1
|
Gupta P, Sharma A, Mittal V. Polymeric Vehicles for Nucleic Acid Delivery: Enhancing the Therapeutic Efficacy and Cellular Uptake. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:276-293. [PMID: 39356099 DOI: 10.2174/0126673878324536240805060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Therapeutic gene delivery may be facilitated by the use of polymeric carriers. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. AIM AND OBJECTIVES Polymer synthesis design choices result in a wide variety of compounds and vehicle compositions. Depending on the application, these characteristics may be changed to provide enhanced endosomal escape, longer-lasting distribution, or stronger connection with nucleic acid cargo and cells. Here, we outline current methods for delivering genes in preclinical and clinical settings using polymers. METHODOLOGY Significant therapeutic outcomes have previously been attained using genetic material- delivering polymer vehicles in both in-vitro and animal models. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. Many innovative diagnoses for nucleic acids have been investigated and put through clinical assessment in the past 20 years. RESULTS Polymer-based carriers have additional delivery issues due to their changes in method and place of biological action, as well as variances in biophysical characteristics. We cover recent custom polymeric carrier architectures that were tuned for nucleic acid payloads such genomemodifying nucleic acids, siRNA, microRNA, and plasmid DNA. CONCLUSION In conclusion, the development of polymeric carriers for gene delivery holds promise for therapeutic applications. Through careful design and optimization, these carriers can overcome various challenges associated with nucleic acid delivery, offering new avenues for treating a wide range of diseases.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Anjali Sharma
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Vishnu Mittal
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| |
Collapse
|
2
|
Zhang Q, Li H, Song Z, Kong S, Zhao S, Fan S, Qin F, Ma J. Potential diagnostic value of multiple indicators combined with total prostate-specific antigen in prostate cancer. J Int Med Res 2023; 51:3000605231204429. [PMID: 37848343 PMCID: PMC10586000 DOI: 10.1177/03000605231204429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVE We aimed to investigate the diagnostic value of different laboratory indicators in combination with total prostate-specific antigen (TPSA) for prostate cancer (PCa). METHODS In this retrospective study, we selected 291 patients who underwent prostate biopsy. Patients were divided into the benign prostatic hyperplasia group and the PCa group. In both groups, patients were again divided into a group with TPSA 4.0-10.0 ng/mL and a group with TPSA >10.0 ng/mL. Clinical data including age, pre-puncture TPSA, free prostate-specific antigen (FPSA), and prostate volume (PV) were collected from all patients. We calculated the metrics PSA/PV (prostate-specific antigen density, PSAD), age/PV (AVR), age × PV/TPSA (PSA-AV), and (FPSA/TPSA)/PSAD [(F/T)/PSAD]). We plotted receiver operating characteristic (ROC) curves and calculated the area under the ROC curve (AUC). RESULTS We found statistically significant differences in PV, PSAD, AVR, PSA-AV, and (F/T) PSAD for patients with TPSA 4.0-10.0 ng/mL and TPSA >10 ng/mL. We further plotted the ROC of individual or combined indices in different subgroups and calculated the AUC. We found that the diagnostic efficacy of the combined indices was higher with TPSA >10 ng/mL. CONCLUSION The combination of TPSA with multiple indicators may improve diagnostic accuracy for PCa.
Collapse
Affiliation(s)
| | | | - Zhiguo Song
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaopeng Kong
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sitao Zhao
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siqi Fan
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fei Qin
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianguo Ma
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Tran TH, Tran PTT, Truong DH. Lactoferrin and Nanotechnology: The Potential for Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15051362. [PMID: 37242604 DOI: 10.3390/pharmaceutics15051362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Lactoferrin (Lf)-a glycoprotein of the transferrin family-has been investigated as a promising molecule with diverse applications, including infection inhibition, anti-inflammation, antioxidant properties and immune modulation. Along with that, Lf was found to inhibit the growth of cancerous tumors. Owing to unique properties such as iron-binding and positive charge, Lf could interrupt the cancer cell membrane or influence the apoptosis pathway. In addition, being a common mammalian excretion, Lf offers is promising in terms of targeting delivery or the diagnosis of cancer. Recently, nanotechnology significantly enhanced the therapeutic index of natural glycoproteins such as Lf. Therefore, in the context of this review, the understanding of Lf is summarized and followed by different strategies of nano-preparation, including inorganic nanoparticles, lipid-based nanoparticles and polymer-based nanoparticles in cancer management. At the end of the study, the potential future applications are discussed to pave the way for translating Lf into actual usage.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | | |
Collapse
|
4
|
