1
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Kharboush TG, Ahmed IA, Farag AA, Kharboush T, Sayed AEDH, Abdel-Kareim AM, Al Mohaini M, Attia H, Eid RA, Zaki MSA, Al-Tabbakh ASM. Epigenetic alterations of miR-155 and global DNA methylation as potential mediators of ochratoxin A cytotoxicity and carcinogenicity in human lung fibroblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5473-5483. [PMID: 38114706 PMCID: PMC10799132 DOI: 10.1007/s11356-023-31283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Ochratoxin A (OTA) is a well-known mycotoxin that adversely affects different human cells. Inhalational exposure to OTA and subsequent pulmonary diseases have been previously reported, yet its potential carcinogenicity and underlying molecular mechanisms have not been fully elucidated. This study aimed to evaluate the OTA-induced cytotoxicity and the epigenetic changes underlying its potential carcinogenicity in fetal lung fibroblast (WI-38) cells. OTA cytotoxicity was assessed by MTT assay; RT-qPCR was used to determine the expression of BAX, BCL-2, TP53, and miR-155, while ELISA was used for measuring 5-methyl cytosine percentage to assess global DNA methylation in OTA-treated versus control cells. WI-38 cells demonstrated sensitivity to OTA with IC50 at 22.38 μM. Though BAX and Bcl-2 were downregulated, with low BAX/BCL-2 ratio, and TP53 was upregulated, their fold changes showed decline trend with increasing OTA concentration. A significant dose-dependent miR-155 upregulation was observed, with dynamic time-related decline. Using subtoxic OTA concentrations, a significant global DNA hypermethylation with significant dose-dependent and dynamic alterations was identified. Global DNA hypermethylation and miR-155 upregulation are epigenetic mechanisms that mediate OTA toxicity on WI-38 cells. BAX downregulation, reduced BAX/BCL-2 ratio together with miR-155 upregulation indicated either the inhibition of TP53-dependent apoptosis or a tissue specific response to OTA exposure. The aforementioned OTA-induced variations present a new molecular evidence of OTA cytotoxicity and possible carcinogenicity in lung fibroblast cells.
Collapse
Affiliation(s)
- Taghrid G Kharboush
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Inas A Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
- Central Laboratory for Research, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Amina A Farag
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Tayseir Kharboush
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Asyut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Asyut, 71516, Egypt.
| | - Amal M Abdel-Kareim
- Department of Zoology, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 31982, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, 31982, Alahsa, Saudi Arabia
| | - Hend Attia
- Clinical and Chemical Pathology, School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Al-Shaimaa M Al-Tabbakh
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| |
Collapse
|
3
|
Fan S, Zheng H, Zhan Y, Luo J, Zang H, Wang H, Wang W, Xu Y. Somatostatin receptor2 (SSTR2) expression, prognostic implications, modifications and potential therapeutic strategies associates with head and neck squamous cell carcinomas. Crit Rev Oncol Hematol 2024; 193:104223. [PMID: 38036157 DOI: 10.1016/j.critrevonc.2023.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) constitute a heterogeneous cluster of tumors celebrated for their predisposition to metastasize and exhibit local recurrence. Recent explorations have illuminated the intricate involvement of Somatostatin Receptor 2 (SSTR2), a growth-regulatory receptor traditionally classified as a tumor suppressor, yet concurrently implicated in bolstering specific tumor phenotypes. Advances in the realm of SSTR2 investigation within HNSCC, with a specific spotlight on laryngeal squamous cell carcinomas (LSCC), tongue squamous cell carcinomas (TSCC), and nasopharyngeal carcinomas (NPC), have been established. This study aims to provide a comprehensive overview of SSTR2 expression patterns, prognostic implications, distinctive signaling pathways, epigenetic modifications, and potential therapeutic strategies associated with SSTR2 in HNSCC.
