1
|
Qi J, Li X, Cao Y, Long Y, Lai J, Yao Y, Meng Y, Wang Y, Chen XD, Vankelecom H, Bian X, Cui W, Sun Y. Locationally activated PRP via an injectable dual-network hydrogel for endometrial regeneration. Biomaterials 2024; 309:122615. [PMID: 38759486 DOI: 10.1016/j.biomaterials.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Enhancing the effectiveness of platelet-rich plasma (PRP) for endometrial regeneration is challenging, due to its limited mechanical properties and burst release of growth factors. Here, we proposed an injectable interpenetrating dual-network hydrogel that can locationally activate PRP within the uterine cavity, sustained release growth factors and further address the insufficient therapeutic efficacy. Locational activation of PRP is achieved using the dual-network hydrogel. The phenylboronic acid (PBA) modified methacrylated hyaluronic acid (HAMA) dispersion chelates Ca2+ by carboxy groups and polyphenol groups, and in situ crosslinked with PRP-loaded polyvinyl alcohol (PVA) dispersion by dynamic borate ester bonds thus establishing the soft hydrogel. Subsequently, in situ photo-crosslinking technology is employed to enhance the mechanical performance of hydrogels by initiating free radical polymerization of carbon-carbon double bonds to form a dense network. The PRP-hydrogel significantly promoted the endometrial cell proliferation, exhibited strong pro-angiogenic effects, and down-regulated the expression of collagen deposition genes by inhibiting the TGF-β1-SMAD2/3 pathway in vitro. In vivo experiments using a rat intrauterine adhesion (IUA) model showed that the PRP-hydrogel significantly promoted endometrial regeneration and restored uterine functionality. Furthermore, rats treated with the PRP-hydrogel displayed an increase in the number of embryos, litter size, and birth rate, which was similar to normal rats. Overall, this injectable interpenetrating dual-network hydrogel, capable of locational activation of PRP, suggests a new therapeutic approach for endometrial repair.
Collapse
Affiliation(s)
- Jia Qi
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoxiao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yumeng Cao
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yijing Long
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Junliang Lai
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yejie Yao
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yiwen Meng
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuan Wang
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX, 78229, USA
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Xuejiao Bian
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Yun Sun
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Aksoy Erden B, Kurus M, Turkcuoglu I, Melekoglu R, Balcioglu S, Yigitcan B, Ates B, Koytepe S. Synthesis of Cyclodextrin-Based Multifunctional Biocompatible Hydrogels and Their Use in the Prevention of Intrauterine Adhesions (Asherman's Syndrome) after Surgical Injury. ACS OMEGA 2024; 9:31957-31973. [PMID: 39072112 PMCID: PMC11270706 DOI: 10.1021/acsomega.4c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Asherman's syndrome, which can occur during the regeneration of damaged uterine tissue after surgical interventions, is a significant health problem in women. This study aimed to acquire and characterize cyclodextrin-based hydrogels, which can be used to prevent Asherman's syndrome, and investigate their effectiveness with biomedical applications. A series of hydrogels were synthesized from the cross-linking of β-cyclodextrin and different polyphenols with epoxy-functional PEG. Their chemical, physical, and biological properties were subsequently determined. The results demonstrated that the cyclodextrin-based hydrogels had a porous structure, high swelling ratio, good injectability, drug release ability, and antioxidant activity. Cell culture results illustrated that the hydrogels had no significant cytotoxicity toward L929 fibroblast cells. Considering all properties, the β-CD-PEG-600-Ec hydrogel showed the most satisfactory properties rather than other ones. The potential of this hydrogel in preventing Asherman's syndrome was evaluated in a rat model. The results revealed that the β-estradiol- and melatonin-loaded cyclodextrin-based multifunctional hydrogel group both structurally and mechanically showed an antiadhesion effect in the uterus and a therapeutic effect on the damage with the β-estradiol and melatonin that it contains compared to the Asherman (ASH) group. This double drug-loaded hydrogel can be a promising candidate for preventing Asherman's syndrome due to its versatile properties.
Collapse
Affiliation(s)
- Busra Aksoy Erden
- Central
Research Laboratory Application and Research Center, Bartın University, Bartin 74110, Turkey
| | - Meltem Kurus
- Faculty
of Medicine, Department of Histology and Embryology, İzmir Katip Çelebi University, Izmir 35620, Turkey
| | - Ilgin Turkcuoglu
- Faculty
of Medicine, Department of Obstetrics and Gynecology, SANKO University, Gaziantep 27090, Turkey
| | - Rauf Melekoglu
- Faculty
of Medicine, Department of Obstetrics and Gynecology, İnönü University, Malatya 44280, Turkey
| | - Sevgi Balcioglu
- Department
of Medicinal Laboratory, Sakarya University
of Applied Sciences, Sakarya 54050, Turkey
- Faculty
of
Science and Literature, Department of Chemistry, İnönü University, Malatya 44280, Turkey
| | - Birgul Yigitcan
- Faculty
of Medicine, Department of Histology and Embryology, İnönü University, Malatya 44280, Turkey
| | - Burhan Ates
- Faculty
of
Science and Literature, Department of Chemistry, İnönü University, Malatya 44280, Turkey
| | - Suleyman Koytepe
- Faculty
of
Science and Literature, Department of Chemistry, İnönü University, Malatya 44280, Turkey
| |
Collapse
|
3
|
Dai W, Liang J, Guo R, Zhao Z, Na Z, Xu D, Li D. Bioengineering approaches for the endometrial research and application. Mater Today Bio 2024; 26:101045. [PMID: 38600921 PMCID: PMC11004221 DOI: 10.1016/j.mtbio.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
The endometrium undergoes a series of precise monthly changes under the regulation of dynamic levels of ovarian hormones that are characterized by repeated shedding and subsequent regeneration without scarring. This provides the potential for wound healing during endometrial injuries. Bioengineering materials highlight the faithful replication of constitutive cells and the extracellular matrix that simulates the physical and biomechanical properties of the endometrium to a larger extent. Significant progress has been made in this field, and functional endometrial tissue bioengineering allows an in-depth investigation of regulatory factors for endometrial and myometrial defects in vitro and provides highly therapeutic methods to alleviate obstetric and gynecological complications. However, much remains to be learned about the latest progress in the application of bioengineering technologies to the human endometrium. Here, we summarize the existing developments in biomaterials and bioengineering models for endometrial regeneration and improving the female reproductive potential.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Zhongyu Zhao
- Innovation Institute, China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
4
|
Cao Y, Qi J, Wang J, Chen L, Wang Y, Long Y, Li B, Lai J, Yao Y, Meng Y, Yu X, Chen X, Ng LG, Li X, Lu Y, Cheng X, Cui W, Sun Y. Injectable "Homing-Like" Bioactive Short-Fibers for Endometrial Repair and Efficient Live Births. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306507. [PMID: 38504456 PMCID: PMC11132084 DOI: 10.1002/advs.202306507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Indexed: 03/21/2024]
Abstract
The prevalence of infertility caused by endometrial defects is steadily increasing, posing a significant challenge to women's reproductive health. In this study, injectable "homing-like" bioactive decellularized extracellular matrix short-fibers (DEFs) of porcine skin origin are innovatively designed for endometrial and fertility restoration. The DEFs can effectively bind to endometrial cells through noncovalent dipole interactions and release bioactive growth factors in situ. In vitro, the DEFs effectively attracted endometrial cells through the "homing-like" effect, enabling cell adhesion, spreading, and proliferation on their surface. Furthermore, the DEFs effectively facilitated the proliferation and angiogenesis of human primary endometrial stromal cells (HESCs) and human umbilical vein endothelial cells (HUVECs), and inhibited fibrosis of pretreated HESCs. In vivo, the DEFs significantly accelerated endometrial restoration, angiogenesis, and receptivity. Notably, the deposition of endometrial collagen decreased from 41.19 ± 2.16% to 14.15 ± 1.70% with DEFs treatment. Most importantly, in endometrium-injured rats, the use of DEFs increased the live birth rate from 30% to an impressive 90%, and the number and development of live births close to normal rats. The injectable "homing-like" bioactive DEFs system can achieve efficient live births and intrauterine injection of DEFs provides a new promising clinical strategy for endometrial factor infertility.