Muj C, Mukhopadhyay S, Jana P, Kondapi AK. Synergistic action of lactoferrin in enhancing the safety and effectiveness of docetaxel treatment against prostate cancer. Cancer Chemother Pharmacol 2023; 91:375-387. [PMID: 36977771 DOI: 10.1007/s00280-023-04524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Tumor metastasis is promoted by an immunosuppressive environment. Lactoferrin (Lf) is known to regulate immunological activity in tumor cells and inhibit processes associated with tumor metastasis. A delivery of lactoferrin with docetaxel (DTX) in prostate cancer cells in the form of DTX-loaded lactoferrin nanoparticles (DTX-LfNPs) would provide a dual activity wherein the lactoferrin affects metastasis and DTX chemotherapeutically inhibits mitosis and cell division. METHODS DTX-LfNPs were prepared using sol-oil chemistry, and particles were characterized using transmission electron microscopy. Antiproliferation activity was analyzed in prostate cancer Mat Ly Lu cells. The target localization and efficacy of DTX-LfNPs were studied in an orthotopic prostate cancer induced by Mat Ly Lu cells in a rat model. Biomarkers were estimated using ELISA and biochemical reactions. RESULTS DTX was loaded in pure Lf nanoparticles without involving any chemical modification and conjugation, thus when these nanoparticles are delivered in cancer cells both DTX and Lf will be present in biologically active forms. DTX-LfNps exhibit a spherical morphology of dimension of 60 ± 10 nm with DTX Encapsulation Efficiency of 62.06 ± 4.07%. Competition experiments using soluble Lf confirm that DTX-LfNPs enter prostate cancer cells through the Lf receptor. DTX-LfNPs exhibit an improved anti-proliferative activity by 2.5 times compared to DTX. Further, analysis of the bioavailability of the drug in the prostate showed that DTX-LfNPs increased drug bioavailability in the prostate by two times more than the DTX. The analysis of efficacy in the Mat Ly Lu cells-induced orthotopic prostate cancer model showed that DTX-LfNPs significantly enhanced the anti-cancer activity compared to DTX in terms of regression of weight and volume of prostate tissue, the efficacy was confirmed by histochemical analysis. Lf provides synergistic activity along with DTX in inhibiting metastasis as assessed by the reduction of lactate dehydrogenase, alkaline phosphatase, TNF alpha, and IFNγ. LfNPs facilitate higher DTX localization along with Lf-mediated protection from DTX-associated toxicity to neutrophils and kidneys as assessed by C-reactive protein, creatinine, and uric acid. Thus, DTX LfNPs show a dual action by enhancing DTX bioavailability in prostate along with Lf-mediated suppression of metastasis as well as DTX-associated toxicity. CONCLUSION In conclusion, DTX-LfNPs enhance the bioavailability of DTX in the prostate along with Lf-assisted improvement in inhibition of tumor metastasis and drug-associated toxicity.
Collapse
Affiliation(s)
- Chukhu Muj
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Satyajit Mukhopadhyay
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pritikana Jana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Costantini E, Di Nicola M, Marchioni M, Aielli L, Reale M, Schips L. Effects of Curcumin and Lactoferrin to Inhibit the Growth and Migration of Prostatic Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16193. [PMID: 36498267 PMCID: PMC9737629 DOI: 10.3390/ijerph192316193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 05/14/2023]
Abstract
Prostate cancer remains one of the main causes of death for men worldwide. Despite recent advances in cancer treatment, patients develop resistance after an initial period of optimal efficacy. Nowadays, it is accepted that natural compounds can result in health benefits with a preventive or adjuvant effect. The purpose of this study was to evaluate the effects of curcumin (CU), a bioactive compound in the spice turmeric, and lactoferrin (LF), a natural glycoprotein with immunomodulatory properties, on DU145 and PC3. Prostate cancer cells were cultured with and without LF (175 μM) and CU (2.5 μg/mL and 5 μg/mL), alone and in combination. Cell viability, migration ability, death receptors (DRs), and integrins (α3, β1) gene expression were evaluated, as well as human annexin V quantification and Akt phosphorylation. Differences among cells group, defined according to the treatment used, were assessed with ANOVA. The results showed that the effects of CU and LF are different between the two prostatic cell lines analyzed. In DU145, a reduction in cell proliferation and migration is reported both in the presence of single and combined treatments. In PC3 cells, there is a significant reduction in proliferation in the presence of CU alone, while the inhibition of migration is mainly related to the LF treatment and its combination with CU, compared to untreated cells. Moreover, the reduction in gene expression of integrins and Akt pathway activation were observed mostly in the presence of the CU and LF combination, including the upregulation of DR and annexin V levels, with greater significance for the DU145 cells. In conclusion, our results suggest that CU and LF may have a potentially beneficial effect, mainly when administered in combination, leading to a reduction in cancer cells' aggressiveness.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (L.A.); (M.R.)
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (L.A.); (M.R.)
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| |
Collapse
|
6
|
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022; 27:5730. [PMID: 36080493 PMCID: PMC9457814 DOI: 10.3390/molecules27175730] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is one of the malignancies that affects men and significantly contributes to increased mortality rates in men globally. Patients affected with prostate cancer present with either a localized or advanced disease. In this review, we aim to provide a holistic overview of prostate cancer, including the diagnosis of the disease, mutations leading to the onset and progression of the disease, and treatment options. Prostate cancer diagnoses include a digital rectal examination, prostate-specific antigen analysis, and prostate biopsies. Mutations in certain genes are linked to the onset, progression, and metastasis of the cancer. Treatment for localized prostate cancer encompasses active surveillance, ablative radiotherapy, and radical prostatectomy. Men who relapse or present metastatic prostate cancer receive androgen deprivation therapy (ADT), salvage radiotherapy, and chemotherapy. Currently, available treatment options are more effective when used as combination therapy; however, despite available treatment options, prostate cancer remains to be incurable. There has been ongoing research on finding and identifying other treatment approaches such as the use of traditional medicine, the application of nanotechnologies, and gene therapy to combat prostate cancer, drug resistance, as well as to reduce the adverse effects that come with current treatment options. In this article, we summarize the genes involved in prostate cancer, available treatment options, and current research on alternative treatment options.