Collapse
Affiliation(s)
- Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Huilin Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Han D, Ren XH, He XY, Chen XS, Pang X, Cheng SX. Aptamer/Peptide-Functionalized Nanoprobe for Detecting Multiple miRNAs in Circulating Malignant Cells to Study Tumor Heterogeneity. ACS Biomater Sci Eng 2023; 9:5832-5842. [PMID: 37679307 DOI: 10.1021/acsbiomaterials.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Identification of diverse biomarkers in heterogenic circulating malignant cells (CMCs) such as circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) has crucial significance in tumor diagnosis. However, it remains a substantial challenge to achieve in situ detection of multiple miRNA markers in living cells in blood. Herein, we demonstrate that an aptamer/peptide-functionalized vector can deliver molecular beacons into targeted living CMCs in peripheral blood of patients for in situ detection of multiple cancer biomarkers, including miRNA-21 (miR-21) and miRNA-221 (miR-221). Based on miR-21 and miR-221 levels, heterogenic CMCs are identified for both nondistant metastatic and distant metastatic cancer patients. CMCs from nondistant metastatic and distant metastatic cancer patients exhibit similar miR-21 levels, while the miR-221 level in CMCs of the distant metastatic cancer patient is higher than that of the nondistant metastatic cancer patient. With the capability to realize precise probing of multiple intracellular biomarkers in living CMCs at the single-cell resolution, the nanoprobe can reveal the tumor heterogeneity and provide useful information for diagnosis and prognosis. The nanoprobe we developed would accelerate the progress toward noninvasive precise cancer diagnosis.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
- School of Life Sciences and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Fan M, Huang Y, Zhu X, Zheng J, Du M. Octreotide and Octreotide-derived delivery systems. J Drug Target 2023; 31:569-584. [PMID: 37211679 DOI: 10.1080/1061186x.2023.2216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Pharmaceutical peptide Octreotide is a somatostatin analog with targeting and therapeutic abilities. Over the last decades, Octreotide has been developed and approved to treat acromegaly and neuroendocrine tumours, and Octreotide-based radioactive conjugates have been leveraged clinically to detect small neuroendocrine tumour sites. Meanwhile, variety of Octreotide-derived delivery strategies have been proposed and explored for tumour targeted therapeutics or diagnostics in preclinical or clinical settings. In this review, we especially focus on the preclinical development and applications of Octreotide-derived drug delivery systems, diagnostic nanosystems, therapeutic nanosystems and multifunctional nanosystems, we also briefly discuss challenges and prospects of these Octreotide-derived delivery systems.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiayu Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
7
|
Jiang P, Liang B, Zhang Z, Fan B, Zeng L, Zhou Z, Mao Z, Xu Q, Yao W, Shen Q. New insights into nanosystems for non-small-cell lung cancer: diagnosis and treatment. RSC Adv 2023; 13:19540-19564. [PMID: 37388143 PMCID: PMC10300523 DOI: 10.1039/d3ra03099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Lung cancer is caused by a malignant tumor that shows the fastest growth in both incidence and mortality and is also the greatest threat to human health and life. At present, both in terms of incidence and mortality, lung cancer is the first in male malignant tumors, and the second in female malignant tumors. In the past two decades, research and development of antitumor drugs worldwide have been booming, and a large number of innovative drugs have entered clinical trials and practice. In the era of precision medicine, the concept and strategy of cancer from diagnosis to treatment are experiencing unprecedented changes. The ability of tumor diagnosis and treatment has rapidly improved, the discovery rate and cure rate of early tumors have greatly improved, and the overall survival of patients has benefited significantly, with a tendency to transform to a chronic disease with tumor. The emergence of nanotechnology brings new horizons for tumor diagnosis and treatment. Nanomaterials with good biocompatibility have played an important role in tumor imaging, diagnosis, drug delivery, controlled drug release, etc. This article mainly reviews the advancements in lipid-based nanosystems, polymer-based nanosystems, and inorganic nanosystems in the diagnosis and treatment of non-small-cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Piao Jiang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- The First Clinical Medical College, Nanchang University Nanchang China
| | - Bin Liang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Lin Zeng
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhifang Mao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Quan Xu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| |
Collapse
|
8
|
Han D, Ren XH, Liao XR, He XY, Guo T, Chen XS, Pang X, Cheng SX. A Multiple Targeting Nanoprobe for Identifying Cancer Metastatic Sites Based on Detection of Various mRNAs in Circulating Tumor Cells. NANO LETTERS 2023; 23:3678-3686. [PMID: 37052638 DOI: 10.1021/acs.nanolett.2c04643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Identification of cancer metastatic sites is of importance for adjusting therapeutic interventions and treatment choice. However, identifying the location of metastatic lesions with easy accessibility and high safety is challenging. Here we demonstrate that cancer metastatic sites can be accurately detected by a triple targeting nanoprobe. Through coencapsulating molecular beacons probing a cancer biomarker (CXCR4 mRNA), a lung metastatic biomarker (CTSC mRNA), and a bone metastatic biomarker (JAG1 mRNA), the nanoprobe decorated by SYL3C conjugated hyaluronic acid and ICAM-1 specific aptamer conjugated hyaluronic acid can target diverse phenotyped circulating tumor cells (CTCs) during epithelial-mesenchymal and mesenchymal-epithelial transitions in whole blood for sensitive probing. The detection of CTCs from cancer patients shows that the nanoprobe can provide accurate information to distinguish different cancer metastasis statuses including nonmetastasis, lung metastasis, and bone metastasis. This study proposes an efficient screening tool for identifying the location of distant metastatic lesions via facile blood biopsy.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, China
