this review is organized to critically discuss the current research progress on EPFRs, highlighting their occurrence and transport, generation mechanisms, as well as their environmental implications (including both toxicity and reactivity). EPFR formation and stabilization as affected by the precursors and environmental factors are useful breakthrough to understand their formation mechanisms. To better understand the major differences between EPFRs and common contaminants, we identified the unique processes and/or mechanisms related to EPFRs. The knowledge gaps will be also addressed to highlight the future research while summarizing the research progress. Quantitative analysis of the interactions between organic contaminants and EPFRs will greatly improve the predictive accuracy of the multimedia environmental fate models. In addition, the health risks will be better evaluated when considering the toxicity contributed by EFPRs.
Collapse
Affiliation(s)
- Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Di Lang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
4
|
Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019; 16:19. [PMID: 31014371 PMCID: PMC6480662 DOI: 10.1186/s12989-019-0302-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.
Collapse
Affiliation(s)
- Michael Riediker
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, CH-8404 Winterthur, Switzerland
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wolfgang Kreyling
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Munich Germany
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Albert Duschl
- Department of Biosciences, Allergy Cancer BioNano Research Centre, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | - Richard Handy
- School of Biological Sciences, Plymouth University, Plymouth, UK
| | - Mary Gulumian
- National Institute for Occupational Health and Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Sally Tinkle
- Science and Technology Policy Institute, Washington, DC USA
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Studies (IRAS), Utrrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Jia H, Nulaji G, Gao H, Wang F, Zhu Y, Wang C. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6310-9. [PMID: 27224055 DOI: 10.1021/acs.est.6b00527] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.
Collapse
Affiliation(s)
- Hanzhong Jia
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| | - Gulimire Nulaji
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
- School of Geology and Mining Engineering, Xinjiang University , Urumqi 830046, China
| | - Hongwei Gao
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| | - Yunqing Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| | - Chuanyi Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|
6
|
Huang X, Finkelman RB. Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:45-67. [PMID: 18176887 DOI: 10.1080/10937400701600552] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent increases in oil price further strengthen the argument that coal and coal products will play an increasingly important role in fulfilling the energy needs of our society. Coal is an aggregate of heterogeneous substances composed of organic (macerals) and inorganic (minerals) materials. The objective of this review was to assess whether some chemical parameters in coal play a role in producing environmental health problems. Basic properties of coal--such as chemical forms of the organic materials, structure, compositions of minerals--vary from one coal mine region to another as well as from coals of different ranks. Most importantly, changes in chemical properties of coals due to exposure to air and humidity after mining--a dynamic process--significantly affect toxicity attributed to coal and environmental fate. Although coal is an extremely complex and heterogeneous material, the fundamental properties of coal responsible for environmental and adverse health problems are probably related to the same inducing components of coal. For instance, oxidation of pyrite (FeS2) in the coal forms iron sulfate and sulfuric acid, which produces occupational lung diseases (e.g., pneumoconiosis) and other environmental problems (e.g., acid mine drainage and acid rain). Calcite (CaCO3) contained in certain coals alters the end products of pyrite oxidation, which may make these coals less toxic to human inhalation and less hazardous to environmental pollution. Finally, knowledge gained on understanding of the chemical properties of coals is illustrated to apply for prediction of toxicity due to coal possibly before large-scale mining and prevention of occupational lung disease during mining.
Collapse
Affiliation(s)
- Xi Huang
- Department of Environmental Medicine, New York University School of Medicine, New York 10016, USA.
| | | |
Collapse
|
7
|
Gulumian M, Borm PJA, Vallyathan V, Castranova V, Donaldson K, Nelson G, Murray J. Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker's pneumoconiosis: a comprehensive review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2006; 9:357-95. [PMID: 16990219 DOI: 10.1080/15287390500196537] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clinical detection of silicosis is currently dependent on radiological and lung function abnormalities, both late manifestations of disease. Markers of prediction and early detection of pneumoconiosis are imperative for the implementation of timely intervention strategies. Understanding the underlying mechanisms of the etiology of coal workers pneumoconiosis (CWP) and silicosis was essential in proposing numerous biomarkers that have been evaluated to assess effects following exposure to crystalline silica and/or coal mine dust. Human validation studies have substantiated some of these proposed biomarkers and argued in favor of their use as biomarkers for crystalline silica- and CWP-induced pneumoconiosis. A number of "ideal" biological markers of effect were identified, namely, Clara cell protein-16 (CC16) (serum), tumor necrosis factor-alpha (TNF-alpha) (monocyte release), interleukin-8 (IL-8) (monocyte release), reactive oxygen species (ROS) measurement by chemiluminescence (neutrophil release), 8-isoprostanes (serum), total antioxidant levels measured by total equivalent antioxidant capacity (TEAC), glutathione, glutathione peroxidase activity, glutathione S-transferase activity, and platelet-derived growth factor (PDGF) (serum). TNF-alpha polymorphism (blood cellular DNA) was identified as a biomarker of susceptibility. Further studies are planned to test the validity and feasibility of these biomarkers to detect either high exposure to crystalline silica and early silicosis or susceptibility to silicosis in gold miners in South Africa.