Collapse
Affiliation(s)
- Mamello Sekhoacha
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Keamogetswe Riet
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Paballo Motloung
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Lemohang Gumenku
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Ayodeji Adegoke
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Samson Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| |
Collapse
|
7
|
Corti A, Calimeri T, Curnis F, Ferreri AJM. Targeting the Blood–Brain Tumor Barrier with Tumor Necrosis Factor-α. Pharmaceutics 2022; 14:pharmaceutics14071414. [PMID: 35890309 PMCID: PMC9315592 DOI: 10.3390/pharmaceutics14071414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
The blood–brain tumor barrier represents a major obstacle for anticancer drug delivery to brain tumors. Thus, novel strategies aimed at targeting and breaching this structure are of great experimental and clinical interest. This review is primarily focused on the development and use of a derivative of tumor necrosis factor-α (TNF) that can target and alter the blood–brain-tumor-barrier. This drug, called NGR-TNF, consists of a TNF molecule fused to the Cys-Asn-Gly-Arg-Cys-Gly (CNGRCG) peptide (called NGR), a ligand of aminopeptidase N (CD13)-positive tumor blood vessels. Results of preclinical studies suggest that this peptide-cytokine fusion product represents a valuable strategy for delivering TNF to tumor vessels in an amount sufficient to break the biological barriers that restrict drug penetration in cancer lesions. Moreover, clinical studies performed in patients with primary central nervous system lymphoma, have shown that an extremely low dose of NGR-TNF (0.8 µg/m2) is sufficient to promote selective blood–brain-tumor-barrier alteration, increase the efficacy of R-CHOP (a chemo-immunotherapy regimen) and improve patient survival. Besides reviewing these findings, we discuss the potential problems related to the instability and molecular heterogeneity of NGR-TNF and review the various approaches so far developed to obtain more robust and homogeneous TNF derivatives, as well as the pharmacological properties of other peptide/antibody-TNF fusion products, muteins and nanoparticles that are potentially useful for targeting the blood–brain tumor barrier. Compared to other TNF-related drugs, the administration of extremely low-doses of NGR-TNF or its derivatives appear as promising non-immunogenic approaches to overcome TNF counter-regulatory mechanism and systemic toxicity, thereby enabling safe breaking of the BBTB.
Collapse
Affiliation(s)
- Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence: (A.C.); (A.J.M.F.); Tel.: +39-02-2643-4802 (A.C.); +39-02-2643-7649 (A.J.M.F.); Fax: +39-02-2643-7534 (A.J.M.F.)
| | - Teresa Calimeri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Andres J. M. Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Correspondence: (A.C.); (A.J.M.F.); Tel.: +39-02-2643-4802 (A.C.); +39-02-2643-7649 (A.J.M.F.); Fax: +39-02-2643-7534 (A.J.M.F.)
| |
Collapse
|
8
|
Almowalad J, Laskar P, Somani S, Meewan J, Tate RJ, Dufès C. Lactoferrin- and Dendrimer-Bearing Gold Nanocages for Stimulus-Free DNA Delivery to Prostate Cancer Cells. Int J Nanomedicine 2022; 17:1409-1421. [PMID: 35369035 PMCID: PMC8968073 DOI: 10.2147/ijn.s347574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
Background The use of gene therapy to treat prostate cancer is hampered by the lack of effective nanocarriers that can selectively deliver therapeutic genes to cancer cells. To overcome this, we hypothesize that conjugating lactoferrin, a tumor-targeting ligand, and the diaminobutyric polypropylenimine dendrimer into gold nanocages, followed by complexation with a plasmid DNA, would enhance gene expression and anti-proliferation activity in prostate cancer cells without the use of external stimuli. Methods Novel gold nanocages bearing lactoferrin and conjugated to diaminobutyric polypropylenimine dendrimer (AuNCs-DAB-Lf) were synthesized and characterized. Following complexation with a plasmid DNA, their gene expression, cellular uptake and anti-proliferative efficacies were evaluated on PC-3 prostate cancer cells. Results AuNCs-DAB-Lf was able to complex DNA at conjugate: DNA weight ratios 5:1 onwards. Gene expression was at its highest after treatment with AuNCs-DAB-Lf at a weight ratio of 10:1, as a result of a significant increase in DNA uptake mediated by the conjugate at that ratio in PC-3 cells. Consequently, the anti-proliferative activity of AuNCs-DAB-Lf-DNA encoding TNFα was significantly improved by up to 9-fold compared with DAB dendriplex encoding TNFα. Conclusion Lactoferrin-bearing dendrimer-conjugated gold nanocages are highly promising gene delivery systems for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jamal Almowalad
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Jitkasem Meewan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
- Correspondence: Christine Dufès, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK, Tel +44 1415483796, Fax +44 1415522562, Email
| |
Collapse
|
9
|
Laskar P, Dufès C. Emergence of cationic polyamine dendrimersomes: design, stimuli sensitivity and potential biomedical applications. NANOSCALE ADVANCES 2021; 3:6007-6026. [PMID: 34765868 PMCID: PMC8548884 DOI: 10.1039/d1na00536g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 06/01/2023]
Abstract
For decades, self-assembled lipid vesicles have been widely used in clinics as nanoscale delivery systems for various biomedical applications, including treatment of various diseases. Due to their core-shell architecture and versatile nature, they have been successfully used as carriers for the delivery of a wide range of therapeutic cargos, including drugs and nucleic acids, in cancer treatment. Recently, surface-modified polyamine dendrimer-based vesicles, or dendrimersomes, have emerged as promising alternatives to lipid vesicles for various biomedical applications, due to their ease of synthesis, non-immunogenicity, stability in circulation and lower size polydispersity. This mini-review provides an overview of the recent advances resulting from the use of biomimetic hydrophobically-modified polyamine-based dendrimersomes towards biomedical applications, focusing mainly on the two most widely used polyamine dendrimers, namely polyamidoamine (PAMAM) and poly(propylene imine) (PPI) dendrimers.