| | - Xin-Ru Liao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230011, China
| | - Tao Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, Anhui 230011, China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
9
|
Ezhilarasan D, Lakshmi T, Mallineni SK. Nano-based targeted drug delivery for lung cancer: therapeutic avenues and challenges. Nanomedicine (Lond) 2022; 17:1855-1869. [PMID: 35311343 DOI: 10.2217/nnm-2021-0364] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most anticancer drugs often fail in clinical trials due to poor solubility, poor bioavailability, lack of targeted delivery and several off-target effects. Polymeric nanoparticles such as poly(lactide), poly(lactic-co-glycolic acid), ALB-loading paclitaxel (Abraxane® ABI-007), lomustine-loaded chitosan, gelatin (decorated with EGF receptor-targeted biotinylated EGF) and so on offer controlled and sustained drug-release properties, biocompatibility and promising anticancer effects. EGF, folic acid, transferrin, sigma and urokinase plasminogen activator receptors-targeting nano preparations improve bioavailability and accumulate drugs on the lung tumor cell surface. However, route of administration, size, pharmacokinetic properties, immune clearance and so on hamper nanomedicines' clinical uses. This review focuses on the benefits, avenues and challenges of nanoparticle-based drug-delivery systems for lung cancer treatment.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Gold Lab, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| | - Thangavelu Lakshmi
- Department of Pharmacology, Gold Lab, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| | - Sreekanth Kumar Mallineni
- Department of Preventive Dental Sciences, College of Dentistry, Majmaah University, Almajmaah, 11952, Saudi Arabia
| |
Collapse
|
10
|
Xu C, He XY, Ren XH, Han D, Cheng SX. Detection of mRNAs of Ribosomal Protein L15 and E-Cadherin in Living Circulating Tumor Cells at Single Cell Resolution To Study Tumor Heterogeneity. Anal Chem 2022; 94:10610-10616. [PMID: 35856393 DOI: 10.1021/acs.analchem.2c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the heterogeneity of circulating tumor cells (CTCs) is of crucial importance to analyze cancer progression and metastasis. However, in situ detection of highly heterogeneous CTCs in peripheral blood still faces an elusive challenge. Here, we show direct detection of two metastasis-related mRNAs of diverse CTCs in whole blood by a triple-targeting nanoprobe. In the nanoprobe, two kinds of molecular beacons, MB1 to detect RPL15 mRNA and MB2 to detect E-cadherin (E-cad) mRNA, are loaded in a highly efficient delivery vector decorated with EpCAM-targeted SYL3C, EGFR-targeted CL4, and CD44-targeted hyaluronic acid chains to specifically deliver MB1/MB2 into epithelial, mesenchymal, and stem CTCs in unprocessed peripheral blood. The numbers of RPL15+ and E-cad+ CTCs are positively correlated with the metastasis stages of cancer patients. This study provides an effective strategy to realize direct observation on diverse metastasis-related genes in living CTCs with different phenotypes to provide accurate information on cancer heterogeneity and metastasis.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei 230032, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
11
|
Wang G, Tao X, Peng L. miR-155-5p regulates hypoxia-induced pulmonary artery smooth muscle cell function by targeting PYGL. Bioengineered 2022; 13:12985-12997. [PMID: 35611851 PMCID: PMC9275946 DOI: 10.1080/21655979.2022.2079304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiovascular disease that has high incidence and causes massive deaths. miR-155-5p/PYGL pathway was revealed to play a crucial role in PAH by weighted gene co-expression network analysis (WGCNA). The potential mechanism of miR-155-5p in regulating hypoxia-induced pulmonary artery smooth muscle cell (PASMC) function was analyzed through in vitro experiments. Hypoxia treatment stimulated the proliferation of PASMCs and increased the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α). At the same time, revealed by qRT-PCR and western blot, the level of miR-155-5p was raised, and the level of PYGL was decreased in hypoxia-induced PASMCs. Through CCK-8 assay, transwell assay and flow cytometry, it was revealed that miR-155-5p inhibitor remarkably inhibited the cell proliferation and migration and decreased the proportion of hypoxia-stimulated PASMCs in S and G2/M phases. Dual-luciferase reporter system was subsequently applied to validate the straight regulation of miR-155-5p on PYGL based on the analysis of online database. Furthermore, siPYGL was revealed to reverse the influence of miR-155-5p inhibitor on hypoxia-induced PASMCs. These outcomes indicate that the increased level of miR-155-5p in hypoxia-stimulated PASMCs could enhance the cell proliferation, cell migration, and cell cycle progression by targeting PYGL directly. This study may supply novel treatment strategies for PAH.Abbreviations: PH, pulmonary hypertension; PAH, pulmonary arterial hypertension; WGCNA, weighted gene co-expression network analysis; PASMCs, pulmonary artery smooth muscle cells; VEGF, vascular endothelial growth factor; HIF-1α, hypoxia-inducible factor-1α; SMCs, smooth muscle cells; DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FBS, fetal bovine serum; OD, optical density; BCA, bicinchoninic acid; PVDF, polyvinylidene fluoride; PBS, phosphate-buffered saline; BP, biological process; MF, molecular function; CC, cell component.
