1
|
Reyna-Lázaro L, Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Gibbens-Bandala B, Olea-Mejía O, Morales-Avila E. Pharmaceutical Nanoplatforms Based on Self-nanoemulsifying Drug Delivery Systems for Optimal Transport and Co-delivery of siRNAs and Anticancer Drugs. J Pharm Sci 2024; 113:1907-1918. [PMID: 38369021 DOI: 10.1016/j.xphs.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.
Collapse
Affiliation(s)
- Luz Reyna-Lázaro
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Aideé Morales-Becerril
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Brenda Gibbens-Bandala
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Oscar Olea-Mejía
- Centro Conjunto de Investigación en Química Sustentable (CCIQS), Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Km 14.5 Carretera Toluca-Ixtlahuaca, San Cayetano de Morelos, 50200 Toluca, Mexico
| | - Enrique Morales-Avila
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico.
| |
Collapse
|
2
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
3
|
Srivastav AK, Karpathak S, Rai MK, Kumar D, Misra DP, Agarwal V. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application. J Drug Deliv Sci Technol 2023; 85:104526. [DOI: 10.1016/j.jddst.2023.104526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Tong L, Zhou Z, Wang G, Wu C. A self-microemulsion enhances oral absorption of docetaxel by inhibiting P-glycoprotein and CYP metabolism. Drug Deliv Transl Res 2023; 13:983-993. [PMID: 36515864 DOI: 10.1007/s13346-022-01255-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 12/15/2022]
Abstract
Oral absorption of docetaxel was limited by drug efflux pump p-glycoprotein (P-gp) and cytochrome P450 enzyme (CYP 450). Therefore, co-loading agent that inhibits P-gp and CYP450 in self-nanoemulsifying drug delivery systems (SMEs) is considered a promising strategy for oral delivery of docetaxel. In this study, curcumin was selected as an inhibitor of P-gp and CYP450, and it was co-encapsuled in SMEs to improve the oral bioavailability of docetaxel. SMEs quickly dispersed in water within 20 s, and the droplet size was 32.23 ± 2.21 nm. The release rate of curcumin from DC-SMEs was higher than that of docetaxel in vitro. Compared with free docetaxel, SMEs significantly increased the permeability of docetaxel by 4.6 times. And competitive experiments showed that the increased permeability was the result of inhibition of p-gp. The half-life and oral bioavailabilty of DC-SMEs increased about 1.7 times and 1.6 times than docetaxel SMEs, which indicated that its good pharmacokinetic behavior was related to the restriction of hepatic first-pass metabolism. In conclusion, DC-SME was an ideal platform to facilitate oral delivery of docetaxel through inhibited P-gp and CYP 450.
Collapse
Affiliation(s)
- Le Tong
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China
| | - ZeYang Zhou
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
5
|
Recent Trends in Nanomedicine-Based Strategies to Overcome Multidrug Resistance in Tumors. Cancers (Basel) 2022; 14:cancers14174123. [PMID: 36077660 PMCID: PMC9454760 DOI: 10.3390/cancers14174123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is the leading cause of economic and health burden worldwide. The commonly used approaches for the treatment of cancer are chemotherapy, radiotherapy, and surgery. Chemotherapy frequently results in undesirable side effects, and cancer cells may develop resistance. Combating drug resistance is a challenging task in cancer treatment. Drug resistance may be intrinsic or acquired and can be due to genetic factors, growth factors, the increased efflux of drugs, DNA repair, and the metabolism of xenobiotics. The strategies used to combat drug resistance include the nanomedicine-based targeted delivery of drugs and genes using different nanocarriers such as gold nanoparticles, peptide-modified nanoparticles, as well as biomimetic and responsive nanoparticles that help to deliver payload at targeted tumor sites and overcome resistance. Gene therapy in combination with chemotherapy aids in this respect. siRNA and miRNA alone or in combination with chemotherapy improve therapeutic response in tumor cells. Some natural substances, such as curcumin, quercetin, tocotrienol, parthenolide, naringin, and cyclosporin-A are also helpful in combating the drug resistance of cancer cells. This manuscript summarizes the mechanism of drug resistance and nanoparticle-based strategies used to combat it.
