1
|
Gampa SC, Garimella SV, Pandrangi S. Nano-TRAIL: a promising path to cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:78-102. [PMID: 37065863 PMCID: PMC10099604 DOI: 10.20517/cdr.2022.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 04/18/2023]
Abstract
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, also called apo-2 ligand (TRAIL/Apo-2L), is a cytokine that triggers apoptosis by binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors. Apoptosis occurs through either the extrinsic or intrinsic pathway. The administration of recombinant human TRAIL (rhTRAIL) or TRAIL-receptor (TRAIL-R) agonists promotes apoptosis preferentially in cancerous cells over normal cells in vitro; this phenomenon has also been observed in clinical studies. The limited efficacy of rhTRAIL in clinical trials could be attributed to drug resistance, short half-life, targeted delivery issues, and off-target toxicities. Nanoparticles are excellent drug and gene delivery systems characterized by improved permeability and retention, increased stability and biocompatibility, and precision targeting. In this review, we discuss resistance mechanisms to TRAIL and methods to overcome TRAIL resistance by using nanoparticle-based formulations developed for the delivery of TRAIL peptides, TRAIL-R agonists, and TRAIL genes to cancer cells. We also discuss combinatorial approaches of chemotherapeutic drugs with TRAIL. These studies demonstrate TRAIL's potential as an anticancer agent.
Collapse
Affiliation(s)
- Siri Chandana Gampa
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - Sireesha V. Garimella
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - SanthiLatha Pandrangi
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| |
Collapse
|
2
|
Yagolovich A, Kuskov A, Kulikov P, Kurbanova L, Bagrov D, Artykov A, Gasparian M, Sizova S, Oleinikov V, Gileva A, Kirpichnikov M, Dolgikh D, Markvicheva E. Amphiphilic Poly( N-vinylpyrrolidone) Nanoparticles Conjugated with DR5-Specific Antitumor Cytokine DR5-B for Targeted Delivery to Cancer Cells. Pharmaceutics 2021; 13:1413. [PMID: 34575490 PMCID: PMC8464842 DOI: 10.3390/pharmaceutics13091413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles based on the biocompatible amphiphilic poly(N-vinylpyrrolidone) (Amph-PVP) derivatives are promising for drug delivery. Amph-PVPs self-aggregate in aqueous solutions with the formation of micellar nanoscaled structures. Amph-PVP nanoparticles are able to immobilize therapeutic molecules under mild conditions. As is well known, many efforts have been made to exploit the DR5-dependent apoptosis induction for cancer treatment. The aim of the study was to fabricate Amph-PVP-based nanoparticles covalently conjugated with antitumor DR5-specific TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) variant DR5-B and to evaluate their in vitro cytotoxicity in 3D tumor spheroids. The Amph-PVP nanoparticles were obtained from a 1:1 mixture of unmodified and maleimide-modified polymeric chains, while DR5-B protein was modified by cysteine residue at the N-end for covalent conjugation with Amph-PVP. The nanoparticles were found to enhance cytotoxicity effects compared to those of free DR5-B in both 2D (monolayer culture) and 3D (tumor spheroids) in vitro models. The cytotoxicity of the nanoparticles was investigated in human cell lines, namely breast adenocarcinoma MCF-7 and colorectal carcinomas HCT116 and HT29. Notably, DR5-B conjugation with Amph-PVP nanoparticles sensitized resistant multicellular tumor spheroids from MCF-7 and HT29 cells. Taking into account the nanoparticles loading ability with a wide range of low-molecular-weight antitumor chemotherapeutics into hydrophobic core and feasibility of conjugation with hydrophilic therapeutic molecules by click chemistry, we suggest further development to obtain a versatile system for targeted drug delivery into tumor cells.