Collapse
Affiliation(s)
- Guowen Wang
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Xuefang Tao
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Linlin Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Takehana S, Yang W, Tabata Y. Potential Method of Autophagy Imaging with Cationized Gelatin Nanospheres Incorporating Molecular Beacon. ACS APPLIED BIO MATERIALS 2022; 5:2965-2975. [PMID: 35609115 DOI: 10.1021/acsabm.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this research is to develop an imaging method with cationized gelatin nanospheres incorporating molecular beacon (cGNSMB) to visualize an autophagy activity in living cells. Cationized gelatin nanospheres (cGNS) were prepared by the conventional coacervation method, and then molecular beacon (MB) was incorporated into them. The cGNSMB prepared were internalized into cells at a high efficiency. In this study, a starvation medium of serum and amino acids-free was used to induce autophagy. The autophagy activity was confirmed by an immunofluorescence staining for microtubule-associated proteins light chain 3B (LC3B) of an autophagy specific protein. With the autophagy induction time, the number of LC3 fluorescent dots increased, which indicated an increased autophagy activity. As the autophagy-related genes, sequestosome 1 (SQSTM1) and cathepsin F (CTSF), which up-regulate after autophagy induction, were chosen as the targets of cGNSMB. The fluorescence intensity of cGNSMB targeting to SQSTM1 and CTSF increased with the starvation treatment time, which well corresponded with the gene expression results. When applied to cells in different autophagy conditions, the cGNSMB visualized the autophagy activity corresponding with the autophagy condition of cells. From the results obtained, it was concluded that the cGNSMB provide a promising method to visualize the autophagy of cells. The advantage of cGNSMB visualization is to obtain the temporal and spatial information without destroying sample cells.
Collapse
Affiliation(s)
- Sho Takehana
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wenxuan Yang
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Ge Z, Liu H, Ji T, Liu Q, Zhang L, Zhu P, Li L, Zhu L. Long non-coding RNA 00960 promoted the aggressiveness of lung adenocarcinoma via the miR-124a/SphK1 axis. Bioengineered 2022; 13:1276-1287. [PMID: 34738865 PMCID: PMC8805815 DOI: 10.1080/21655979.2021.1996507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/16/2021] [Indexed: 11/02/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are closely associated with the development of lung adenocarcinoma (LADC). The present study focused on the role of LINC00960 in LADC. miRNA and mRNA expression levels were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cellular functions were evaluated by MTT, colony formation, and Transwell assays, respectively. LINC00960 Luciferase and RNA pull-down assays were performed to clarify the interaction between miR-124a and LINC00960 or Recombinant Sphingosine Kinase 1 (SphK1). We observed that LINC00960 was overexpressed in LADC tumor tissues and cell lines. LINC00960 knockdown suppressed the proliferation, migration, and invasion of LADC cells. Moreover, LINC00960 sponged miR-124a to inhibit the SphK1/S1P pathway in LADC cells. LINC00960 knockdown markedly reduced the rate of tumor growth. The luciferase reporter assay results demonstrated an interaction between miR-124a and LINC00960 or SphK1. This interaction was confirmed using the RNA pull-down assay. In addition, miR-124a downregulation or SphK1 upregulation reversed the inhibitory effects of LINC00960 knockdown on cellular functions of LADC cells, suggesting that LINC00960 may be a potential therapeutic biomarker for LADC via the miR-124a/SphK1 axis. Accordingly, LINC00960 may be a potential therapeutic biomarker for LADC.