Collapse
Affiliation(s)
- Yumeng Cao
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Jia Qi
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yuan Wang
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yijing Long
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Boyu Li
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Junliang Lai
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yejie Yao
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yiwen Meng
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xiaohua Yu
- Hangzhou Phil Stone Biotech Co., Ltd.HangzhouZhejiang311215P. R. China
| | - Xiao‐Dong Chen
- Department of Comprehensive DentistryUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Research ServiceSouth Texas Veterans Health Care SystemAudie Murphy VA Medical CenterSan AntonioTX78229USA
| | - Lai Guan Ng
- Shanghai Immune Therapy InstituteShanghai Jiao Tong University School of Medicine affiliated Renji HospitalShanghai200127P. R. China
| | - Xinyu Li
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yao Lu
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xiaoyue Cheng
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yun Sun
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| |
Collapse
|
5
|
Xiong Z, Hu Y, Jiang M, Liu B, Jin W, Chen H, Yang L, Han X. Hypoxic bone marrow mesenchymal stem cell exosomes promote angiogenesis and enhance endometrial injury repair through the miR-424-5p-mediated DLL4/Notch signaling pathway. PeerJ 2024; 12:e16953. [PMID: 38406291 PMCID: PMC10894593 DOI: 10.7717/peerj.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Background Currently, bone marrow mesenchymal stem cells (BMSCs) have been reported to promote endometrial regeneration in rat models of mechanically injury-induced uterine adhesions (IUAs), but the therapeutic effects and mechanisms of hypoxic BMSC-derived exosomes on IUAs have not been elucidated. Objective To investigate the potential mechanism by which the BMSCS-derived exosomal miR-424-5p regulates IUA angiogenesis through the DLL4/Notch signaling pathway under hypoxic conditions and promotes endometrial injury repair. Methods The morphology of the exosomes was observed via transmission electron microscopy, and the expression of exosome markers (CD9, CD63, CD81, and HSP70) was detected via flow cytometry and Western blotting. The expression of angiogenesis-related genes (Ang1, Flk1, Vash1, and TSP1) was detected via RT‒qPCR, and the expression of DLL4/Notch signaling pathway-related proteins (DLL4, Notch1, and Notch2) was detected via Western blotting. Cell proliferation was detected by a CCK-8 assay, and angiogenesis was assessed via an angiogenesis assay. The expression of CD3 was detected by immunofluorescence. The endometrial lesions of IUA rats were observed via HE staining, and the expression of CD3 and VEGFA was detected via immunohistochemistry. Results Compared with those in exosomes from normoxic conditions, miR-424-5p was more highly expressed in the exosomes from hypoxic BMSCs. Compared with those in normoxic BMSC-derived exosomes, the proliferation and angiogenesis of HUVECs were significantly enhanced after treatment with hypoxic BMSC-derived exosomes, and these effects were weakened after inhibition of miR-424-5p. miR-424-5p can target and negatively regulate the expression of DLL4, promote the expression of the proangiogenic genes Ang1 and Flk1, and inhibit the expression of the antiangiogenic genes Vash1 and TSP1. The effect of miR-424-5p can be reversed by overexpression of DLL4. In IUA rats, treatment with hypoxic BMSC exosomes and the miR-424-5p mimic promoted angiogenesis and improved endometrial damage. Conclusion The hypoxic BMSC-derived exosomal miR-424-5p promoted angiogenesis and improved endometrial injury repair by regulating the DLL4/Notch signaling pathway, which provides a new idea for the treatment of IUAs.
Collapse
Affiliation(s)
- Zhenghua Xiong
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Yong Hu
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Min Jiang
- Department of Gynecology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Beibei Liu
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjiao Jin
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Huiqin Chen
- Department of Gynecology, Chuxiong Hospital of Traditional Chinese Medicine, Chuxiong, Yunnan, China
| | - Linjuan Yang
- Department of Gynecology and Obstetrics, Baoshan Hospital of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Xuesong Han
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| |
Collapse
|
6
|
Wang T, Ouyang H, Luo Y, Xue J, Wang E, Zhang L, Zhou Z, Liu Z, Li X, Tan S, Chen Y, Nan L, Cao W, Li Z, Chen F, Zheng L. Rehabilitation exercise-driven symbiotic electrical stimulation system accelerating bone regeneration. SCIENCE ADVANCES 2024; 10:eadi6799. [PMID: 38181077 PMCID: PMC10776020 DOI: 10.1126/sciadv.adi6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Electrical stimulation can effectively accelerate bone healing. However, the substantial size and weight of electrical stimulation devices result in reduced patient benefits and compliance. It remains a challenge to establish a flexible and lightweight implantable microelectronic stimulator for bone regeneration. Here, we use self-powered technology to develop an electric pulse stimulator without circuits and batteries, which removes the problems of weight, volume, and necessary rigid packaging. The fully implantable bone defect electrical stimulation (BD-ES) system combines a hybrid tribo/piezoelectric nanogenerator to provide biphasic electric pulses in response to rehabilitation exercise with a conductive bioactive hydrogel. BD-ES can enhance multiple osteogenesis-related biological processes, including calcium ion import and osteogenic differentiation. In a rat model of critical-sized femoral defects, the bone defect was reversed by electrical stimulation therapy with BD-ES and subsequent bone mineralization, and the femur completely healed within 6 weeks. This work is expected to advance the development of symbiotic electrical stimulation therapy devices without batteries and circuits.
Collapse
Affiliation(s)
- Tianlong Wang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Han Ouyang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Luo
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiangtao Xue
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zifei Zhou
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhiqing Liu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xifan Li
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shuo Tan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yixing Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Liping Nan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wentao Cao
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 201102, China
| | - Zhou Li
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 201102, China
| | - Longpo Zheng
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
7
|
Qin W, Wang J, Hu Q, Qin R, Ma N, Zheng F, Tian W, Jiang J, Li T, Jin Y, Liao M, Qin A. Melatonin-pretreated human umbilical cord mesenchymal stem cells improved endometrium regeneration and fertility recovery through macrophage immunomodulation in rats with intrauterine adhesions†. Biol Reprod 2023; 109:918-937. [PMID: 37672216 DOI: 10.1093/biolre/ioad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Intrauterine adhesions (IUA) are a common gynecological problem. Stem cell therapy has been widely used in the treatment of IUA. However, due to the complex and harsh microenvironment of the uterine cavity, the effectiveness of such therapy is greatly inhibited. This study aimed to investigate whether melatonin pretreatment enhances the efficacy of human umbilical cord mesenchymal stem cells (HucMSCs) in IUA treatment in rats. First, we explored the effect of melatonin on the biological activity of HucMSCs in vitro through a macrophage co-culture system, Cell Counting Kit 8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry, immunofluorescence staining, and qRT-PCR. Subsequently, we established the IUA rat model and tracked the distribution of HucMSCs in this model. In addition, we observed the number of M1 and M2 macrophages through immunofluorescence staining and detected the levels of inflammatory cytokines. Four weeks after cell transplantation, HE, Masson, and immunohistochemical staining were performed. In vitro experiments showed that melatonin pretreatment of HucMSCs promoted proliferation, reduced apoptosis, up-regulated the stemness gene, and regulated macrophage polarization. In vivo, melatonin pretreatment caused more HucMSCs to remain in the uterine cavity. Melatonin-pretreated HucMSCs recruited more macrophages, regulated macrophage polarization, and reduced inflammation. Melatonin-pretreated HucMSCs relieved fibrosis, increased endometrium thickness, and up-regulated CD34, vimentin, proliferating cell nuclear antigen (PCNA), and alpha small muscle antigen (α-SMA) expression. Fertility tests showed that melatonin-pretreated HucMSCs increased the number of embryos. In summary, pretreatment with melatonin was beneficial for HucMSC treatment because it enhanced the cell's ability to recruit macrophages and regulate macrophage polarization, which led to the regeneration of the endometrium and improved pregnancy outcomes.
Collapse
Affiliation(s)
- Weili Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiawei Wang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Reproductive and Genetic Hospital, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianwen Hu
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongyan Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nana Ma
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fengque Zheng
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wencai Tian
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinghang Jiang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufu Jin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Liao
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Hu X, Wu H, Yong X, Wang Y, Yang S, Fan D, Xiao Y, Che L, Shi K, Li K, Xiong C, Zhu H, Qian Z. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm (Beijing) 2023; 4:e425. [PMID: 38045828 PMCID: PMC10691302 DOI: 10.1002/mco2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapySichuan UniversityChengduSichuanChina
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Shuhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Diyi Fan
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Yibo Xiao
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | | | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
9
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Huang D, Liang J, Yang J, Yang C, Wang X, Dai T, Steinberg T, Li C, Wang F. Current Status of Tissue Regenerative Engineering for the Treatment of Uterine Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:558-573. [PMID: 37335062 DOI: 10.1089/ten.teb.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the recent developments in tissue engineering, scientists have attempted to establish seed cells from different sources, create cell sheets through various technologies, implant them on scaffolds with various spatial structures, or load scaffolds with cytokines. These research results are very optimistic, bringing hope to the treatment of patients with uterine infertility. In this article, we reviewed articles related to the treatment of uterine infertility from the aspects of experimental treatment strategy, seed cells, scaffold application, and repair criteria so as to provide a basis for future research.