Collapse
Affiliation(s)
- M Gulumian
- Department of Toxicology and Biochemistry Research, National Institute for Occupational Health, Johannesburg, South Africa.
| | | | | | | | | | | | | |
Collapse
|
8
|
Knaapen AM, Borm PJA, Albrecht C, Schins RPF. Inhaled particles and lung cancer. Part A: Mechanisms. Int J Cancer 2004; 109:799-809. [PMID: 15027112 DOI: 10.1002/ijc.11708] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Both occupational and environmental exposure to particles is associated with an increased risk of lung cancer. Particles are thought to impact on genotoxicity as well as on cell proliferation via their ability to generate oxidants such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). For mechanistic purposes, one should discriminate between a) the oxidant-generating properties of particles themselves (i.e., acellular), which are mostly determined by the physicochemical characteristics of the particle surface, and b) the ability of particles to stimulate cellular oxidant generation. Cellular ROS/RNS can be generated by various mechanisms, including particle-related mitochondrial activation or NAD(P)H-oxidase enzymes. In addition, since particles can induce an inflammatory response, a further subdivision needs to be made between primary (i.e., particle-driven) and secondary (i.e., inflammation-driven) formation of oxidants. Particles may also affect genotoxicity by their ability to carry surface-adsorbed carcinogenic components into the lung. Each of these pathways can impact on genotoxicity and proliferation, as well as on feedback mechanisms involving DNA repair or apoptosis. Although abundant evidence suggests that ROS/RNS mediate particle-induced genotoxicity and mutagenesis, little information is available towards the subsequent steps leading to neoplastic changes. Additionally, since most of the proposed molecular mechanisms underlying particle-related carcinogenesis have been derived from in vitro studies, there is a need for future studies that evaluate the implication of these mechanisms for in vivo lung cancer development. In this respect, transgenic and gene knockout animal models may provide a useful tool. Such studies should also include further assessment of the relative contributions of primary (inflammation-independent) and secondary (inflammation-driven) pathways.
Collapse
Affiliation(s)
- Ad M Knaapen
- Department of Health Risk Analysis and Toxicology, University of Maastricht, The Netherlands
| | | | | | | |
Collapse
|
9
|
Hu W, Zhang Q, Su WC, Feng Z, Rom W, Chen LC, Tang M, Huang X. Gene expression of primary human bronchial epithelial cells in response to coal dusts with different prevalence of coal workers' pneumoconiosis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2003; 66:1249-1265. [PMID: 12851122 DOI: 10.1080/15287390306411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Striking regional differences in the prevalence of coal workers' pneumoconiosis (CWP) have been observed but not fully understood. This study investigated the early biological responses of primary lung cells to treatment with coal dusts from various seams. High-density oligoarray technology (GeneChip, Affymetrix, Santa Clara, CA) was used to compile gene expression profiles of primary human bronchial epithelial cells to low concentrations (2 microg/cm(2)) of coals for 6 h or 24 h of treatment. Data showed that a total of 1050 out of 12,000 genes on the chip were altered by 2 coal dusts. The coal from the Pennsylvania (PA) coal-mine region with a high prevalence of CWP altered 908 genes, many more than the coal from Utah (UT) with a low prevalence of CWP, which affected 356 genes. Many genes decreased their expression levels in response to the PA coal at 6 h and/or 24 h of treatment. For example, transferrin receptor, a gene known to control cellular iron uptake, was downregulated in the cells treated with the iron-containing PA coal in order to protect cells from iron overload. The UT coal without bioavailable iron had no such effect. The downregulation patterns of genes were confirmed by reverse-transcription polymerase chain reaction (RT-PCR). This study is one of the first in profiling gene expressions of primary bronchial epithelial cells treated with coals from various seams, which may set stages for future studies on specific genes.