Collapse
Affiliation(s)
- Zhipeng Ge
- Weifang Medical University, Weifang, People’s Republic of China
| | - Haibo Liu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, P.R. China
| | - Tao Ji
- Chest Endoscopy Minimally Invasive Area, Shandong Provincial Chest Hospital, Jinan, Shandong Province, China
| | - Qiaoling Liu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, P.R. China
| | - Lulu Zhang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pengchong Zhu
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Liang Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Liangming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, P.R. China
| |
Collapse
|
14
|
Liu Y, Nie H, Ding Y, Hou Y, Mao K, Cui Y. MiRNA, a New Treatment Strategy for Pulmonary Fibrosis. Curr Drug Targets 2021; 22:793-802. [PMID: 32988351 DOI: 10.2174/1874609813666200928141822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Kejun Mao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Zhu HZ, Fang CJ, Guo Y, Zhang Q, Huang LM, Qiu D, Chen GP, Pang XF, Hu JJ, Sun JG, Chen ZT. Detection of miR-155-5p and imaging lung cancer for early diagnosis: in vitro and in vivo study. J Cancer Res Clin Oncol 2020; 146:1941-1951. [PMID: 32447486 PMCID: PMC7324423 DOI: 10.1007/s00432-020-03246-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/04/2020] [Indexed: 12/04/2022]
Abstract
Purpose Currently, the routine screening program has insufficient capacity for the early diagnosis of lung cancer. Therefore, a type of chitosan-molecular beacon (CS-MB) probe was developed to recognize the miR-155-5p and image the lung cancer cells for the early diagnosis. Methods Based on the molecular beacon (MB) technology and nanotechnology, the CS-MB probe was synthesized self-assembly. There are four types of cells—three kinds of animal models and one type of histopathological sections of human lung cancer were utilized as models, including A549, SPC-A1, H446 lung cancer cells, tumor-initiating cells (TICs), subcutaneous and lung xenografts mice, and lox-stop-lox(LSL) K-ras G12D transgenic mice. The transgenic mice dynamically displayed the process from normal lung tissues to atypical hyperplasia, adenoma, carcinoma in situ, and adenocarcinoma. The different miR-155-5p expression levels in these cells and models were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The CS-MB probe was used to recognize the miR-155-5p and image the lung cancer cells by confocal microscopy in vitro and by living imaging system in vivo. Results The CS-MB probe could be used to recognize the miR-155-5p and image the lung cancer cells significantly in these cells and models. The fluorescence intensity trends detected by the CS-MB probe were similar to the expression levels trends of miR-155 tested by qRT-PCR. Moreover, the fluorescence intensity showed an increasing trend with the tumor progression in the transgenic mice model, and the occurrence and development of lung cancer were dynamically monitored by the differen fluorescence intensity. In addition, the miR-155-5p in human lung cancer tissues could be detected by the miR-155-5p MB. Conclusion Both in vivo and in vitro experiments demonstrated that the CS-MB probe could be utilized to recognize the miR-155-5p and image the lung cancer cells. It provided a novel experimental and theoretical basis for the early diagnosis of the disease. Also, the histopathological sections of human lung cancer research laid the foundation for subsequent preclinical studies. In addition, different MBs could be designed to detect other miRNAs for the early diagnosis of other tumors.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Chun-Ju Fang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Yi Guo
- Department of Basic Knowledge, Guiyang Nursing Vocational College, Guiyang, 400037, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Li-Min Huang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Dong Qiu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Guang-Peng Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiu-Feng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian-Jun Hu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jian-Guo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Zheng-Tang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
16
|
Gulei D, Raduly L, Broseghini E, Ferracin M, Berindan-Neagoe I. The extensive role of miR-155 in malignant and non-malignant diseases. Mol Aspects Med 2019; 70:33-56. [PMID: 31558293 DOI: 10.1016/j.mam.2019.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have rapidly emerged as key molecules in cancer initiation and development, showing the capability to regulate pivotal oncogenic pathways. MiR-155 has gathered an increased attention especially in oncology, but also in non-malignanat pathologies. Nowadays, this noncoding RNA is one of the most important miRNAs in cancer, due to the extensive signaling network associated with it, implication in immune system regulation and also deregulation in disease states. Therefore, numerous research protocols are focused on preclinical modulation of miR-155 for therapeutic purposes, or investigation of its dynamic expression for diagnostic/prognostic assessments, with the final intention of bringing this miRNA into the clinical setting. This review comprehensively presents the extended role of miR-155 in cancer and other pathologies, where its expression is dysregulated. Finally, we assess the future steps toward miR-155 based therapeutics.
Collapse
Affiliation(s)
- Diana Gulei
- MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania; Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuţă", Cluj-Napoca, 400015, Romania.
| |
Collapse
|