Collapse
Affiliation(s)
- Di Huang
- Shandong First Medical University, Jinan, China
| | - Junhui Liang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Yang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunrun Yang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Dai
- Shandong First Medical University, Jinan, China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Wang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
12
|
Wu F, Lei N, Yang S, Zhou J, Chen M, Chen C, Qiu L, Guo R, Li Y, Chang L. Treatment strategies for intrauterine adhesion: focus on the exosomes and hydrogels. Front Bioeng Biotechnol 2023; 11:1264006. [PMID: 37720318 PMCID: PMC10501405 DOI: 10.3389/fbioe.2023.1264006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Intrauterine adhesion (IUA), also referred to as Asherman Syndrome (AS), results from uterine trauma in both pregnant and nonpregnant women. The IUA damages the endometrial bottom layer, causing partial or complete occlusion of the uterine cavity. This leads to irregular menstruation, infertility, or repeated abortions. Transcervical adhesion electroreception (TCRA) is frequently used to treat IUA, which greatly lowers the prevalence of adhesions and increases pregnancy rates. Although surgery aims to disentangle the adhesive tissue, it can exacerbate the development of IUA when the degree of adhesion is severer. Therefore, it is critical to develop innovative therapeutic approaches for the prevention of IUA. Endometrial fibrosis is the essence of IUA, and studies have found that the use of different types of mesenchymal stem cells (MSCs) can reduce the risk of endometrial fibrosis and increase the possibility of pregnancy. Recent research has suggested that exosomes derived from MSCs can overcome the limitations of MSCs, such as immunogenicity and tumorigenicity risks, thereby providing new directions for IUA treatment. Moreover, the hydrogel drug delivery system can significantly ameliorate the recurrence rate of adhesions and the intrauterine pregnancy rate of patients, and its potential mechanism in the treatment of IUA has also been studied. It has been shown that the combination of two or more therapeutic schemes has broader application prospects; therefore, this article reviews the pathophysiology of IUA and current treatment strategies, focusing on exosomes combined with hydrogels in the treatment of IUA. Although the use of exosomes and hydrogels has certain challenges in treating IUA, they still provide new promising directions in this field.
Collapse
Affiliation(s)
- Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shenyu Yang
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng Chen
- Department of Gynaecology and Obstetrics, Chongqing General Hospital, Chongqing, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
de Freitas CF, de Araújo Santos J, Pellosi DS, Caetano W, Batistela VR, Muniz EC. Recent advances of Pluronic-based copolymers functionalization in biomedical applications. BIOMATERIALS ADVANCES 2023; 151:213484. [PMID: 37276691 DOI: 10.1016/j.bioadv.2023.213484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
The design of polymeric biocompatible nanomaterials for biological and medical applications has received special attention in recent years. Among different polymers, the triblock type copolymers (EO)x(PO)y(EO)x or Pluronics® stand out due its favorable characteristics such as biocompatibility, low tissue adhesion, thermosensitivity, and structural capacity to produce different types of macro and nanostructures, e.g. micelles, vesicles, nanocapsules, nanospheres, and hydrogels. However, Pluronic itself is not the "magic bullet" and its functionalization via chemical synthesis following biologically oriented design rules is usually required aiming to improve its properties. Therefore, this paper presents some of the main publications on new methodologies for synthetic modifications and applications of Pluronic-based nanoconstructs in the biomedical field in the last 15 years. In general, the polymer modifications aim to improve physical-chemical properties related to the micellization process or physical entrapment of drug cargo, responsive stimuli, active targeting, thermosensitivity, gelling ability, and hydrogel formation. Among these applications, it can be highlighted the treatment of malignant neoplasms, infectious diseases, wound healing, cellular regeneration, and tissue engineering. Functionalized Pluronic has also been used for various purposes, including medical diagnosis, medical imaging, and even miniaturization, such as the creation of lab-on-a-chip devices. In this context, this review discusses the main scientific contributions to the designing, optimization, and improvement of covalently functionalized Pluronics aiming at new strategies focused on the multiple areas of the biomedical field.
Collapse
Affiliation(s)
- Camila Fabiano de Freitas
- Department of Chemistry, Federal University of Santa Catarina - UFSC, Eng. Agronômico Andrei Cristian Ferreira, s/n, Trindade, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Jailson de Araújo Santos
- PhD Program in Materials Science and Engineering, Federal University of Piauí, Campus Petrônio Portela, Ininga, Teresina CEP 64049-550, Piauí, Brazil
| | - Diogo Silva Pellosi
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Vagner Roberto Batistela
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Edvani Curti Muniz
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil; Department of Chemistry, Federal University of Piauí, Campus Petronio Portella, Ininga, Teresina CEP 64049-550, Piauí, Brazil.
| |
Collapse
|
14
|
Yoshimasa Y, Takao T, Katakura S, Tomisato S, Masuda H, Tanaka M, Maruyama T. A Decellularized Uterine Endometrial Scaffold Enhances Regeneration of the Endometrium in Rats. Int J Mol Sci 2023; 24:7605. [PMID: 37108764 PMCID: PMC10145056 DOI: 10.3390/ijms24087605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Partial or whole regeneration of the uterine endometrium using extracellular matrix (ECM)-based scaffolds is a therapeutic strategy for uterine infertility due to functional and/or structural endometrial defects. Here, we examined whether the entire endometrium can be regenerated circumferentially using an acellular ECM scaffold (decellularized endometrial scaffold, DES) prepared from rat endometrium. We placed a silicone tube alone to prevent adhesions or a DES loaded with a silicone tube into a recipient uterus in which the endometrium had been surgically removed circumferentially. Histological and immunofluorescent analyses of the uteri one month after tube placement revealed more abundant regenerated endometrial stroma in the uterine horns treated with tube-loaded DES compared to those treated with a tube alone. Luminal and glandular epithelia, however, were not fully recapitulated. These results suggest that DES can enhance the regeneration of endometrial stroma but additional intervention(s) are needed to induce epithelization. Furthermore, the prevention of adhesions alone allowed the endometrial stroma to regenerate circumferentially even without a DES, but to a lesser degree than that with a DES. The use of a DES together with the prevention of adhesions may be beneficial for efficient endometrial regeneration in the uterus that is largely deficient of endometrium.
Collapse
Affiliation(s)
- Yushi Yoshimasa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoka Takao
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Obstetrics and Gynecology, Tokyo Saiseikai Central Hospital, 1-4-17 Mita, Minato-ku, Tokyo 108-0073, Japan
| | - Shoko Tomisato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- HM Ladies Clinic Ginza, 3-4-16 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
16
|
Cao G, Gu J, Zhang H, Ji W, Zhu D, Bao Y, Asi H, Ren W. Treatment of obesity with type 2 diabetes mellitus by trans-catheter left gastric artery embolization under the thermo-sensitive nano-gel vascular embolization agent. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Da LC, Sun Y, Lin YH, Chen SZ, Chen GX, Zheng BH, Du SR. Emerging Bioactive Agent Delivery-Based Regenerative Therapies for Lower Genitourinary Tissues. Pharmaceutics 2022; 14:1718. [PMID: 36015344 PMCID: PMC9414065 DOI: 10.3390/pharmaceutics14081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Injury to lower genitourinary (GU) tissues, which may result in either infertility and/or organ dysfunctions, threatens the overall health of humans. Bioactive agent-based regenerative therapy is a promising therapeutic method. However, strategies for spatiotemporal delivery of bioactive agents with optimal stability, activity, and tunable delivery for effective sustained disease management are still in need and present challenges. In this review, we present the advancements of the pivotal components in delivery systems, including biomedical innovations, system fabrication methods, and loading strategies, which may improve the performance of delivery systems for better regenerative effects. We also review the most recent developments in the application of these technologies, and the potential for delivery-based regenerative therapies to treat lower GU injuries. Recent progress suggests that the use of advanced strategies have not only made it possible to develop better and more diverse functionalities, but also more precise, and smarter bioactive agent delivery systems for regenerative therapy. Their application in lower GU injury treatment has achieved certain effects in both patients with lower genitourinary injuries and/or in model animals. The continuous evolution of biomaterials and therapeutic agents, advances in three-dimensional printing, as well as emerging techniques all show a promising future for the treatment of lower GU-related disorders and dysfunctions.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yun-Hong Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Su-Zhu Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Gang-Xin Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
18
|
Cai G, Hou Z, Sun W, Li P, Zhang J, Yang L, Chen J. Recent Developments in Biomaterial-Based Hydrogel as the Delivery System for Repairing Endometrial Injury. Front Bioeng Biotechnol 2022; 10:894252. [PMID: 35795167 PMCID: PMC9251415 DOI: 10.3389/fbioe.2022.894252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial injury caused by intrauterine surgery often leads to pathophysiological changes in the intrauterine environment, resulting in infertility in women of childbearing age. However, clinical treatment strategies, especially for moderate to severe injuries, often fail to provide satisfactory therapeutic effects and pregnancy outcomes. With the development of reproductive medicine and materials engineering, researchers have developed bioactive hydrogel materials, which can be used as a physical anti-adhesion barrier alone or as functional delivery systems for intrauterine injury treatment by loading stem cells or various active substances. Studies have demonstrated that the biomaterial-based hydrogel delivery system can provide sufficient mechanical support and improve the intrauterine microenvironment, enhance the delivery efficiency of therapeutic agents, prolong intrauterine retention time, and perform efficiently targeted repair compared with ordinary drug therapy or stem cell therapy. It shows the promising application prospects of the hydrogel delivery system in reproductive medicine. Herein, we review the recent advances in endometrial repair methods, focusing on the current application status of biomaterial-based hydrogel delivery systems in intrauterine injury repair, including preparation principles, therapeutic efficacy, repair mechanisms, and current limitations and development perspectives.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Wei Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Peng Li
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Jinzhe Zhang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Liqun Yang, ; Jing Chen,
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Liqun Yang, ; Jing Chen,
| |
Collapse
|
19
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
20
|
Shantha Kumara HMC, Shah A, Miyagaki H, Yan X, Cekic V, Hedjar Y, Whelan RL. Plasma Levels of Keratinocyte Growth Factor Are Significantly Elevated for 5 Weeks After Minimally Invasive Colorectal Resection Which May Promote Cancer Recurrence and Metastasis. Front Surg 2021; 8:745875. [PMID: 34820416 PMCID: PMC8606552 DOI: 10.3389/fsurg.2021.745875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Human Keratinocyte Growth Factor (KGF) is an FGF family protein produced by mesenchymal cells. KGF promotes epithelial cell proliferation, plays a role in wound healing and may also support tumor growth. It is expressed by some colorectal cancers (CRC). Surgery's impact on KGF levels is unknown. This study's purpose was to assess plasma KGF levels before and after minimally invasive colorectal resection (MICR) for CRC. Aim: To determine plasma KGF levels before and after minimally invasive colorectal resection surgery for cancer pathology. Method: CRC MICR patients (pts) in an IRB approved data/plasma bank were studied. Pre-operative (pre-op) and post-operative (post-op) plasma samples were taken/stored. Late samples were bundled into 7 day blocks and considered as single time points. KGF levels (pg/ml) were measured via ELISA (mean ± SD). The Wilcoxon paired t-test was used for statistical analysis. Results: Eighty MICR CRC patients (colon 61%; rectal 39%; mean age 65.8 ± 13.3) were studied. The mean incision length was 8.37 ± 3.9 and mean LOS 6.5 ± 2.6 days. The cancer stage breakdown was; I (23), II (26), III (27), and IV (4). The median pre-op KGF level was 17.1 (95 %CI: 14.6-19.4; n = 80); significantly elevated (p < 0.05) median levels (pg/ml) were noted on post-op day (POD) 1 (23.4 pg/ml; 95% CI: 21.4-25.9; n = 80), POD 3 (22.5 pg/ml; 95% CI: 20.7-25.9; n = 76), POD 7-13 (21.8 pg/ml; 95% CI: 17.7-25.4; n = 50), POD 14-20 (20.1 pg/ml; 95% CI: 17.1-23.9; n = 33), POD 21-27 (19.6 pg/ml; 95% CI: 15.2-24.9; n = 15) and on POD 28-34 (16.7 pg/ml; 95% CI: 14.0-25.8; n = 12). Conclusion: Plasma KGF levels were significantly elevated for 5 weeks after MICR for CRC. The etiology of these changes is unclear, surgical trauma related acute inflammatory response and wound healing process may play a role. These changes, may stimulate angiogenesis in residual tumor deposits after surgery.