Collapse
Affiliation(s)
- Wenwei Hu
- Department of Environmental Medicine, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Q, Huang X. Induction of interleukin-6 by coal containing bioavailable iron is through both hydroxyl radical and ferryl species. J Biosci 2003; 28:95-100. [PMID: 12682431 DOI: 10.1007/bf02970138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Coal mining causes health problems, such as pneumoconiosis. We have previously shown that prevalence of pneumoconiosis in workers from various coalmine regions positively correlates with levels of bioavailable iron (BAI) in the coals from that region. In the present study, the nature of reactive oxygen species formed by BAI in the coals and its mechanisms of the induction of biological responses were investigated. Human lung epithelial cell line, A549 cells, were used to examine the induction of interleukin-6 (IL-6), a pro-inflammatory cytokine, which is known to play a crucial role in the development of pneumoconiosis. We found that levels of IL-6 protein as well as its mRNA were significantly increased in the cells treated for 24 h with 20 microg/cm2 of the BAI-containing Pennsylvania (PA) coal; for example we observed 6.7-fold increase in IL-6 protein. Levels of IL-6 protein in cells treated with the Utah (UT) coal containing low-BAI were only 1.9-fold of the control levels. The enhancing effect on the IL-6 by the PA coal was similar to that caused by hydrogen peroxide. Superoxide dismutase (SOD), catalase (CAT), and N-acetyl-L-cysteine (NAC) all had inhibitory effects on the PA coal-induced IL-6 formation. However, CAT had the least protective effect as compared to SOD and NAC. Our results indicate that BAI in the PA coal may induce IL-6 through both ferryl species (via iron autoxidation) and hydroxyl radicals (via the Fenton/Haber Weiss reactions).
Collapse
Affiliation(s)
- Q Zhang
- New York University School of Medicine, Department of Environmental Medicine, 550 First Avenue, PHL Room 802, New York, NY 10016, USA
| | | |
Collapse
|
11
|
Abstract
Iron is an element essential for the survival of most aerobic organisms. However, when its availability is not adequately controlled, iron, can catalyze the formation of a range of aggressive and damaging reactive oxygen species, and act as a microbial growth promoter. Depending on the concentrations formed such species can cause molecular damage or influence redox signaling mechanisms. This review describes recent knowledge concerning iron metabolism in the lung, during both health and disease. In the lower part of the lung a small redox active pool of iron is required for reasons that are at present unclear, but may be related to antimicrobial functions. When the concentration of iron is increased in the lung (usually because of environmental exposure), iron is deleterious and contributes to a range of chronic and acute respiratory diseases. Moreover, aberrant regulation of iron metabolism, and/or deficient antioxidant protection, is also associated with acute lung diseases, such as the acute respiratory distress syndrome (ARDS). Iron, with the consequent production of reactive oxygen species (ROS), microbial growth promotion, and adverse signaling is strongly implicated as a major contributor to the pathogenesis of numerous disease processes involving the lung. Heme oxgenase, an enzyme that produces reactive iron from heme catabolism, is also briefly discussed in relation to lung disease.
Collapse
Affiliation(s)
- G J Quinlan
- Unit of Critical Care, Royal Brompton Hospital, Imperial College Faculty of Medicine, London, UK
| | | | | |
Collapse
|
12
|
Huang C, Li J, Zhang Q, Huang X. Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts. Am J Respir Cell Mol Biol 2002; 27:568-74. [PMID: 12397016 PMCID: PMC2965057 DOI: 10.1165/rcmb.4821] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers' pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH(2)-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions.
Collapse
Affiliation(s)
- Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York 10016, USA
| | | | | | | |
Collapse
|
13
|
Zhang Q, Huang X. Induction of ferritin and lipid peroxidation by coal samples with different prevalence of coal workers' pneumoconiosis: role of iron in the coals. Am J Ind Med 2002; 42:171-9. [PMID: 12210686 DOI: 10.1002/ajim.10101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Differences in levels of bioavailable iron (BAI) in coal may be responsible for the observed regional differences in the prevalence and severity of coal workers' pneumoconiosis (CWP). METHODS Twenty-nine coal samples from three coal mine regions were tested in human lung epithelial Type II A549 cells. They were from Utah (UT), West Virginia (WV), and Pennsylvania (PA) with a prevalence of CWP of 4, 10, and 26%, respectively. RESULTS Low molecular weight (LMW) chelators bound iron, a fraction of BAI in the cells released from coals, ferritin, and lipid peroxidation were significantly higher in cells treated with various coals than in control cells, with an increasing order of UT < WV < PA, in parallel to the prevalence of CWP in these coal mine regions. Deferoxamine (DFO), a specific iron chelator, was used to distinguish effects of BAI from those of other transition metals. Our results indicate that BAI in the coals of WV and UT is the main metal species in inducing ferritin and lipid peroxidation. In contrast, biological effects of PA coals are not only from BAI, but from other transition metals as well. CONCLUSIONS Based on a large number of coal samples from various seams, the findings of this study provide further evidence that metals, particularly iron, play important roles in coal dust-induced cellular damage, ultimately leading to the development of CWP and contributing to the regional differences in the prevalence of the disease.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
14
|
Pneumoconiosis in Coal Workers: Cellular Concepts of Dust-Induced Lung Injury, Radiographic Diagnosis, and Pulmonary Infections With Mycobacteria. ACTA ACUST UNITED AC 2001. [DOI: 10.1097/00045413-200101000-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|