Collapse
Affiliation(s)
- Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX 78504 USA
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| |
Collapse
|
10
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021; 26:5976. [PMID: 34641519 PMCID: PMC8512881 DOI: 10.3390/molecules26195976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been intensively studied as a promising new strategy of prodrug delivery, with its main advantages being represented by an enhanced efficacy and a reduced off-target toxicity of the active drug. In recent years, numerous therapeutic systems based on GDEPT strategy have entered clinical trials. In order to deliver the desired gene at a specific site of action, this therapeutic approach uses vectors divided in two major categories, viral vectors and non-viral vectors, with the latter being represented by chemical delivery agents. There is considerable interest in the development of non-viral vectors due to their decreased immunogenicity, higher specificity, ease of synthesis and greater flexibility for subsequent modulations. Dendrimers used as delivery vehicles offer many advantages, such as: nanoscale size, precise molecular weight, increased solubility, high load capacity, high bioavailability and low immunogenicity. The aim of the present work was to provide a comprehensive overview of the recent advances regarding the use of dendrimers as non-viral carriers in the GDEPT therapy.
Collapse
Affiliation(s)
| | | | | | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | | | | | | | | | | |
Collapse
|
11
|
Almowalad J, Somani S, Laskar P, Meewan J, Tate RJ, Mullin M, Dufès C. Lactoferrin-Bearing Gold Nanocages for Gene Delivery in Prostate Cancer Cells in vitro. Int J Nanomedicine 2021; 16:4391-4407. [PMID: 34234433 PMCID: PMC8256823 DOI: 10.2147/ijn.s316830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gold nanocages have been widely used as multifunctional platforms for drug and gene delivery, as well as photothermal agents for cancer therapy. However, their potential as gene delivery systems for cancer treatment has been reported in combination with chemotherapeutics and photothermal therapy, but not in isolation so far. The purpose of this work was to investigate whether the conjugation of gold nanocages with the cancer targeting ligand lactoferrin, polyethylene glycol and polyethylenimine could lead to enhanced transfection efficiency on prostate cancer cells in vitro, without assistance of external stimulation. METHODS Novel lactoferrin-bearing gold nanocages conjugated to polyethylenimine and polyethylene glycol have been synthesized and characterized. Their transfection efficacy and cytotoxicity were assessed on PC-3 prostate cancer cell line following complexation with a plasmid DNA. RESULTS Lactoferrin-bearing gold nanocages, alone or conjugated with polyethylenimine and polyethylene glycol, were able to condense DNA at conjugate:DNA weight ratios 5:1 and higher. Among all gold conjugates, the highest gene expression was obtained following treatment with gold complex conjugated with polyethylenimine and lactoferrin, at weight ratio 40:1, which was 1.71-fold higher than with polyethylenimine. This might be due to the increased DNA cellular uptake observed with this conjugate, by up to 8.65-fold in comparison with naked DNA. CONCLUSION Lactoferrin-bearing gold nanocages conjugates are highly promising gene delivery systems to prostate cancer cells.
Collapse
Affiliation(s)
- Jamal Almowalad
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Jitkasem Meewan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Margaret Mullin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
12
|
Laskar P, Somani S, Mullin M, Tate RJ, Warzecha M, Bowering D, Keating P, Irving C, Leung HY, Dufès C. Octadecyl chain-bearing PEGylated poly(propyleneimine)-based dendrimersomes: physicochemical studies, redox-responsiveness, DNA condensation, cytotoxicity and gene delivery to cancer cells. Biomater Sci 2021; 9:1431-1448. [PMID: 33404026 DOI: 10.1039/d0bm01441a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Stimuli-responsive nanocarriers have become increasingly important for nucleic acid and drug delivery in cancer therapy. Here, we report the synthesis, characterization and evaluation of disulphide-linked, octadecyl (C18 alkyl) chain-bearing PEGylated generation 3-diaminobutyric polypropylenimine dendrimer-based vesicles (or dendrimersomes) for gene delivery. The lipid-bearing PEGylated dendrimer was successfully synthesized through in situ two-step reaction. It was able to spontaneously self-assemble into stable, cationic, nanosized vesicles, with low critical aggregation concentration value, and also showed redox-responsiveness in presence of a glutathione concentration similar to that of the cytosolic reducing environment. In addition, it was able to condense more than 70% of DNA at dendrimer: DNA weight ratios of 5 : 1 and higher. This dendriplex resulted in an enhanced cellular uptake of DNA at dendrimer: DNA weight ratios of 10 : 1 and 20 : 1, by up to 16-fold and by up to 28-fold compared with naked DNA in PC-3 and DU145 prostate cancer cell lines respectively. At a dendrimer: DNA weight ratio of 20 : 1, it led to an increase in gene expression in PC-3 and DU145 cells, compared with DAB dendriplex. These octadecyl chain-bearing, PEGylated dendrimer-based vesicles are therefore promising redox-sensitive drug and gene delivery systems for potential applications in combination cancer therapy.