Collapse
Affiliation(s)
- H M C Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Abhinit Shah
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | | | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Yanni Hedjar
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
21
|
López-Martínez S, Rodríguez-Eguren A, de Miguel-Gómez L, Francés-Herrero E, Faus A, Díaz A, Pellicer A, Ferrero H, Cervelló I. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models. Acta Biomater 2021; 135:113-125. [PMID: 34428563 DOI: 10.1016/j.actbio.2021.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) hydrogels obtained from decellularized tissues are promising biocompatible materials for tissue regeneration. These biomaterials may provide important options for endometrial pathologies such as Asherman's syndrome and endometrial atrophy, which lack effective therapies thus far. First, we performed a proteomic analysis of a decellularized endometrial porcine hydrogel (EndoECM) to describe the specific role of ECM proteins related to regenerative processes. Furthermore, we investigated the ability of a bioengineered system-EndoECM alone or supplemented with growth factors (GFs)-to repair the endometrium in a murine model of endometrial damage. For this model, the uterine horns of female C57BL/6 mice were first injected with 70% ethanol, then four days later, they were treated with: saline (negative control); biotin-labeled EndoECM; or biotin-labeled EndoECM plus platelet-derived GF, basic fibroblast GF, and insulin-like GF 1 (EndoECM+GF). Endometrial regeneration and fertility restoration were evaluated by assessing the number of glands, endometrial area, cell proliferation, neaoangiogenesis, reduction of collagen deposition, and fertility restoration. Interestingly, regenerative effects such as an increased number of endometrial glands, increased area, high cell proliferative index, development of new blood vessels, reduction of collagen deposition, and higher pregnancy rate occurred in mice treated with EndoECM+GF. Thus, a bioengineered system based on EndoECM hydrogel supplemented with GFs may be promising for the clinical treatment of endometrial conditions such as Asherman's syndrome and endometrial atrophy. STATEMENT OF SIGNIFICANCE: In the last years, the bioengineering field has developed new and promising approaches to regenerate tissues or replace damaged and diseased tissues. Bioengineered hydrogels offer an ideal option because these materials can be used not only as treatments but also as carriers of drugs and other therapeutics. The present work demonstrates for the first time how hydrogels derived from pig endometrium loaded with growth factors could treat uterine pathologies in a mouse model of endometrial damage. These findings provide scientific evidence about bioengineered hydrogels based on tissue-specific extracellular matrix offering new options to treat human infertility from endometrial causes such as Asherman's syndrome or endometrial atrophy.
Collapse
Affiliation(s)
- Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Adolfo Rodríguez-Eguren
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Lucía de Miguel-Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Emilio Francés-Herrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Amparo Faus
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Ana Díaz
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Antonio Pellicer
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain; IVIRMA Roma, Largo Ildebrando Pizzetti, 1, Roma 00197, Italy
| | - Hortensia Ferrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain.
| |
Collapse
|
22
|
Wang J, Yang C, Xie Y, Chen X, Jiang T, Tian J, Hu S, Lu Y. Application of Bioactive Hydrogels for Functional Treatment of Intrauterine Adhesion. Front Bioeng Biotechnol 2021; 9:760943. [PMID: 34621732 PMCID: PMC8490821 DOI: 10.3389/fbioe.2021.760943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Intrauterine adhesion (IUA) is a common endometrial disease and one of the main causes of infertility in women of childbearing age. Current treatment strategies, such as hysteroscopic adhesion resection, hysteroscopic transcervical resection of adhesion (TCRA), the use of local hormone drugs, and anti-adhesion scaffold implantation, do not provide a satisfactory pregnancy outcome for moderate-severe IUA, which presents a great challenge in reproductive medicine. With the development of material engineering, various bioactive and functional hydrogels have been developed using natural and synthetic biomaterials. These hydrogels are not only used as barely physical barriers but are also designed as vectors of hormone drugs, growth factors, and stem cells. These characteristics give bioactive hydrogels potentially important roles in the prevention and treatment of IUA. However, there is still no systematic review or consensus on the current advances and future research direction in this field. Herein, we review recent advances in bioactive hydrogels as physical anti-adhesion barriers, in situ drug delivery systems, and 3D cell delivery and culture systems for seeded cells in IUA treatment. In addition, current limitations and future perspectives are presented for further research guidance, which may provide a comprehensive understanding of the application of bioactive hydrogels in intrauterine adhesion treatment.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Chao Yang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Yuxin Xie
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Xiaoxu Chen
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Ting Jiang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Jing Tian
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Sihui Hu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
23
|
Almeida GHDR, Iglesia RP, Araújo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA. Uterine Tissue Engineering: Where We Stand and the Challenges Ahead. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:861-890. [PMID: 34476997 DOI: 10.1089/ten.teb.2021.0062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue engineering is an innovative approach to develop allogeneic tissues and organs. The uterus is a very sensitive and complex organ, which requires refined techniques to properly regenerate and even, to rebuild itself. Many therapies were developed in 20th century to solve reproductive issues related to uterus failure and, more recently, tissue engineering techniques provided a significant evolution in this issue. Herein we aim to provide a broad overview and highlights of the general concepts involved in bioengineering to reconstruct the uterus and its tissues, focusing on strategies for tissue repair, production of uterine scaffolds, biomaterials and reproductive animal models, highlighting the most recent and effective tissue engineering protocols in literature and their application in regenerative medicine. In addition, we provide a discussion about what was achieved in uterine tissue engineering, the main limitations, the challenges to overcome and future perspectives in this research field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- University of São Paulo, Faculty of Veterinary and Animal Science, Professor Orlando Marques de Paiva Avenue, 87, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900.,University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Professor Lineu Prestes Avenue, 1374, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900;
| | - Rebeca Piatniczka Iglesia
- University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Sao Paulo, São Paulo, Brazil;
| | - Michelle Silva Araújo
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil., São Paulo, São Paulo, Brazil;
| | - Ana Claudia Oliveira Carreira
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil, São Paulo, São Paulo, Brazil;
| | - Erika Xavier Dos Santos
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Celso Vitor Alves Queiroz Calomeno
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Maria Angélica Miglino
- University of São Paulo, Faculty of Veterinary and Animal Science Professor Orlando Marques de Paiva Avenue, 87 Butantã SP Sao Paulo, São Paulo, BR 05508-900, São Paulo, São Paulo, Brazil;
| |
Collapse
|
24
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
25
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Essential Role of CRIM1 on Endometrial Receptivity in Goat. Int J Mol Sci 2021; 22:ijms22105323. [PMID: 34070207 PMCID: PMC8158520 DOI: 10.3390/ijms22105323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
In domestic ruminants, endometrial receptivity is related to successful pregnancy and economic efficiency. Despite several molecules having been reported in the past regarding endometrial receptivity regulation, much regarding the mechanism of endometrial receptivity regulation remains unknown due to the complex nature of the trait. In this work, we demonstrated that the cysteine-rich transmembrane bone morphogenetic protein (BMP) regulator 1 (CRIM1) served as a novel regulator in the regulation of goat endometrial receptivity in vitro. Our results showed that hormones and IFN-τ increased the expression of CRIM1 in goat endometrial epithelial cells (EECs). Knockdown of CRIM1 via specific shRNA hindered cell proliferation, cell adhesion and prostaglandins (PGs) secretion and thus derailed normal endometrial receptivity. We further confirmed that receptivity defect phenotypes due to CRIM1 interference were restored by ATG7 overexpression in EECs while a loss of ATG7 further impaired receptivity phenotypes. Moreover, our results showed that changing the expression of ATG7 affected the reactive oxygen species (ROS) production. Moreover, mR-143-5p was shown to be a potential upstream factor of CRIM1-regulated endometrial receptivity in EECs. Overall, these results suggest that CRIM1, as the downstream target of miR-143-5p, has effects on ATG7-dependent autophagy, regulating cell proliferation, cell adhesion and PG secretion, and provides a new target for the diagnosis and treatment of early pregnancy failure and for improving the success rates of artificial reproduction.