Collapse
Affiliation(s)
- Anne Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Andrey Kuskov
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Pavel Kulikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia;
| | - Leily Kurbanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Dmitry Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Artem Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Marine Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Svetlana Sizova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Vladimir Oleinikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Anastasia Gileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Mikhail Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Dmitry Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Elena Markvicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| |
Collapse
|
3
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
4
|
Biswas O, Akhtar N, Vashi Y, Saha A, Kumar V, Pal S, Kumar S, Manna D. Chloride Ion Transport by PITENINs across the Phospholipid Bilayers of Vesicles and Cells. ACS APPLIED BIO MATERIALS 2020; 3:935-944. [DOI: 10.1021/acsabm.9b00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Oindrila Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Nasim Akhtar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Yoya Vashi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Abhishek Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vishnu Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sudipa Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
6
|
Guimarães PP, Gaglione S, Sewastianik T, Carrasco RD, Langer R, Mitchell MJ. Nanoparticles for Immune Cytokine TRAIL-Based Cancer Therapy. ACS NANO 2018; 12:912-931. [PMID: 29378114 PMCID: PMC5834400 DOI: 10.1021/acsnano.7b05876] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received significant attention as a cancer therapeutic due to its ability to selectively trigger cancer cell apoptosis without causing toxicity in vivo. While TRAIL has demonstrated significant promise in preclinical studies in mice as a cancer therapeutic, challenges including poor circulation half-life, inefficient delivery to target sites, and TRAIL resistance have hindered clinical translation. Recent advances in drug delivery, materials science, and nanotechnology are now being exploited to develop next-generation nanoparticle platforms to overcome barriers to TRAIL therapeutic delivery. Here, we review the design and implementation of nanoparticles to enhance TRAIL-based cancer therapy. The platforms we discuss are diverse in their approaches to the delivery problem and provide valuable insight into guiding the design of future nanoparticle-based TRAIL cancer therapeutics to potentially enable future translation into the clinic.
Collapse
Affiliation(s)
- Pedro P.G. Guimarães
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stephanie Gaglione
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ruben D. Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
- Corresponding Authors. .,
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors. .,
| |
Collapse
|
7
|
Targeting of Micelles and Liposomes Loaded with the Pro-Apoptotic Drug, NCL-240, into NCI/ADR-RES Cells in a 3D Spheroid Model. Pharm Res 2016; 33:2540-51. [PMID: 27351426 DOI: 10.1007/s11095-016-1978-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/20/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE To develop transferrin (Tf)-targeted delivery systems for the pro-apoptotic drug, NCL-240, and to evaluate the efficacy of this delivery system in ovarian cancer NCI/ADR-RES cells, grown in vitro in a 3D spheroid model. METHODS Tf-targeted PEG-PE-based micellar and ePC/CHOL-based liposomal delivery systems for NCL-240 were prepared. NCI/ADR-RES cells were used to generate spheroids by a non-adhesive liquid overlay technique. Spheroid growth and development were monitored by size (diameter) analysis and H&E staining. The targeted formulations were compared to untargeted ones in terms of their degree of spheroid association and penetration. A cell viability analysis with NCL-240-loaded micelles and liposomes was performed to assess the effectiveness of Tf-targeting. RESULTS Tf-targeted polymeric micelles and Tf-targeted liposomes loaded with NCL-240 were prepared. NCI/ADR-RES cells generated spheroids that demonstrated the presence of a distinct necrotic core along with proliferating cells in the spheroid periphery, partly mimicking in vivo tumors. The Tf-targeted micelles and liposomes had a deeper spheroid penetration as compared to the untargeted delivery systems. Cell viability studies using the spheroid model demonstrated that Tf-mediated targeting markedly improved the cytotoxicity profile of NCL-240. CONCLUSION Transferrin targeting enhanced delivery and effectiveness of micelles and liposomes loaded with NCL-240 against NCI/ADR-RES cancer cells in a 3D spheroid model.
Collapse
|
8
|
Riehle R, Pattni B, Jhaveri A, Kulkarni A, Thakur G, Degterev A, Torchilin V. Combination Nanopreparations of a Novel Proapoptotic Drug - NCL-240, TRAIL and siRNA. Pharm Res 2016; 33:1587-601. [PMID: 26951567 DOI: 10.1007/s11095-016-1899-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a multifunctional nanoparticle system carrying a combination of pro-apoptotic drug, NCL-240, TRAIL [tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand] and anti-survivin siRNA and to test the combination preparation for anti-cancer effects in different cancer cells. METHODS Polyethylene glycol-phosphoethanolamine (PEG-PE) - based polymeric micelles were prepared carrying NCL-240. These micelles were used in combination with TRAIL-conjugated micelles and anti-survivin siRNA-S-S-PE containing micelles. All the micelles were characterized for size, zeta potential, and drug encapsulation efficiency. Different cancer cells were used to study the cytotoxicity potential of the individual as well as the combination formulations. Other cell based assays included cellular association studies of transferrin-targeted NCL-240 micelles and study of cellular survivin protein downregulation by anti-survivin siRNA-S-S-PE containing micelles. RESULTS NCL-240 micelles and the combination NCL-240/TRAIL micelles significantly increased cytotoxicity in the resistant strains of SKOV-3, MCF-7 and A549 as compared to free drugs or single drug formulations. The NCL-240/TRAIL micelles were also more effective in NCI/ADR-RES cancer cell spheroids. Anti-survivin siRNA micelles alone displayed a dose-dependent reduction in survivin protein levels in A2780 cells. Treatment with NCL-240/TRAIL after pre-incubation with anti-survivin siRNA inhibited cancer cell proliferation. Additionally, a single multifunctional system composed of NCL-240/TRAIL/siRNA PM also had significant cytotoxic effects in vitro in multiple cell lines. CONCLUSION These results demonstrate the efficacy of a combination of small-molecule PI3K inhibitors, TRAIL, and siRNA delivered by micellar preparations in multiple cancer cell lines.