Collapse
Affiliation(s)
- Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Evaluation of Direct and Cell-Mediated Lactoferrin Gene Therapy for the Maxillofacial Area Abscesses in Rats. Pharmaceutics 2021; 13:pharmaceutics13010058. [PMID: 33406760 PMCID: PMC7823524 DOI: 10.3390/pharmaceutics13010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance to antibacterial therapy requires the discovery of new methods for the treatment of infectious diseases. Lactoferrin (LTF) is a well-known naïve first-line defense protein. In the present study, we suggested the use of an adenoviral vector (Ad5) carrying the human gene encoding LTF for direct and cell-mediated gene therapy of maxillofacial area phlegmon in rats. Abscesses were developed by injection of the purulent peritoneal exudate in the molar region of the medial surface of the mandible. At 3-4 days after phlegmon maturation, all rats received ceftriaxone and afterward were subcutaneously injected around the phlegmon with: (1) Ad5 carrying reporter gfp gene encoding green fluorescent protein (Ad5-GFP control group), (2) Ad5 carrying LTF gene (Ad5-LTF group), (3) human umbilical cord blood mononuclear cells (UCBC) transduced with Ad5-GFP (UCBC + Ad5-GFP group), and (4) UCBC transduced with Ad5-LTF (UCBC + Ad5-LTF group). Control rats developed symptoms considered to be related to systemic inflammation and were euthanized at 4-5 days from the beginning of the treatment. Rats from therapeutic groups demonstrated wound healing and recovery from the fifth to seventh day based on the type of therapy. Histological investigation of cervical lymph nodes revealed purulent lymphadenitis in control rats and activated lymphatic tissue in rats from the UCBC + Ad5-LTF group. Our results propose that both approaches of LTF gene delivery are efficient for maxillofacial area phlegmon recovery in rats. However, earlier wound healing and better outcomes in cervical lymph node remodeling in the UCBC + Ad5-LTF group, as well as the lack of direct exposure of the viral vector to the organism, which may cause toxic and immunogenic effects, suggest the benefit of cell-mediated gene therapy.
Collapse
|
14
|
Abstract
Obesity is associated with high-grade and advanced prostate cancer. While this association may be multi-factorial, studies suggest that obesity-induced inflammation may play a role in the progression of advanced prostate cancer. The microenvironment associated with obesity increases growth factors and pro-inflammatory cytokines which have been implicated mechanistically to promote invasion, metastasis, and androgen-independent growth. This review summarizes recent findings related to obesity-induced inflammation which may be the link to advanced prostate cancer. In addition, this review while introduce novel targets to mitigate prostate cancer metastasis to the bone. Specific emphasis will be placed on the role of the pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)α, and IL-1β.
Collapse
Affiliation(s)
- Armando Olivas
- Nutrition and Foods, Texas State University, San Marcos, Texas, USA
| | | |
Collapse
|
15
|
Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. Int J Biol Macromol 2020; 167:1527-1543. [PMID: 33212102 DOI: 10.1016/j.ijbiomac.2020.11.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 12/28/2022]
Abstract
A successful drug delivery to a specific site relies on two essential factors including; efficient entrapment of the drug within the carrier and successful delivery of drug- loaded nanocarrier to the target site without opsonisation or drug release in the circulation before reaching the organ of interest. Lactoferrin (LF) is a glycoprotein belonging to the transferrin (TF) family which can bind to TF receptors (TFRs) and LF membrane internalization receptors (LFRs) highly expressed on the cell surface of both highly proliferating cancer cells and blood brain barrier (BBB), which in turn can facilitate its accessibility to the cell nucleus. This merit could be exploited to develop actively targeted drug delivery systems that can easily cross the BBB or internalize into tumor cells. In this review, the most recent advances of utilizing LF as an active targeting ligand for different types of nanocarriers including: inorganic nanoparticles, dendrimers, synthetic biodegradable polymers, lipid nanocarriers, natural polymers, and nanoemulstions will be highlighted. Collectively, LF seems to be a promising targeting ligand in the field of nanomedicine.
Collapse
|
16
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
17
|
Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020; 263:120355. [PMID: 32932142 PMCID: PMC7480805 DOI: 10.1016/j.biomaterials.2020.120355] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Recent progress in protein-based nanomedicine, inspired by the success of Abraxane® albumin-paclitaxel nanoparticles, have resulted in novel therapeutics used for treatment of challenging diseases like cancer and viral infections. However, absence of specific drug targeting, poor pharmacokinetics, premature drug release, and off-target toxicity are still formidable challenges in the clinic. Therefore, alternative protein-based nanomedicines were developed to overcome those challenges. In this regard, lactoferrin (Lf), a glycoprotein of transferrin family, offers a promising biodegradable well tolerated material that could be exploited both as an active therapeutic and drug nanocarrier. This review highlights the major pharmacological actions of Lf including anti-cancer, antiviral, and immunomodulatory actions. Delivery technologies of Lf to improve its pries and enhance its efficacy were also reviewed. Moreover, different nano-engineering strategies used for fabrication of drug-loaded Lf nanocarriers were discussed. In addition, the use of Lf for functionalization of drug nanocarriers with emphasis on tumor-targeted drug delivery was illustrated. Besides its wide application in oncology nano-therapeutics, we discussed the recent advances of Lf-based nanocarriers as efficient platforms for delivery of anti-parkinsonian, anti-Alzheimer, anti-viral drugs, immunomodulatory and bone engineering applications.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Center for Engineered Therapeutics, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA, 02139, USA; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Abd Elwakil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Manar A Elnaggar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
| | - Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
18
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
19
|
Kondapi AK. Targeting cancer with lactoferrin nanoparticles: recent advances. Nanomedicine (Lond) 2020; 15:2071-2083. [PMID: 32779524 DOI: 10.2217/nnm-2020-0090] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactoferrin, an iron storage protein, is known for its microbicidal activity and its ability to modulate the immune system, mediated through specific interactions with receptors on cell surfaces for internalization. These activities confer a significant versatility to lactoferrin, presenting it as a targeting ligand to disease-bearing cells. Early efforts in developing targeted delivery systems have focused on nano- and microcomposites comprised of metal and polymeric materials. These can be targeted through conjugation or adsorption of lactoferrin to achieve recognition to receptor-expressing cells. More recently, efforts are underway to utilize lactoferrin itself as a medium in loading the therapeutic agent. The functional efficiency of drug-loaded lactoferrin nanoparticles has been evaluated in different disease conditions such as cancer, HIV, Parkinson's disease, etc. This review will present the details of composition and performance of various delivery systems designed and developed using lactoferrin as targeting agent for the treatment of cancer.