Collapse
|
27
|
Abstract
Impairment of uterine structure and function causes infertility, pregnancy loss, and perinatal complications in humans. Some types of uterine impairments such as Asherman’s syndrome, also known as uterine synechiae, can be treated medically and surgically in a standard clinical setting, but absolute defects of uterine function or structure cannot be cured by conventional approaches. To overcome such hurdles, partial or whole regeneration and reconstruction of the uterus have recently emerged as new therapeutic strategies. Transplantation of the whole uterus into patients with uterine agenesis results in the successful birth of children. However, it remains an experimental treatment with numerous difficulties such as the need for continuous and long-term use of immunosuppressive drugs until a live birth is achieved. Thus, the generation of the uterus by tissue engineering technologies has become an alternative but indispensable therapeutic strategy to treat patients without a functional or well-structured uterus. For the past 20 years, the bioengineering of the uterus has been studied intensively in animal models, providing the basis for clinical applications. A variety of templates and scaffolds made from natural biomaterials, synthetic materials, or decellularized matrices have been characterized to efficiently generate the uterus in a manner similar to the bioengineering of other organs and tissues. The goal of this review is to provide a comprehensive overview and perspectives of uterine bioengineering focusing on the type, preparation, and characteristics of the currently available scaffolds.
Collapse
|
28
|
Li X, Lv HF, Zhao R, Ying MF, Samuriwo A, Zhao YZ. Recent developments in bio-scaffold materials as delivery strategies for therapeutics for endometrium regeneration. Mater Today Bio 2021; 11:100101. [PMID: 34036261 PMCID: PMC8138682 DOI: 10.1016/j.mtbio.2021.100101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesions (IUAs) refer to the repair disorder after endometrial injury and may lead to uterine infertility, recurrent miscarriage, abnormal menstrual bleeding, and other obstetric complications. It is a pressing public health issue among women of childbearing age. Presently, there are limited clinical treatments for IUA, and there is no sufficient evidence that these treatment modalities can effectively promote regeneration after severe endometrial injury or improve pregnancy outcome. The inhibitory pathological micro-environment is the main factor hindering the repair of endometrial damaged tissues. To address this, tissue engineering and regenerative medicine have been achieving promising developments. Particularly, biomaterials have been used to load stem cells or therapeutic factors or construct an in situ delivery system as a treatment strategy for endometrial injury repair. This article comprehensively discusses the characteristics of various bio-scaffold materials and their application as stem cell or therapeutic factor delivery systems constructed for uterine tissue regeneration.
Collapse
Key Words
- Asherman's syndrome/endometrium regeneration
- BMNCs, autologous bone marrow mononuclear cells
- BMSCs, bone marrow mesenchymal stem cells
- Biological scaffold material
- D&C, Dilatation and curettage
- ECM, extracellular matrix
- En-PSC, endometrial perivascular cells
- IUA, Intrauterine adhesions
- KGF, Keratinocyte growth factor
- MSC-Sec, Mesenchymal stem cell-secretome
- SDF-1α, stromal cell-derived factor-1α
- Scaffold-based therapeutics delivery systems
- Stem cell
- Therapeutic factor
- UCMSCs, umbilical cord derived mesenchymal stem cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factors
- dEMSCs, endometrial stromal cells
- hESCs, human embryonic stem cells
Collapse
Affiliation(s)
- X. Li
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - H.-F. Lv
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
- Corresponding author.
| | - R. Zhao
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - M.-f. Ying
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - A.T. Samuriwo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Y.-Z. Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Corresponding author.
| |
Collapse
|
29
|
Lin Y, Dong S, Zhao W, Hu KL, Liu J, Wang S, Tu M, Du B, Zhang D. Application of Hydrogel-Based Delivery System in Endometrial Repair. ACS APPLIED BIO MATERIALS 2020; 3:7278-7290. [PMID: 35019471 DOI: 10.1021/acsabm.0c00971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A receptive endometrium with proper thickness is essential for successful embryo implantation. However, endometrial injury caused by intrauterine procedures often leads to pathophysiological changes in its environment, resulting in subsequent female infertility. Among diverse treatment methods of endometrial injury, hydrogels are a class of hydrophilic three-dimensional polymeric network with biocompatibility as well as the capability of absorbing water and encapsulation, which have potential applications as a promising intrauterine controlled-release delivery system. This review summarizes recent advances in the approaches of endometrial repair and further focuses on the application of a hydrogel-based delivery system in endometrial repair, including its preparation, therapeutic loading considerations, clinical applications, as well as working mechanisms.
Collapse
Affiliation(s)
- Yifeng Lin
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Shunni Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Wei Zhao
- Key Laboratory of Women Reproductive Health of Zhejiang Province, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Kai-Lun Hu
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Juan Liu
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Siwen Wang
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Mixue Tu
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Dan Zhang
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China.,Key Laboratory of Women Reproductive Health of Zhejiang Province, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
30
|
He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci 2020; 8:3248-3269. [PMID: 32490441 PMCID: PMC7323904 DOI: 10.1039/d0bm00263a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomimetic hydrogels have emerged as the most useful tissue engineering scaffold materials. Their versatile chemistry can recapitulate multiple physical and chemical features to integrate cells, scaffolds, and signaling molecules for tissue regeneration. Due to their highly hydrophilic nature hydrogels can recreate nutrient-rich aqueous environments for cells. Soluble regulatory molecules can be incorporated to guide cell proliferation and differentiation. Importantly, the controlled dynamic parameters and spatial distribution of chemical cues in hydrogel scaffolds are critical for cell-cell communication, cell-scaffold interaction, and morphogenesis. Herein, we review biomimetic hydrogels that provide cells with spatiotemporally controlled chemical cues as tissue engineering scaffolds. Specifically, hydrogels with temporally controlled growth factor-release abilities, spatially controlled conjugated bioactive molecules/motifs, and targeting delivery and reload properties for tissue engineering applications are discussed in detail. Examples of hydrogels that possess clinically favorable properties, such as injectability, self-healing ability, stimulus-responsiveness, and pro-remodeling features, are also covered.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- FM Wound Care, LLC, Hancock, MI 49930, USA
| | - Max Reaume
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Maureen Hennenfent
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
31
|
Yao Q, Zheng YW, Lan QH, Wang LF, Huang ZW, Chen R, Yang Y, Xu HL, Kou L, Zhao YZ. Aloe/poloxamer hydrogel as an injectable β-estradiol delivery scaffold with multi-therapeutic effects to promote endometrial regeneration for intrauterine adhesion treatment. Eur J Pharm Sci 2020; 148:105316. [PMID: 32201342 DOI: 10.1016/j.ejps.2020.105316] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
Intrauterine adhesion (IUA) is characterized by endometrial stromal replaced with fibrous tissue during the trauma or operation induced injury. Current clinic IUA management mainly involves surgical removal of the connective tissues and physical separation and often results in reoccurrence. It is of clinic interest to directly address the issue via facilitating the endometrial repair and thereby inhibiting the formation of re-adhesion. To this end, we designed a nanocomposite aloe/poloxamer hydrogel for β-estradiol (E2) intrauterine delivery to exert multi-therapeutic effects and promote endometrial regeneration for IUA treatment. Nanoparticulate decellularized uterus (uECMNPs) was prepared to encapsulate E2 (E2@uECMNPs), which improved the solubility and prolonged cargo release. Then, E2@uECMNPs were further embedded into the thermosensitive aloe-poloxamer hydrogel (E2@uECMNPs/AP). Multiple components from E2@uECMNPs/AP system could collectively promote proliferation and inhibit apoptosis of endometrial stromal cells. E2@uECMNPs/AP significantly increased morphological recovery and decreased uterine fibrosis rate compared with IUA rats in other groups in vivo. Additionally, the levels of Ki67, cytokeratin, and estrogen receptor β were all up-regulated, along with the decreased expression of TGF-β1 and TNF-α in the uterus from rats receiving E2@uECMNPs/AP therapy. Taken together, in situ administration of E2@uECMNPs/AP hydrogel could effectively promote endometrial regeneration and prevent the re-adhesion.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Li-Fen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Zhi-Wei Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Rui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Yang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
32
|
Han Q, Du Y. Advances in the Application of Biomimetic Endometrium Interfaces for Uterine Bioengineering in Female Infertility. Front Bioeng Biotechnol 2020; 8:153. [PMID: 32181248 PMCID: PMC7059418 DOI: 10.3389/fbioe.2020.00153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
The Asherman’s syndrome, also known as intrauterine adhesion, often follows endometrium injuries resulting from dilation and curettage, hysteroscopic resection, and myomectomy as well as infection. It often leads to scarring formation and female infertility. Pathological changes mainly include gland atrophy, lack of vascular stromal tissues and hypoxia and anemia microenvironment in the adhesion areas. Surgical intervention, hormone therapy and intrauterine device implantation are the present clinical treatments for Asherman’s syndrome. However, they do not result in functional endometrium recovery or pregnancy rate improvement. Instead, an increasing number of researches have paid attention to the reconstruction of biomimetic endometrium interfaces with advanced tissue engineering technology in recent decades. From micro-scale cell sheet engineering and cell-seeded biological scaffolds to nano-scale extracellular vesicles and bioactive molecule delivery, biomimetic endometrium interfaces not only recreate physiological multi-layered structures but also restore an appropriate nutritional microenvironment by increasing vascularization and reducing immune responses. This review comprehensively discusses the advances in the application of novel biocompatible functionalized endometrium interface scaffolds for uterine tissue regeneration in female infertility.