Collapse
Affiliation(s)
- Robert Riehle
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Bhushan Pattni
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Aditi Jhaveri
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Abhijit Kulkarni
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Ganesh Thakur
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Alexei Degterev
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Room 236, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA. .,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
9
|
Bakhshaiesh TO, Armat M, Shanehbandi D, Sharifi S, Baradaran B, Hejazi MS, Samadi N. Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells. Asian Pac J Cancer Prev 2015. [DOI: 10.7314/apjcp.2015.16.13.5191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Zhang G, Liu F, Jia E, Jia L, Zhang Y. Folate-modified, cisplatin-loaded lipid carriers for cervical cancer chemotherapy. Drug Deliv 2015; 23:1393-7. [PMID: 26165422 DOI: 10.3109/10717544.2015.1054052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cervical cancer chemotherapy calls for the efficiently delivery of anticancer drug into cancer cells by nanoparticles. In this study, folate (FA) modified, cisplatin (CIS)-loaded nanostructured lipid carriers (NLCs) were constructed and evaluated. METHODS FA containing polyethylene glycol (PEG)-distearoylphosphatidylethanolamine (DSPE) (FA-PEG-DSPE) was synthesized. FA-PEG-DSPE modified, CIS-loaded NLCs (FA-CIS-NLCs) were prepared. Their particle size, zeta potential, drug encapsulation efficiency (EE) and in vitro delivery behavior were evaluated. In vitro cytotoxicity study of FA-CIS-NLCs was tested in human cervix adenocarcinoma cell line (HeLa cells). In vivo anti-tumor efficacies of the carriers were evaluated on a mice-bearing cervical cancer model. RESULTS The optimum FA-CIS-NLCs formulations have a particle size of 143.2 nm and a +25.7 mV surface charge. FA-CIS-NLCs displayed the best anti-tumor activity than other formulations in vitro and in vivo. CONCLUSIONS The results demonstrated that FA-CIS-NLCs were efficient in selective delivery to cancer cells over-expressing FA receptors (FRs). FA-CIS-NLCs targeted transfer CIS to the cervical cancer cells, enhance the anti-tumor capacity. The novel constructed NLCs could function as outstanding nanocarriers for the delivery of drugs for the targeted treatment of cervical cancers.
Collapse
Affiliation(s)
- Guilian Zhang
- a Department of Gynecology and Obstetrics , The Fourth People's Hospital of Ji'nan , Ji'nan, Shandong , People's Republic of China and
| | - Fengying Liu
- a Department of Gynecology and Obstetrics , The Fourth People's Hospital of Ji'nan , Ji'nan, Shandong , People's Republic of China and
| | - Erxia Jia
- a Department of Gynecology and Obstetrics , The Fourth People's Hospital of Ji'nan , Ji'nan, Shandong , People's Republic of China and
| | - Lin Jia
- b Department of Gynecology and Obstetrics , Qilu Hospital of Shandong University , Ji'nan, Shandong , People's Republic of China
| | - Youzhong Zhang
- b Department of Gynecology and Obstetrics , Qilu Hospital of Shandong University , Ji'nan, Shandong , People's Republic of China
| |
Collapse
|
11
|
Gill KK, Kaddoumi A, Nazzal S. PEG–lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. J Drug Target 2014; 23:222-31. [DOI: 10.3109/1061186x.2014.997735] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Kommagalla Y, Cornea S, Riehle R, Torchilin V, Degterev A, Ramana CV. Optimization of the anti-cancer activity of phosphatidylinositol-3 kinase pathway inhibitor PITENIN-1: switching a thiourea with 1,2,3-triazole. MEDCHEMCOMM 2014; 5:1359-1363. [PMID: 25505943 DOI: 10.1039/c4md00109e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously reported encouraging in vitro and in vivoanti-cancer activity of N-((3-chloro-2-hydroxy-5-nitrophenyl)carbamothioyl)benzamide (termed PITENIN-1). In the current work, we describe the structure-activity relationship study of PIT-1 series, based on the replacement of central thiourea unit with a 1,2,3-triazole, which leads to increased liver microsomal stability, drug likeness and toxicity towards cancer cells.