Collapse
|
6
|
Lu R, Zhou Y, Ma J, Wang Y, Miao X. Strategies and Mechanism in Reversing Intestinal Drug Efflux in Oral Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14061131. [PMID: 35745704 PMCID: PMC9228857 DOI: 10.3390/pharmaceutics14061131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Efflux transporters distributed at the apical side of human intestinal epithelial cells actively transport drugs from the enterocytes to the intestinal lumen, which could lead to extremely poor absorption of drugs by oral administration. Typical intestinal efflux transporters involved in oral drug absorption process mainly include P-glycoprotein (P-gp), multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP). Drug efflux is one of the most important factors resulting in poor absorption of oral drugs. Caco-2 monolayer and everted gut sac are sued to accurately measure drug efflux in vitro. To reverse intestinal drug efflux and improve absorption of oral drugs, a great deal of functional amphiphilic excipients and inhibitors with the function of suppressing efflux transporters activity are generalized in this review. In addition, different strategies of reducing intestinal drugs efflux such as silencing transporters and the application of excipients and inhibitors are introduced. Ultimately, various nano-formulations of improving oral drug absorption by inhibiting intestinal drug efflux are discussed. In conclusion, this review has significant reference for overcoming intestinal drug efflux and improving oral drug absorption.
Collapse
Affiliation(s)
- Rong Lu
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yun Zhou
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Jinqian Ma
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Yuchen Wang
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
- Correspondence:
| |
Collapse
|
7
|
Soulele K, Karampelas T, Tamvakopoulos C, Macheras P. Enhancement of Docetaxel Absorption Using Ritonavir in an Oral Milk-Based Formulation. Pharm Res 2021; 38:1419-1428. [PMID: 34382143 DOI: 10.1007/s11095-021-03085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The current study aimed to develop a novel milk-based formulation of docetaxel, a sparingly soluble antineoplastic agent, administered so far exclusively by the intravenous route and evaluate its oral bioavailability. METHODS Pre-formulation studies included the determination of docetaxel solubility in water-alcohol mixtures as well as short-term content uniformity experiments of the final formulation. The pharmacokinetic (PK) performance of the developed milk-based formulations was further evaluated in vivo in mice using ritonavir, a potent P-glycoprotein inhibitor, as an absorption enhancer of docetaxel and the marketed intravenous docetaxel formulation, Taxotere®, as a control. RESULTS In vivo PK results in mice showed that all the administered oral docetaxel formulations had limited absorption in the absence of ritonavir. On the contrary, ritonavir co-administration given as pre-treatment significantly enhanced oral bioavailability of both the marketed and milk-based docetaxel formulations; an even more marked increase in drug exposure was observed when ritonavir was incorporated within the docetaxel milk-based formulation. The fixed-dose combination also showed a more prolonged absorption of the drug compared to separate administrations. CONCLUSIONS The current study provides insights for the discovery of a novel milk-based formulation that could potentially serve as an alternative, non-toxic and patient-friendly carrier for an acceptable docetaxel oral chemotherapy.
Collapse
Affiliation(s)
- K Soulele
- Laboratory of Biopharmaceutics - Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - T Karampelas
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - C Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - P Macheras
- Laboratory of Biopharmaceutics - Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece. .,PharmaInformatics Unit, ATHENA Research Center, Artemidos 6 & Epidavrou , 15125, Marousi, Athens, Greece.
| |
Collapse
|
8
|
Cheng M, Liu Q, Gan T, Fang Y, Yue P, Sun Y, Jin Y, Feng J, Tu L. Nanocrystal-Loaded Micelles for the Enhanced In Vivo Circulation of Docetaxel. Molecules 2021; 26:molecules26154481. [PMID: 34361634 PMCID: PMC8348076 DOI: 10.3390/molecules26154481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
Prolonging in vivo circulation has proved to be an efficient route for enhancing the therapeutic effect of rapidly metabolized drugs. In this study, we aimed to construct a nanocrystal-loaded micelles delivery system to enhance the blood circulation of docetaxel (DOC). We employed high-pressure homogenization to prepare docetaxel nanocrystals (DOC(Nc)), and then produced docetaxel nanocrystal-loaded micelles (DOC(Nc)@mPEG-PLA) by a thin-film hydration method. The particle sizes of optimized DOC(Nc), docetaxel micelles (DOC@mPEG-PLA), and DOC(Nc)@mPEG-PLA were 168.4, 36.3, and 72.5 nm, respectively. The crystallinity of docetaxel was decreased after transforming it into nanocrystals, and the crystalline state of docetaxel in micelles was amorphous. The constructed DOC(Nc)@mPEG-PLA showed good stability as its particle size showed no significant change in 7 days. Despite their rapid dissolution, docetaxel nanocrystals exhibited higher bioavailability. The micelles prolonged the retention time of docetaxel in the circulation system of rats, and DOC(Nc)@mPEG-PLA exhibited the highest retention time and bioavailability. These results reveal that constructing nanocrystal-loaded micelles may be a promising way to enhance the in vivo circulation and bioavailability of rapidly metabolized drugs such as docetaxel.