Collapse
Affiliation(s)
- Qixin Han
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
33
|
Kou L, Jiang X, Xiao S, Zhao YZ, Yao Q, Chen R. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release 2019; 318:25-37. [PMID: 31830539 DOI: 10.1016/j.jconrel.2019.12.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Intrauterine adhesions (IUAs) are bands of fibrous tissue that form in the endometrial cavity and associated with the increased risk of abnormal menstruation, recurrent pregnancy loss, secondary infertility, and pregnancy complications. Physical barriers, including intrauterine device and hydrogel, were clinical available to prevent the post-operational IUAs. But physically separation of the injured endometrium relies on the own limited healing power and often ends with recurrence. In recent years, the mechanisms driving IUAs treatment has validated the application of hormones, and further stem cell therapy has also led to the development of novel therapeutic agents with promising efficacy in pre-clinical and initial clinical studies. Still, it is challenging to delivery the therpaeutic factors to the injured uterus. Herein, in this review, we discuss the traditional intervention methods for the prevention of IUAs, as well as novel therapeutics and delivery strategies that will most likely change the treatment paradigms for better clinical outcomes. The combination strategy that using physical barriers as the delivery carriers for therapeutics might provide new alternatives for the prevention of IUAs.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xue Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shuyi Xiao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
34
|
Zhang SS, Xu XX, Xiang WW, Zhang HH, Lin HL, Shen LE, Lin Q, Lin F, Zhou ZY. Using 17β-estradiol heparin-poloxamer thermosensitive hydrogel to enhance the endometrial regeneration and functional recovery of intrauterine adhesions in a rat model. FASEB J 2019; 34:446-457. [PMID: 31914682 DOI: 10.1096/fj.201901603rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Mechanical damage or infection to the endometrium can lead to the formation of adhesions in the uterine cavity, which may result in reduced reproductive outcome and/or pregnancy complications. The prognosis of this disease is poor due to few effective treatments and the complex environment of endometrium. Heparin-Poloxamer Hydrogel (HP hydrogel) is a nontoxic and biodegradable biomaterial, which has been commonly used as a sustained-release delivery system. In this study, we applied a mini-endometrial curette to scrape the endometrium of rats to mimic the process of curettage in patients. After the establishment of IUA model in rats, we injected the thermo-sensitive hydrogel(E2-HP hydrogel) into the injured uterine cavity and evaluated the therapeutic effect of E2-HP hydrogel on the recovery of IUA. Our results showed that E2-HP hydrogel can significantly facilitate the regeneration of injured endometrium along with inhibiting the cell apoptosis in IUA model. Furthermore, we revealed that E2-HP hydrogel on the recovery of IUA was closely associated with the upregulation of kisspeptin through activating the ERK1/2 and MAPKs p38 pathways. In conclusion, E2-HP hydrogel can effectively transfer E2 into the injured endometrium and it can be considered as a promising therapeutic method for the women with intrauterine adhesions.
Collapse
Affiliation(s)
- Si-Si Zhang
- Department of Gynaecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xin-Xin Xu
- Department of Gynaecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Wei Xiang
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Heng Zhang
- School of the Second Clinical Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Hui-Long Lin
- Department of Gynaecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lai-En Shen
- Department of Gynaecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qi Lin
- Department of Gynaecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Lin
- Department of Gynaecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhi-Yang Zhou
- Department of Gynaecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
35
|
Wenbo Q, Lijian X, Shuangdan Z, Jiahua Z, Yanpeng T, Xuejun Q, Xianghua H, Jingkun Z. Controlled releasing of SDF-1α in chitosan-heparin hydrogel for endometrium injury healing in rat model. Int J Biol Macromol 2019; 143:163-172. [PMID: 31765745 DOI: 10.1016/j.ijbiomac.2019.11.184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
Herein we report a facile approach for chitosan-heparin hydrogels with controlled release manner and their applications for intrauterine adhesion. The sol precursor was converted to gel at physiological temperature in 15 min. FTIR, SEM and swelling test were performed to characterize their compositions, morphologies and stability. In vitro releasing profiles was investigated in PBS solutions. Intrauterine injured rat model was established and treated with different methods. The results of H&E staining, Masson trichrome staining, western blots assay, immunohistochemical staining and immunofluorescence staining revealed that endogenous c-kit positive stem cells (HSCs) were recruited to the injury site and promoted the wound recovery. After 7 days' treatment, uterus treated with SDF-1α releasing hydrogel showed no difference with control group on endometrial thickness, glands number and fibrosis level. This work provides a possible method for intrauterine adhesion healing.
Collapse
Affiliation(s)
- Qi Wenbo
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Xu Lijian
- Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, China
| | - Zhao Shuangdan
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Zheng Jiahua
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Tian Yanpeng
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Qi Xuejun
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Huang Xianghua
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China.
| | - Zhang Jingkun
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| |
Collapse
|
36
|
Huang H, Qi X, Chen Y, Wu Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharm J 2019; 27:990-999. [PMID: 31997906 PMCID: PMC6978621 DOI: 10.1016/j.jsps.2019.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/03/2019] [Indexed: 12/13/2022] Open
Abstract
To date, a variety of delivery systems based on organic or inorganic materials have been investigated. Among them, hydrogels have become one of the most promising field in drug delivery system due to their unique properties. Temperature-sensitive hydrogels, which gelation at physiological temperature, gift the delivery system with excellent spatial and temporal control, and have a widely application in drug delivery, tissue engineering, imaging, and wound dressing. This review provides a brief overview on the concept and classification of temperature-sensitive hydrogels, and covers the application of temperature-sensitive gel systems in delivery of biotherapeutic molecules.
Collapse
Affiliation(s)
- Haiqin Huang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yanhua Chen
- Department of Pharmacy, Wuxi Children’s Hospital, Wuxi 214000, PR China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
37
|
Li B, Zhang Q, Sun J, Lai D. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem Cell Res Ther 2019; 10:257. [PMID: 31412924 PMCID: PMC6694540 DOI: 10.1186/s13287-019-1368-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is an adhesion of the uterine cavity or cervical canal resulting from damage to the basal layer of the endometrium; this condition is usually accompanied by fibrosis of the endometrium. Previous studies have demonstrated that human amniotic epithelial cells (hAECs) have stem cell characteristics; however, it is unclear whether hAECs have the therapeutic potential to restore fertility after IUA. METHODS A murine IUA model was established by mechanical injury to the uterus. Then, 106 hAECs were transplanted by intraperitoneal injection. The endometrium thickness, number of glands, and fibrosis area were measured by hematoxylin and eosin (H&E) staining and Masson staining. Molecules (including vWF, VEGF, PCNA, ER, PR, LC3, and p62) related to endometrial angiogenesis, cell proliferation, and autophagy were assayed by IHC staining. Pregnancy outcomes were also evaluated. Finally, hAECs were cocultured with human endometrial mesenchymal stem cells (hEnSCs) damaged by H2O2 to verify the paracrine effect on endometrial stromal cells in vitro. RESULTS The IUA uterine cavity presented with adhesion and even atresia, accompanied by a thinner endometrium, fewer glands, increased fibrosis area, and fewer microvessels. However, hAECs significantly improved the uterine structure after IUA. After hAEC treatment, the endometrium was thicker, the number of endometrial glands was increased, fibrosis was reduced, and more microvessels were generated. The expression levels of VEGF, PCNA, and ER were increased in the hAEC-treated endometrium, indicating improvements in angiogenesis and stromal cell proliferation. hAECs also increased pregnancy outcomes in IUA mice, and the pregnancy rate and fetus number increased. Furthermore, we observed altered autophagy in the IUA uterine model, and hAEC transplantation upregulated autophagy. An in vitro study showed that hAECs activated autophagy in (hEnSCs) treated with H2O2 in a paracrine manner. CONCLUSIONS Our results demonstrated that hAECs have the potential to repair the uterus after injury, providing a new strategy for the prevention and treatment of Asherman syndrome.