Collapse
Affiliation(s)
- Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Piotrowski-Daspit AS, Kauffman AC, Bracaglia LG, Saltzman WM. Polymeric vehicles for nucleic acid delivery. Adv Drug Deliv Rev 2020; 156:119-132. [PMID: 32585159 PMCID: PMC7736472 DOI: 10.1016/j.addr.2020.06.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Polymeric vehicles are versatile tools for therapeutic gene delivery. Many polymers-when assembled with nucleic acids into vehicles-can protect the cargo from degradation and clearance in vivo, and facilitate its transport into intracellular compartments. Design options in polymer synthesis yield a comprehensive range of molecules and resulting vehicle formulations. These properties can be manipulated to achieve stronger association with nucleic acid cargo and cells, improved endosomal escape, or sustained delivery depending on the application. Here, we describe current approaches for polymer use and related strategies for gene delivery in preclinical and clinical applications. Polymer vehicles delivering genetic material have already achieved significant therapeutic endpoints in vitro and in animal models. From our perspective, with preclincal assays that better mimic the in vivo environment, improved strategies for target specificity, and scalable techniques for polymer synthesis, the impact of this therapeutic approach will continue to expand.
Collapse
Affiliation(s)
| | - Amy C Kauffman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America; Corning Life Sciences, Kennebunk, ME 04043, United States of America
| | - Laura G Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, United States of America; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, United States of America; Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, United States of America.
| |
Collapse
|
21
|
Lactoferrin Is Broadly Active against Yeasts and Highly Synergistic with Amphotericin B. Antimicrob Agents Chemother 2020; 64:AAC.02284-19. [PMID: 32094132 PMCID: PMC7179636 DOI: 10.1128/aac.02284-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional milk protein with antimicrobial activity against a range of pathogens. While numerous studies report that LF is active against fungi, there are considerable differences in the level of antifungal activity and the capacity of LF to interact with other drugs. Here we undertook a comprehensive evaluation of the antifungal spectrum of activity of three defined sources of LF across 22 yeast and 24 mold species and assessed its interactions with six widely used antifungal drugs. LF was broadly and consistently active against all yeast species tested (MICs, 8 to 64 μg/ml), with the extent of activity being strongly affected by iron saturation. LF was synergistic with amphotericin B (AMB) against 19 out of 22 yeast species tested, and synergy was unaffected by iron saturation but was affected by the extent of LF digestion. LF-AMB combination therapy significantly prolonged the survival of Galleria mellonella wax moth larvae infected with Candida albicans or Cryptococcus neoformans and decreased the fungal burden 12- to 25-fold. Evidence that LF directly interacts with the fungal cell surface was seen via scanning electron microscopy, which showed pore formation, hyphal thinning, and major cell collapse in response to LF-AMB synergy. Important virulence mechanisms were disrupted by LF-AMB treatment, which significantly prevented biofilms in C. albicans and C. glabrata, inhibited hyphal development in C. albicans, and reduced cell and capsule size and phenotypic diversity in Cryptococcus Our results demonstrate the potential of LF-AMB as an antifungal treatment that is broadly synergistic against important yeast pathogens, with the synergy being attributed to the presence of one or more LF peptides.