Collapse
Affiliation(s)
- Meng Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Qiaoming Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tiantian Gan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Pengfei Yue
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| |
Collapse
|
9
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
10
|
Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res 2021; 11:471-497. [PMID: 33528830 PMCID: PMC7852471 DOI: 10.1007/s13346-021-00908-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Lipid-based nanocarriers have gained much interest as carriers of drugs with poor oral bioavailability because of their remarkable advantages like low toxicity, affordable scale-up manufacture, strong biocompatibility or high drug loading efficiency. The potential of these nanocarriers lies in their ability to improve the gastrointestinal stability, solubility and permeability of their cargo drugs. However, achieving efficient oral drug delivery through lipid-based nanocarriers is a challenging task, since they encounter multiple physicochemical barriers along the gastrointestinal tract, e.g. the gastric acidic content, the intestinal mucus layer or the enzymatic degradation, that they must surmount to reach their target. These limitations may be turned into opportunities through a rational design of lipid-based nanocarriers. For that purpose, this review focuses on the main challenges of the oral route indicating the strategies undertaken for lipid-based nanocarriers in order to overcome them. Understanding their shortcomings and identifying their strengths will determine the future clinical success of lipid-based nanocarriers.
Collapse
Affiliation(s)
- María Plaza-Oliver
- Faculty of Pharmacy, Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, 02008, Albacete, Spain
- Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 02008, Albacete, Spain
| | - Manuel Jesús Santander-Ortega
- Faculty of Pharmacy, Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, 02008, Albacete, Spain
- Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 02008, Albacete, Spain
| | - María Victoria Lozano
- Faculty of Pharmacy, Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, 02008, Albacete, Spain.
- Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 02008, Albacete, Spain.
| |
Collapse
|
11
|
Optimized semisolid self-nanoemulsifying system based on glyceryl behenate: A potential nanoplatform for enhancing antitumor activity of raloxifene hydrochloride in MCF-7 human breast cancer cells. Int J Pharm 2021; 600:120493. [PMID: 33744452 DOI: 10.1016/j.ijpharm.2021.120493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Raloxifene hydrochloride (RLX) is a selective estrogen receptor modulator used for treatment and protection against postmenopausal osteoporosis. The drug has been used for protection against breast cancer and more recently, for management of the disease by virtue of its estrogen antagonist action. However, the drug has reduced bioavailability related to low water solubility and first pass metabolism. To surmount these pitfalls, this study aimed at developing and optimizing RLX-loaded semisolid self-nanoemulsifying system (SSNES) with minimized globule size to improve the drug solubility, tumor penetration, and consequently antitumor activity. A simplex lattice mixture design was employed for the formulation and optimization of SSNESs. The mixture components, namely, Compritol® 888 ATO, Tween 20, and polyethylene glycol 200 exhibited significant effect on globule size at P < 0.05. The optimized formulation with globule size of 109.19 ± 2.11 nm showed acceptable thermodynamic stability under stress conditions. Anti-cancer efficacy of the obtained formulation was evaluated in MCF-7 breast cancer cell line. MTT viability assay revealed that RLX-loaded SSNES notably inhibited MCF-7 cell proliferation. Flow cytometry and dual staining with annexin V-FITC/PI were used to assay this anti-proliferative effect and induction of apoptosis, respectively. Cells treated with RLX-loaded SSNES showed significant arrest at G2/M phase associated with significant increase in early/late-stages of apoptotic and necrotic cells. The results exhibited that RLX-loaded SSNES induces apoptosis via the activation of caspase-3 and loss of mitochondrial membrane potential. Accordingly, the proposed SSNES could be regarded as a promising platform for enhancing RLX antitumor activity against breast cancer.