Collapse
Affiliation(s)
- Boning Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qiuwan Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Junyan Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dongmei Lai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Speciality, Shanghai, 20030, China.
| |
Collapse
|
38
|
Yang D, Jiang T, Liu J, Zhang B, Lin P, Chen H, Zhou D, Tang K, Wang A, Jin Y. CREB3 regulatory factor -mTOR-autophagy regulates goat endometrial function during early pregnancy. Biol Reprod 2019; 98:713-721. [PMID: 29447354 DOI: 10.1093/biolre/ioy044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
In domestic ruminants, a receptive endometrium is crucial for successful pregnancy. Although many essential molecular modulators and pathways have been identified during early pregnancy, the precise mechanisms regulating goat endometrial function remains largely unknown. Here, we describe a novel regulator during early pregnancy, whereby hormones increased CREB3 regulatory factor (CREBRF) expression and act as a potential activator of autophagy in endometrial epithelial cells (EECs) via the mTOR pathway. Our results showed that knockdown of CREBRF via shCREBRF hampered EECs proliferation by S-phase cell cycle arrest and significantly inhibited endometrial function. We also reported that CREBRF-mTOR-autophagy pathway plays a vital role in regulating endometrial function, with a blockade of the mTOR by rapamycin demonstrating the regulatory function on prostaglandin (PGs) secretion and cell attachment in EECs. Moreover, chloroquine pretreatment also proved the above conclusion. Collectively, our findings provide new insight into the molecular mechanisms of goat endometrial function and indicate that the CREBRF-mTOR-autophagy pathway plays a central role in PGs secretion and cell attachment.
Collapse
Affiliation(s)
- Diqi Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tingting Jiang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianguo Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
39
|
Sun L, Zhang S, Chang Q, Tan J. Establishment and comparison of different intrauterine adhesion modelling procedures in rats. Reprod Fertil Dev 2019; 31:1360-1368. [PMID: 30958978 DOI: 10.1071/rd18397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/07/2019] [Indexed: 01/14/2023] Open
Abstract
Intrauterine adhesion (IUA) is caused by endometrial damage and leads to the formation of scar fibrosis and repair disorders. We compared four different rat IUA modelling procedures in order to establish a stable animal model suitable for investigating IUA. Twenty female Sprague--Dawley rats were randomly divided into four groups. IUA was induced on one side of each rat uterus by ethanol instillation, heat stripping, mechanical injury or mechanical injury with infection (dual-injury); the other side of the uterus was left intact as a control. After 8 days the rats were sacrificed, their uteri were examined for histomorphology and expression of endometrial markers was checked using immunohistochemistry. All four IUA modelling procedures resulted in visual pathophysiological changes in the rat uterus, including stenosis, congestion and loss of elasticity. Endometrial thinning, shrinkage of glands and formation of fibrotic hyperplasia were also observed. All four procedures resulted in the downregulation of cytokeratin 18 and vimentin expression compared with control tissues, as well as the upregulation of collagen I expression. After mechanical injury and dual-injury the expression of interleukin 6 was significantly increased. Overall, our results suggest that ethanol instillation is the most stable IUA modelling procedure. Mechanical injury reliably yielded inflammatory indicators.
Collapse
Affiliation(s)
- Li Sun
- Assisted Reproduction Centre, Obstetrics and Gynaecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; and Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodelling of Liaoning Province, Shengjing Hospital affiliated to China Medical University, Shenyang 110022, China
| | - Siwen Zhang
- Assisted Reproduction Centre, Obstetrics and Gynaecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; and Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodelling of Liaoning Province, Shengjing Hospital affiliated to China Medical University, Shenyang 110022, China
| | - Qiyuan Chang
- Assisted Reproduction Centre, Obstetrics and Gynaecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; and Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodelling of Liaoning Province, Shengjing Hospital affiliated to China Medical University, Shenyang 110022, China
| | - Jichun Tan
- Assisted Reproduction Centre, Obstetrics and Gynaecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; and Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodelling of Liaoning Province, Shengjing Hospital affiliated to China Medical University, Shenyang 110022, China; and Corresponding author
| |
Collapse
|
40
|
Yang S, Wang H, Li D, Li M. Role of Endometrial Autophagy in Physiological and Pathophysiological Processes. J Cancer 2019; 10:3459-3471. [PMID: 31293650 PMCID: PMC6603423 DOI: 10.7150/jca.31742] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Endometrium is the mucosal lining of the uterus which expressed a cyclic process of proliferation, secretion and scaling under the control of hormones secreted by the ovary, and it also plays an indispensable role in the embryo implantation, the constitution of fetal-maternal interface, and the maintaining of pregnancy. In pathophysiological conditions, the abnormality or disorder of endometrium may lead to endometrium-related diseases, such as endometriosis, endometrium hyperplasia and even endometrial carcinoma. In recent years, more and more evidence revealed that autophagy exists in both the endometrium stroma cells and epithelial cells, and the activity of autophagy is changed in the different phases of menstruation, as well as in the endometrium-related diseases. Here, we aim to review the activity level, the regulatory factors and the function of autophagy in physiological and pathophysiological endometria, and to discuss the potential value of autophagy as a target for therapies of endometrium-related diseases.
Collapse
Affiliation(s)
- Shaoliang Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
| | - Haiyan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Dajin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
| | - Mingqing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| |
Collapse
|
41
|
Xiao B, Zhu Y, Huang J, Wang T, Wang F, Sun S. Exosomal transfer of bone marrow mesenchymal stem cell-derived miR-340 attenuates endometrial fibrosis. Biol Open 2019; 8:bio.039958. [PMID: 30890521 PMCID: PMC6550064 DOI: 10.1242/bio.039958] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have potential therapeutic benefits for the treatment of endometrial diseases and injury. BMSCs interact with uterus parenchymal cells by direct contact or indirect secretion of growth factors to promote functional recovery. In this study, we found that BMSC treatment in rats subjected to mechanical damage (MD) significantly increased microRNA-340 (miR-340) levels in the regenerated endometrium. Then we employed knockin and knockdown technologies to upregulate or downregulate the miR-340 level in BMSCs (miR-340+ BMSCs or miR-340− BMSCs) and their corresponding exosomes, respectively, to test whether exosomes from BMSCs mediate miR-340 transfer. We found that the exosomes released from the primitive BMSCs or miR-340+ BMSCs but not miR-340− BMSCs increased the miR-340 levels in primary cultured endometrial stromal cells (ESCs) compared with control. Further verification of this exosome-mediated intercellular communication was performed using exosomal inhibitor GW4869. Tagging exosomes with red fluorescent protein demonstrated that exosomes were released from BMSCs and transferred to adjacent ESCs. Compared with controls, rats receiving primitive BMSC treatment significantly improved functional recovery and downregulated collagen 1α1, α-SMA and transforming growth factor (TGF)-β1 at day 14 after MD. The outcomes were significantly enhanced by miR-340+ BMSC treatment, and were significantly weakened by miR-340− BMSC treatment, compared with primitive BMSC treatment. In vitro studies reveal that miR-340 transferred from BMSCs suppresses the upregulated expression of fibrotic genes in ESCs induced by TGF-β1. These data suggest that the effective antifibrotic function of BMSCs is able to transfer miR-340 to ESCs by exosomes, and that enhancing the transfer of BMSC-derived miR-340 is an alternative modality in preventing intrauterine adhesion. Summary: miR-340 in the exosomes released from BMSCs are transferred to endometrial cells, which regulate gene expression, repress endometrial fibrosis and promote functional recovery in rats subjected to mechanical damage.
Collapse
Affiliation(s)
- Bang Xiao
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Yiqing Zhu
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Jinfeng Huang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Tiantian Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Fang Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
42
|
Xiao B, Yang W, Lei D, Huang J, Yin Y, Zhu Y, You Z, Wang F, Sun S. PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus. Adv Healthc Mater 2019; 8:e1801455. [PMID: 30734535 DOI: 10.1002/adhm.201801455] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/26/2018] [Indexed: 01/23/2023]
Abstract
Intrauterine adhesion (IUA) causing infertility and recurrent miscarriage of reproductive female mammals usually results from endometrium injury. Nevertheless, there is no efficient therapeutic method to avoid IUA. Bone marrow derived mesenchymal stem cells (BMSCs) are an important cell source for tissue regeneration. This study designs and explores the ability of BMSC-loaded elastic poly(glycerol sebacate) (PGS) scaffold to prevent IUA and compares the effect of PGS with poly(lactic-co-glycolic acid) (PLGA) and collagen scaffolds in resumption of damaged rat uteruses. The 3D architecture provided by PGS scaffolds favors the attachment and growth of rat BMSCs. In vivo bioluminescence imaging shows that compared with direct BMSC intrauterine injection, PLGA, and collagen scaffolds, the PGS scaffold significantly prolongs the retention time of BMSCs in a wounded rat uterus model. More importantly, BMSCs can directly differentiate into endometrial stromal cells after transplantation of PGS/BMSCs constructs, but not PLGA/BMSCs and collagen/BMSCs. It is found that the level of transforming growth factor β1 (TGF-β1), basic fibroblast growth factor (bFGF), vascular endothelial growth factor, and insulin-like growth factors in the injured endometrium adjacent to PGS/BMSCs constructs is higher than those of rats receiving PLGA/BMSCs, collagen/BMSCs, or BMSCs intrauterine transplantation. Besides, transplantation of PGS/BMSCs leads to better morphology recovery of the damaged uterus than PLGA/BMSCs and collagen/BMSCs. The receptive fertility of PGS/BMSCs is 72.2 ± 6.4%, similar to the one of collagen/BMSCs, but significantly higher than 42.3 ± 3.9% in PLGA/BMSCs. Taken together, PGS/BMSCs may be a promising candidate for preventing IUA.