Collapse
|
22
|
Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Musci G. Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020; 10:biom10030456. [PMID: 32183434 PMCID: PMC7175311 DOI: 10.3390/biom10030456] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| |
Collapse
|
23
|
Salameh JW, Zhou L, Ward SM, Santa Chalarca CF, Emrick T, Figueiredo ML. Polymer-mediated gene therapy: Recent advances and merging of delivery techniques. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1598. [PMID: 31793237 PMCID: PMC7676468 DOI: 10.1002/wnan.1598] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
The ability to safely and precisely deliver genetic materials to target sites in complex biological environments is vital to the success of gene therapy. Numerous viral and nonviral vectors have been developed and evaluated for their safety and efficacy. This study will feature progress in synthetic polymers as nonviral vectors, which benefit from their chemical versatility, biocompatibility, and ability to carry both therapeutic cargo and targeting moieties. The combination of synthetic gene carrying constructs with advanced delivery techniques promises new therapeutic options for treating and curing genetic disorders. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Janelle W. Salameh
- The Weldon School of Biomedical Engineering and the
Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette,
Indiana
| | - Le Zhou
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | - Sarah M. Ward
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | | | - Todd Emrick
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences and the
Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette,
Indiana
| |
Collapse
|
24
|
Mandal AK. Dendrimers in targeted drug delivery applications: a review of diseases and cancer. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1713780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ardhendu Kumar Mandal
- Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, India
| |
Collapse
|
25
|
Laskar P, Somani S, Campbell SJ, Mullin M, Keating P, Tate RJ, Irving C, Leung HY, Dufès C. Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells. NANOSCALE 2019; 11:20058-20071. [PMID: 31612185 DOI: 10.1039/c9nr07254c] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combination therapy involving chemotherapeutic drugs and genes is emerging as a promising strategy to provide a synergistic therapeutic effect, to overcome drug resistance while reducing the severe side effects associated with conventional chemotherapeutic drugs. However, the lack of nanomedicines able to simultaneously carry anti-cancer drugs and nucleic acids limits the application of this therapeutic strategy. To overcome this issue, we proposed to synthesize a pro-drug dendrimer by conjugating the PEGylated, positively charged generation 3-diaminobutyric polypropylenimine dendrimer to the anti-cancer drug camptothecin with a redox-sensitive disulphide linkage, and evaluate its efficacy to co-deliver the complexed DNA and camptothecin to cancer cells. This PEGylated pro-drug dendrimer was found to spontaneously self-assemble into cationic (∼3-5 mV) vesicles at pH 7.4, at a critical aggregation concentration of about 200 μg mL-1. These vesicles (dendrimersomes) became smaller (150-200 nm) with increasing dendrimer concentration and remained stable over 7 days. They were able to release about 70% of the conjugated camptothecin in presence of 50 mM glutathione (equivalent to the intracellular environment of tumor tissue). They could also condense more than 85% of the DNA at dendrimer : DNA weight ratios of 5 : 1 and higher. DNA condensation occurred instantly and was found to be stable for at least 24 h. This led to an enhanced cellular uptake of DNA (by up to 1.6-fold) and increased gene transfection (by up to 2.4-fold) in prostate cancer cells in comparison with the unmodified dendrimer. These novel dendrimersomes are therefore promising for single carrier-based combination cancer therapy.
Collapse
Affiliation(s)
- Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Sara Jane Campbell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Margaret Mullin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patricia Keating
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Craig Irving
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
26
|
Zhong HH, Wang HY, Li J, Huang YZ. TRAIL-based gene delivery and therapeutic strategies. Acta Pharmacol Sin 2019; 40:1373-1385. [PMID: 31444476 PMCID: PMC6889127 DOI: 10.1038/s41401-019-0287-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), also known as APO2L, belongs to the tumor necrosis factor family. By binding to the death receptor 4 (DR4) or DR5, TRAIL induces apoptosis of tumor cells without causing side toxicity in normal tissues. In recent years TRAIL-based therapy has attracted great attention for its promise of serving as a cancer drug candidate. However, the treatment efficacy of TRAIL protein was under expectation in the clinical trials because of the short half-life and the resistance of cancer cells. TRAIL gene transfection can produce a "bystander effect" of tumor cell killing and provide a potential solution to TRAIL-based cancer therapy. In this review we focus on TRAIL gene therapy and various design strategies of TRAIL DNA delivery including non-viral vectors and cell-based TRAIL therapy. In order to sensitize the tumor cells to TRAIL-induced apoptosis, combination therapy of TRAIL DNA with other drugs by the codelivery methods for yielding a synergistic antitumor efficacy is summarized. The opportunities and challenges of TRAIL-based gene delivery and therapy are discussed.
Collapse
Affiliation(s)
- Hui-Hai Zhong
- Shanghai University College of Sciences, Shanghai, 200444, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Yuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Li
- Shanghai University College of Sciences, Shanghai, 200444, China
| | - Yong-Zhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
27
|
Irradiated Bladder Cancer Cells Expressing both GM-CSF and IL-21 versus Either GM-CSF or IL-21 Alone as Tumor Vaccine in a Mouse Xenograft Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8262989. [PMID: 31467912 PMCID: PMC6699310 DOI: 10.1155/2019/8262989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
Abstract
Previous studies have established the efficacy of irradiated cancer cells overexpressing GM-CSF or IL-21 as a vaccine. Here we examined whether the vaccine efficacy was greater when both factors were overexpressed together. MB49 bladder cancer cells were transfected with expression plasmid pT7TS encoding mouse GM-CSF and human IL-21, and then irradiated with 100 Gy at 4 days later. The cells (1×107 per animal) were injected subcutaneously into C57BL/6 mice at 0, 4, 8, and 12 days after inoculation with MB49 tumor xenografts. Control animals were injected with MB49 cells transfected with pT7TS encoding GM-CSF or IL-21 on its own. Tumor growth was monitored for 45 days and compared among the groups using repeated-measures ANOVA. Vaccination with irradiated MB49 cells did not affect xenograft growth. Vaccination with irradiated cells overexpressing GM-CSF or IL-21 alone significantly inhibited tumor growth and led to significantly more CD4+ CD8+ T cells and fewer CD4+ Foxp3+ T cells in the spleen and xenograft. These effects were even greater following vaccination with irradiated cells overexpressing both GM-CSF and IL-21. Irradiated bladder cancer cells overexpressing both GM-CSF and IL-21 are more effective than cells expressing either factor alone as a vaccine against bladder cancer.