Collapse
Affiliation(s)
- Yadagiri Kommagalla
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India 411008
| | - Sinziana Cornea
- Department of Developmental, Molecular and Chemical Biology, Tufts University, 136 Harrison Avenue, Boston, MA 02111
| | - Robert Riehle
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115
| | - Vladimir Torchilin
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University, 136 Harrison Avenue, Boston, MA 02111
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India 411008
| |
Collapse
|
13
|
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014; 5:77. [PMID: 24795633 PMCID: PMC4007015 DOI: 10.3389/fphar.2014.00077] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/31/2014] [Indexed: 12/18/2022] Open
Abstract
Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs.
Collapse
Affiliation(s)
- Aditi M Jhaveri
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University Boston, MA, USA
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University Boston, MA, USA
| |
Collapse
|
14
|
TRAIL and microRNAs in the treatment of prostate cancer: therapeutic potential and role of nanotechnology. Appl Microbiol Biotechnol 2013; 97:8849-57. [PMID: 24037407 DOI: 10.1007/s00253-013-5227-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 01/20/2023]
Abstract
Disruption of spatiotemporal behavior of intracellular signaling cascades including tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-mediated signaling in prostate cancer has gained tremendous attention in the past few years. There is an increasing effort in translating the emerging information about TRAIL-mediated signaling obtained through experimental and preclinical data to clinic. Fascinatingly, novel targeting approaches are being developed to enhance the tissue- or subcellular-specific delivery of drugs with considerable focus on prostate cancer. These applications have the potential to revolutionize prostate cancer therapeutic strategies and include the accumulation of drugs in target tissue as well as the selection of internalizing ligands for enhanced receptor-mediated uptake of drugs. In this mini-review, we outline outstanding developments in therapeutic strategies based on the regulation and/or targeting of TRAIL pathway for the treatment of prostate cancer. Moreover, microRNAs (miRNAs), with potential transcriptional and posttranscriptional regulation of gene expression, will be presented for their potential in prostate cancer treatment. Emphasis has been given to the use of delivery approaches, especially based on nanotechnology. Considerably, enhanced information regarding miRNA regulation of TRAIL-mediated signaling in prostate cancer cells may provide potential biomarkers for the characterization of patients as responders and nonresponders of TRAIL-based therapy and could provide rationalized basis for combination therapies with TRAIL death receptor-targeting drugs.
Collapse
|
15
|
Ajazuddin, Alexander A, Khichariya A, Gupta S, Patel RJ, Giri TK, Tripathi DK. Recent expansions in an emergent novel drug delivery technology: Emulgel. J Control Release 2013; 171:122-32. [PMID: 23831051 DOI: 10.1016/j.jconrel.2013.06.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Emulgel is an emerging topical drug delivery system to which if more effort is paid towards its formulation & development with more number of topically effective drugs it will prove a boon for derma care & cosmetology. Emulgels are either emulsion of oil in water or water in oil type, which is gelled by mixing it with gelling agent. Incorporation of emulsion into gel increases its stability & makes it a dual control release system. Due to lack of excess oily bases & insoluble excipients, it shows better drug release as compared to other topical drug delivery system. Presence of gel phase makes it a non greasy & favors good patient compliance. These reviews give knowledge about Emulgel including its properties, advantages, formulation considerations, and its recent advances in research field. All factors such as selection of gelling agent, oil agent, emulsifiers influencing the stability and efficacy of Emulgel are discussed. All justifications are described in accordance with the research work carried out by various scientists. These brief reviews on formulation method have been included. Current research works that carried out on Emulgel are also discussed and highlighted the wide utility of Emulgel in topical drug delivery system. After the vast study, it can be concluded that the Emulgels appear better & effective drug delivery system as compared to other topical drug delivery system. The comprehensive analysis of rheological and release properties will provide an insight into the potential usage of Emulgel formulation as drug delivery system.