Collapse
|
12
|
Verma R, Kaushik D. Role of Biorelevant Media in the Estimation of In Vitro Lipolysis and Food Impact on Self-emulsifying Drug Delivery Systems. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999200727121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Self-emulsifying drug delivery systems (SEDDS) include self-microemulsifying drug
delivery system (SMEDDS) and self-nanoemulsifying drug delivery system (SNEDDS) whose
major benefits are reduction of inter/intrasubject variability and food effect that results in a better
pharmacological response of the drug. Oral intake of these formulations triggers the digestion process
because of pancreatic lipase which emulsifies/digests the lipidic ingredients of the formulation
leading to precipitation of the drug. As a tool to foresee in vivo medicament precipitation, in vitro
lipolysis models are established. Biorelevant media play an important role to study the effect of in
vitro lipolysis and food impact on the bioavailability of SEDDS formulations. It is vital to generate
the composition of fluids for both fed and fasting conditions of gastric, small intestine and colon to
investigate the impact of in vitro lipolysis and food on drug’s release behavior from the formulation.
Fed/Fasted state simulated gastric fluid (Fe/FaSSGF), and Fed/Fasted state simulated gastric
fluid (Fe/FaSSIF) (Phosphate buffers) are first-generation. While Fa/FeSSIF-V2 (maleate) are second-
generation biorelevant media utilized for these studies. FaSSIF-V3 belongs to the thirdgeneration
which differs from other generations in the composition and source of bile salts. With
updates in physiological data, it is vital to incorporate changes in dissolution media composition to
make it more biorelevant. This review paper mainly emphasized the compositions of biorelevant
media of gastric and small intestine for both fed and fasting conditions. Besides, applications of
biorelevant media to investigate the effect of in vitro lipolysis and food on SEDDS are discussed
with some recent research reports.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak,India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak,India
| |
Collapse
|
13
|
Groo AC, Hedir S, Since M, Brotin E, Weiswald LB, Paysant H, Nee G, Coolzaet M, Goux D, Delépée R, Freret T, Poulain L, Voisin-Chiret AS, Malzert-Fréon A. Pyridoclax-loaded nanoemulsion for enhanced anticancer effect on ovarian cancer. Int J Pharm 2020; 587:119655. [PMID: 32712252 DOI: 10.1016/j.ijpharm.2020.119655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Pyridoclax is an original lead, recently identified as very promising in treatment of chemoresistant ovarian cancers. To correct the unfavorable intrinsic physico-chemical properties of this BCS II drug, a formulation strategy was implied in the drug discovery step. Pyridoclax-loaded nanoemulsions (NEs) were developed to permit its preclinical evaluation. RESULTS The resulting nanoemulsions displayed a mean size of about 100 nm and a high encapsulation efficiency (>95%) at a drug loading of 2 wt%, enabling a 1,000-fold increase of the Pyridoclax apparent solubility. NEs have enabled a sustained release of the drug as assayed by a dialysis bag method. In addition, anti-tumor effects of the Pyridoclax-loaded nanoemulsions (PNEs) showed a 2.5-fold higher activity on chemoresistant ovarian cancer cells than free Pyridoclax. This effect was confirmed by a drastic increase of caspase 3/7 activation from 10 µM PNEs, as newly objectified by real time apoptose imaging. The Pyridoclax bioavailability was kept unchanged after encapsulation in nanoemulsions as determined in a mice model after oral administration. CONCLUSION Thus, NEs should permit valuable Pyridoclax oral administration, and valorization of this promising anticancer drug by maintaining its original anticancer activity, and by reducing the Pyridoclax therapeutic concentration.
Collapse
Affiliation(s)
- A C Groo
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France.
| | - S Hedir
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - M Since
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France
| | - E Brotin
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France; Normandie Univ, UNICAEN, SF4206 Icore, ImpedanCELL Platform, 14000 Caen, France
| | - L-B Weiswald
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - H Paysant
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - G Nee
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - M Coolzaet
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - D Goux
- Normandie Univ, UNICAEN, CMAbio(3), SF4206 Icore, 14000 Caen, France
| | - R Delépée
- Normandie Univ, UNICAEN, PRISMM Platform, SF4206 ICORE, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - T Freret
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - L Poulain
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | | | | |
Collapse
|
14
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|