Collapse
Affiliation(s)
- Bang Xiao
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Wenjun Yang
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Dong Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; International Joint Laboratory for Advanced Fiber and Low-dimension Materials; College of Materials Science and Engineering; Donghua University; Shanghai 201620 P. R. China
| | - Jinfeng Huang
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Yupeng Yin
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Yiqing Zhu
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; International Joint Laboratory for Advanced Fiber and Low-dimension Materials; College of Materials Science and Engineering; Donghua University; Shanghai 201620 P. R. China
| | - Fang Wang
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Shuhan Sun
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| |
Collapse
|
43
|
Xu HL, Tong MQ, Wang LF, Chen R, Li XZ, Sohawon Y, Yao Q, Xiao J, Zhao YZ. Thiolated γ-polyglutamic acid as a bioadhesive hydrogel-forming material: evaluation of gelation, bioadhesive properties and sustained release of KGF in the repair of injured corneas. Biomater Sci 2019; 7:2582-2599. [DOI: 10.1039/c9bm00341j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Keratinocyte growth factor (KGF) has a good therapeutic effect on injured corneas.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Meng-Qi Tong
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Li-Fen Wang
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Rui Chen
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Xin-Ze Li
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Yasin Sohawon
- School of International Studies
- Wenzhou Medical University
- Wenzhou City
- China
- First Affiliated Hospital of Wenzhou Medical University
| | - Qing Yao
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Jian Xiao
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| |
Collapse
|
44
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The size-effect, fabrication methods and biomedical applications of heparin-based and heparin-inspired hydrogels are reviewed.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Haifeng Ji
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yihui Qian
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qian Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiaoling Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
45
|
Yu J, Jiang L, Gao Y, Sun Q, Liu B, Hu Y, Han X. Interaction between BMSCs and EPCs promotes IUA angiogenesis via modulating PI3K/Akt/Cox2 axis. Am J Transl Res 2018; 10:4280-4289. [PMID: 30662670 PMCID: PMC6325499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Intrauterine adhesion (IUA) is a common disease among women after uterus operation. BMSCs are commonly used as a therapeutic agent for IUA treatment, but the underlying mechanism is not fully delineated. Here we showed that BMSCs co-cultured with EPCs promotes proliferative ability and decreases apoptosis ratio of BMSCs and EPCs. In addition, BMSCs promote the differentiation of EPCs into vascular endothelial cells, and BMSCs derived epithelial cells are also induced by EPCs. We also found that the levels of Collagen Type I, vascular endothelial growth factor (VEGF), granulocyte-macrophage colony stimulating factor (GM-CSF) and bone morphogenetic protein (BMP-2) are significantly increased in the co-culturing system comparing to those of the BMSCs or EPCs alone group. Of note, PI3K/Akt/Cox2 axis is activated in the co-culturing system and LY294002 abrogates the co-culturing system's effects on cell proliferation, apoptosis and cytokines secretion, which are reversed by synergistically overexpressing Cox2. In conclusion, our in vitro experiments proved that the interaction of BMSCs and EPCs might promote angiogenesis and alleviate IUA pathogenesis by regulating PI3K/Akt/Cox2 axis mediated modulation of cell apoptosis, proliferation, differentiation and angiogenesis-associated cytokines secretion.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan ProvinceKunming, China
| | - Lijuan Jiang
- Department of Scientific Research and Education, The First Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunming, Yunnan, China
| | - Yutao Gao
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Qijian Sun
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Beibei Liu
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Yong Hu
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Xuesong Han
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| |
Collapse
|
46
|
Xu XX, Zhang SS, Lin HL, Lin Q, Shen LE, Ansong E, Wu XQ. Metformin Promotes Regeneration of the Injured Endometrium Via Inhibition of Endoplasmic Reticulum Stress-Induced Apoptosis. Reprod Sci 2018; 26:560-568. [PMID: 30466344 DOI: 10.1177/1933719118804424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrauterine adhesion (IUA) is now recognized as one of the most common diseases in reproductive-age women. Metformin, a well-known frontline oral antidiabetic drug, has been found effective in numerous different diseases. The aim of this study was to determine the effect of metformin on reducing adhesions in an animal model of IUA. Sprague-Dawley rats were randomized into 4 groups: sham operation, control, metformin-treated for 7 days, and metformin-treated for 14 days. To establish the IUA model, mechanical injury to the endometria of rats was induced with a mini curette. Metformin was injected intraperitoneally after surgery. A significant amelioration in both the number of glands and the fibrotic area, compared to those of the control group, was detected 14 days after metformin intervention. The expression levels of antigen KI-67 and vascular endothelial growth factor were increased at 7 and 14 days after treatment. However, the transforming growth factor-β expression was decreased at 14 days after treatment. Endoplasmic reticulum stress-related apoptosis proteins (glucose-regulated protein 78, caspase-12, and CCAAT/enhancer binding protein (EBP) homologous protein) were downregulated after metformin treatment. Moreover, we determined that the effect of metformin was related to the inhibition of endoplasmic reticulum stress-induced apoptosis via the Phosphatidylinositol 3 kinase (PI3K)/Protein kinase B (AKT) and Extracellular regulated protein kinases1/2 pathways. In conclusion, metformin can attenuate the adhesion and promote the regeneration of the endometrium of the IUA rat, and metformin may serve as a novel therapeutic strategy for IUA patients.
Collapse
Affiliation(s)
- Xin-Xin Xu
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,These authors contributed equally to this work
| | - Si-Si Zhang
- 2 Department of Obstetrics and Gynecology, The University of Hong Kong, Pokfulam, Hong Kong, China.,These authors contributed equally to this work
| | - Hui-Long Lin
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Lin
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lai-En Shen
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Emmanuel Ansong
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue-Qing Wu
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,3 Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Guangdong, China.,4 Clinical Medical Academy, Shenzhen University, Guangdong, China
| |
Collapse
|
47
|
Xu HL, Xu J, Shen BX, Zhang SS, Jin BH, Zhu QY, ZhuGe DL, Wu XQ, Xiao J, Zhao YZ. Dual Regulations of Thermosensitive Heparin-Poloxamer Hydrogel Using ε-Polylysine: Bioadhesivity and Controlled KGF Release for Enhancing Wound Healing of Endometrial Injury. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29580-29594. [PMID: 28809108 DOI: 10.1021/acsami.7b10211] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrogel was not only used as an effective support matrix to prevent intrauterine adhesion after endometrial injury but also served as scaffold to sustain release of some therapeutics, especially growth factor. However, because of the rapid turnover of the endometrial mucus, the poor retention and bad absorption of therapeutic agents in damaged endometrial cavity were two important factors hindering their pharmacologic effect. Herein, a mucoadhesive hydrogel was described by using heparin-modified poloxamer (HP) as the matrix material and ε-polylysine (EPL) as functional excipient. Various EPL-HP hydrogels formulations are screened by rheological evaluation and mucoadhesion studies. It was found that the rheological and mucoadhesive properties of EPL-HP hydrogels were easily controlled by changing the amount of EPL in formulation. The storage modulus of EPL-HP hydrogel with 90 μg/mL of EPL (EPL-HP-90) was elevated to be 1.9 × 105 Pa, in accordance with the adhesion force rising to 3.18 N (10-fold higher than HP hydrogels). Moreover, in vitro release of model drug keratinocyte growth factor (KGF) from EPL-HP hydrogel was significantly accelerated by adding EPL in comparison with HP hydrogel. Both strong mucoadhesive ability and the accelerated drug release behavior for EPL-HP-90 made more of the encapsulated KGF absorbed by the uterus basal layer and endometrial glands after 8 h of administration in uterus cavity. Meanwhile, the morphology of endometrium in the injured uterus was repaired well after 3 d of treatment with KGF-EPL-HP-90 hydrogels. Compared with KGF-HP group, not only proliferation of endometrial epithelial cell and glands but also angiogenesis in the regenerated endometrium was obviously enhanced after treatment with KGF-EPL-HP-90 hydrogels. Alternatively, the cellular apoptosis in the damaged endometrium was significantly inhibited after treatment with KGF-EPL-HP-90 hydrogels. Overall, the mucoadhesive EPL-HP hydrogel with a suitable KGF release profile may be a more promising approach than HP hydrogel alone to repair the injured endometrium.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Jie Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Si-Si Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Xue-Qing Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Jian Xiao
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| |
Collapse
|