Collapse
Affiliation(s)
- Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, India.
| | | | | | | | | | | | | |
Collapse
|
16
|
Jin M, Shen X, Zhao C, Qin X, Liu H, Huang L, Qiu Z, Liu Y. In vivo study of effects of artesunate nanoliposomes on human hepatocellular carcinoma xenografts in nude mice. Drug Deliv 2013; 20:127-33. [PMID: 23731485 DOI: 10.3109/10717544.2013.801047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the effect of artesunate nanoliposomes on cultured cells in vitro and hepatocellular carcinoma xenografts in BALB/c-nu mice. Fluorescence polarization was applied for measurement of mitochondrial membrane fluidities; inhibition test of tumor cell proliferation in vitro was performed and nude mice xenograft model from human hepatocellular carcinoma (HCC) was established. Cytotoxicity of these compounds was evaluated by MTT assay on hepatocellular carcinoma xenografts in nude mice. Anisotropy (r-value) of blank nanoliposomes didn't change, it had no statistically significance between the blank nanoliposomes group and the control group, it indicated that artesunate had no obvious effect on L-O2 human normal liver cells. IC₅₀ values of artesunate nanoliposomes and artesunate API (active pharmaceutical ingredient) against HepG-2 cells were 15.997 and 19.706 μg/ml; IC₅₀ values of the same drugs against L-O2 normal human liver cells were 100.23 and 105.54 μg/ml, respectively. Tumor growth inhibitory effect of artesunate nanoliposomes was 32.7%, and artesunate API was 20.5%, respectively. HepG-2 cells treated with artesunate nanoliposomes showed dose-dependent apoptosis. The antitumor effect of artesunate nanoliposomes on human hepatoma HepG2 cells were stronger than that of artesunate API at the same concentration.
Collapse
Affiliation(s)
- Meihua Jin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sawant RR, Jhaveri AM, Koshkaryev A, Qureshi F, Torchilin VP. The effect of dual ligand-targeted micelles on the delivery and efficacy of poorly soluble drug for cancer therapy. J Drug Target 2013; 21:630-8. [DOI: 10.3109/1061186x.2013.789032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Riehle RD, Cornea S, Degterev A, Torchilin V. Micellar formulations of pro-apoptotic DM-PIT-1 analogs and TRAIL in vitro and in vivo. Drug Deliv 2013; 20:78-85. [PMID: 23495715 DOI: 10.3109/10717544.2013.766780] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed and characterized micellar formulations of analogs to the recently developed inhibitor of the phosphatidylinositol-3-kinase (PI3K) pathway (N-[(2-hydroxy-5-nitrophenyl)amino]carbonothioyl-3,5-dimethylbenzamide (DM-PIT-1)) for their physicochemical, loading and cytotoxic properties. The first generation inhibitor DM-PIT-1 is a non-lipid, small molecule inhibitor of phosphatidylinositol-3,4,5-triphosphate/Pleckstrin homology (PIP3/PH) binding capable of inhibiting the growth of tumor cells both in vitro and in vivo. A second generation of improved and druggable analogs has been developed. All compounds were successfully loaded (>70%) in PEG2000-PE micelles of 16-20 nm in size with several analogs demonstrating favorable cytotoxic activity against A2780 ovarian carcinoma. These compounds were also successfully incorporated into polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles combined with surface-bound tumor necrosis factor related apoptosis inducing ligand (TRAIL). The resulting multifunctional combination micelles were able to significantly enhance cytotoxic activity in the TRAIL-resistant A2780 cell line. Additionally, analogs NCL-176 and NCL-240 were effective in inhibiting tumor growth in an in vivo subcutaneous tumor model of A2780. These results indicate the utility of delivering TRAIL and PI3K pathway inhibitors in a combined micellar preparation.