Collapse
|
28
|
|
29
|
Laskar P, Somani S, Altwaijry N, Mullin M, Bowering D, Warzecha M, Keating P, Tate RJ, Leung HY, Dufès C. Redox-sensitive, cholesterol-bearing PEGylated poly(propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells. NANOSCALE 2018; 10:22830-22847. [PMID: 30488937 DOI: 10.1039/c8nr08141g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stimuli-responsive nanocarriers have attracted increased attention as materials that can facilitate drug and gene delivery in cancer therapy. The present study reports the development of redox-sensitive dendrimersomes comprising disulfide-linked cholesterol-bearing PEGylated dendrimers, which can be used as drug and gene delivery systems. Two disulfide-linked cholesterol-bearing PEGylated generation 3 diaminobutyric polypropylenimine dendrimers have been successfully synthesized via an in situ two-step reaction. They were able to spontaneously self-assemble into stable, cationic, nanosized vesicles (or dendrimersomes) with lower critical aggregation concentration values for high-cholesterol-bearing vesicles. These dendrimersomes were able to entrap both hydrophilic and hydrophobic dyes, and they also showed a redox-responsive sustained release of the entrapped guests in the presence of a glutathione concentration similar to that of a cytosolic reducing environment. The high-cholesterol-bearing dendrimersomes were found to have a higher melting enthalpy, increased adsorption tendency on mica surface, entrapping ability for a larger amount of hydrophobic drugs, and increased resistance to redox-responsive environments in comparison with their low-cholesterol counterpart. In addition, both dendrimersomes were able to condense more than 85% of the DNA at all the tested ratios for the low-cholesterol vesicles, and at dendrimer : DNA weight ratios of 1 : 1 and higher for the high-cholesterol vesicles. These vesicles resulted in an enhanced cellular uptake of DNA, by up to 15-fold when compared with naked DNA with low-cholesterol vesicles. As a result, they increased the gene transfection on the PC-3 prostate cancer cell line, with the highest transfection being obtained with low-cholesterol vesicle complexes at a dendrimer : DNA weight ratio of 5 : 1 and high-cholesterol vesicle complexes at a dendrimer : DNA weight ratio of 10 : 1. These transfection levels were about 5-fold higher than those observed when treated with naked DNA. These cholesterol-bearing PEGylated dendrimer-based vesicles are, therefore, promising as redox-sensitive drugs and gene delivery systems for potential applications in combination cancer therapies.
Collapse
Affiliation(s)
- Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Najla Altwaijry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Margaret Mullin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Deborah Bowering
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK. and CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Monika Warzecha
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK. and CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Patricia Keating
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
30
|
Abstract
Prostate cancer is the second-most widespread cancer in men worldwide. Treatment choices are limited to prostatectomy, hormonal therapy, and radiotherapy, which commonly have deleterious side effects and vary in their efficacy, depending on the stage of the disease. Among novel experimental strategies, gene therapy holds great promise for the treatment of prostate cancer. However, its use is currently limited by the lack of delivery systems able to selectively deliver the therapeutic genes to the tumors after intravenous administration without major drawbacks. To remediate this problem, a wide range of nonviral delivery approaches have been developed to specifically deliver DNA-based therapeutic agents to their site of action. This review provides an overview of the various nonviral delivery strategies and gene therapy concepts used to deliver therapeutic DNA to prostate cancer cells, and focuses on recent therapeutic advances made so far.
Collapse
Affiliation(s)
- Najla Altwaijry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK,
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK,
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK,
| |
Collapse
|
31
|
Somani S, Laskar P, Altwaijry N, Kewcharoenvong P, Irving C, Robb G, Pickard BS, Dufès C. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Sci Rep 2018; 8:9410. [PMID: 29925967 PMCID: PMC6010408 DOI: 10.1038/s41598-018-27400-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
Diaminobutyric polypropylenimine (DAB) dendrimers have been shown to be highly efficient non-viral gene delivery systems for cancer therapy. However, their cytotoxicity currently limits their applications. To overcome this issue, PEGylation of DAB dendrimer, using various PEG molecular weights and dendrimer generations, has been attempted to decrease the cytotoxicity and enhance the DNA condensation, size and zeta potential, cellular uptake and transfection efficacy of these dendriplexes. Among all the PEGylated dendrimers synthesized, generation 3- and generation 4-DAB conjugated to low molecular weight PEG (2 kDa) at a dendrimer: DNA ratio of 20:1 and 10:1 resulted in an increase in gene expression on almost all tested cancer cells lines (by up to 3.2-fold compared to unmodified dendrimer in A431 cells). The highest level of β-galactosidase gene expression (10.07 × 10-3 ± 0.09 × 10-3 U/mL) was obtained following treatment of B16F10-Luc cells with G4-dendrimer PEGylated with PEG2K at a dendrimer: DNA ratio of 20:1. These delivery systems significantly decreased cytotoxicity on B16F10-Luc cells, by more than 3.4-fold compared to unmodified dendrimer. PEGylated generations 3- and 4-DAB dendrimers are therefore promising gene delivery systems for cancer therapy, combining low cytotoxicity and high transfection efficacy.
Collapse
Affiliation(s)
- Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Najla Altwaijry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Paphitchaya Kewcharoenvong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Craig Irving
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | - Gillian Robb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|