Collapse
Affiliation(s)
- Robert D Riehle
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
19
|
Combination effects of docetaxel and Doxorubicin in hormone-refractory prostate cancer cells. Biochem Res Int 2012; 2012:832059. [PMID: 22811914 PMCID: PMC3395329 DOI: 10.1155/2012/832059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/10/2012] [Indexed: 12/31/2022] Open
Abstract
Combination effects of docetaxel (DOC) and doxorubicin (DOX) were investigated in prostate cancer cells (PC3 and DU145). Combination indices (CIs) were determined using the unified theory in various concentrations and mixing ratios (synergy: CI < 0.9, additivity: 0.9 < CI < 1.1, and antagonism: CI > 1.1). DOC showed a biphasic cytotoxicity pattern with the half maximal inhibitory concentration (IC50) at the picomolar range for PC3 (0.598 nM) and DU145 (0.469 nM), following 72 h drug exposure. The IC50s of DOX were 908 nM and 343 nM for PC3 and DU145, respectively. Strong synergy was seen when PC3 was treated with DOC at concentrations lower than its IC50 values (0.125~0.5 nM) plus DOX (2~8 times IC50). Equipotent drug combination treatments (7 × 7) revealed that the DOC/DOX combination leads to high synergy and effective cell death only in a narrow concentration range in DU145. This study provides a convenient method to predict multiple drug combination effects by the estimated CI values as well as cell viability data. The proposed DOC/DOX mixing ratios can be used to design combination drug cocktails or delivery systems to improve chemotherapy for cancer patients.
Collapse
|
20
|
van Beuge MM, Poelstra K, Prakash J. Specific delivery of kinase inhibitors in nonmalignant and malignant diseases. Expert Opin Drug Deliv 2011; 9:59-70. [PMID: 22111941 DOI: 10.1517/17425247.2012.638625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Kinase inhibitors have been hailed as a breakthrough in the treatment of cancer. Extensive research is now being devoted to the development of kinase inhibitors as a treatment for many nonmalignant diseases. However, the use of kinase inhibitors in both malignant and nonmalignant diseases is also associated with side effects and the development of resistance. It may be worthwhile to explore whether cell-specific delivery of kinase inhibitors improves therapeutic efficacy and reduces side effects. AREAS COVERED This review aims to provide an overview of the preclinical studies performed to examine the specific targeting of kinase inhibitors in vitro and in vivo. It gives an introduction to kinase signaling pathways induced during disease, along with the possible problems associated with their inhibition. It also discusses the studies on specific delivery and shows that altering the specificity of kinase inhibitors by targeting methods improves their effectivity and safety. EXPERT OPINION Compared with the delivery of cytotoxic compounds, the specific delivery of kinase inhibitors has not yet been studied extensively. The studies discussed in this review provide an insight into methods used to target kinase inhibitors to different organs. The targeting of different kinase inhibitors has improved their therapeutic possibilities, but many questions still remain to be studied.
Collapse
Affiliation(s)
- Marike Marjolijn van Beuge
- University of Groningen, University Centre for Pharmacy, Department of Pharmacokinetics, Toxicology & Targeting, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | | | | |
Collapse
|
21
|
Lim SM, Kim TH, Jiang HH, Park CW, Lee S, Chen X, Lee KC. Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials 2011; 32:3538-46. [DOI: 10.1016/j.biomaterials.2011.01.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
22
|
Skidan I, Grunwald J, Thekkedath R, Degterev A, Torchilin V. A HPLC method for the quantitative determination of N-(2-hydroxy-5-nitrophenylcarbamothioyl)-3,5-dimethylbenzamide in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1610-6. [PMID: 21514904 DOI: 10.1016/j.jchromb.2011.03.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/01/2022]
Abstract
A sensitive and simple HPLC method was developed for the determination of a novel compound, a potential anti-cancer drug, N-(2-hydroxy-5-nitrophenylcarbamothioyl)-3,5-dimethylbenzamide (DM-PIT-1), a member of the new structural class of non-phosphoinositide small molecule antagonist of phosphatidylinositol-3,4,5-trisphosphate-pleckstrin-homology domain interactions, in mouse plasma and tumor tissue homogenates. The chromatographic separation of DM-PIT-1 was achieved on C18 column using isocratic elution with acetonitrile-water (70:30) containing 0.1% formic acid (v/v). DM-PIT-1 was detected by UV absorbance at 320 nm and confirmed by LC-MS. The extraction of the DM-PIT-1 from the plasma and tumor tissue with methylene chloride resulted in its high recovery (70-80%). HPLC calibration curves for DM-PIT-1 based on the extracts from the mouse plasma and tumor tissue samples were linear over a broad concentration range of 0.25-20 μg/ml/g, with intra/inter-day accuracy of 95% and the precision of variation below 10%. The limits of detection and quantification were 0.1 ng and 0.2 ng, respectively. The described method was successfully applied to study the pharmacokinetics of the DM-PIT-1 following the parenteral injections of DM-PIT-1 entrapped in 1,2-disteratoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene-glycol)-2000] (PEG-PE) micelles.
Collapse
Affiliation(s)
- Igor Skidan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|