1
|
Korzun T, Moses AS, Diba P, Sattler AL, Olson B, Taratula OR, Pejovic T, Marks DL, Taratula O. Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301776. [PMID: 37518857 PMCID: PMC10827528 DOI: 10.1002/smll.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Gynecological malignancies are a significant cause of morbidity and mortality across the globe. Due to delayed presentation, gynecological cancer patients are often referred late in the disease's course, resulting in poor outcomes. A considerable number of patients ultimately succumb to chemotherapy-resistant disease, which reoccurs at advanced stages despite treatment interventions. Although efforts have been devoted to developing therapies that demonstrate reduced resistance to chemotherapy and enhanced toxicity profiles, current clinical outcomes remain unsatisfactory due to treatment resistance and unfavorable off-target effects. Consequently, innovative biological and nanotherapeutic approaches are imperative to strengthen and optimize the therapeutic arsenal for gynecological cancers. Advancements in nanotechnology-based therapies for gynecological malignancies offer significant advantages, including reduced toxicity, expanded drug circulation, and optimized therapeutic dosing, ultimately leading to enhanced treatment effectiveness. Recent advances in nucleic acid therapeutics using microRNA, small interfering RNA, and messenger RNA provide novel approaches for cancer therapeutics. Effective single-agent and combinatorial nucleic acid therapeutics for gynecological malignancies have the potential to transform cancer treatment by giving safer, more tailored approaches than conventional therapies. This review highlights current preclinical studies that effectively exploit these approaches for the treatment of gynecological malignant tumors and malignant ascites.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Brennan Olson
- Mayo Clinic Department of Otolaryngology-Head and Neck Surgery, 200 First St. SW, Rochester, MN, 55905, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tanja Pejovic
- Departments of Obstetrics and Gynecology and Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Hunek G, Zembala J, Januszewski J, Bełżek A, Syty K, Jabiry-Zieniewicz Z, Ludwin A, Flieger J, Baj J. Micro- and Macronutrients in Endometrial Cancer-From Metallomic Analysis to Improvements in Treatment Strategies. Int J Mol Sci 2024; 25:9918. [PMID: 39337406 PMCID: PMC11432114 DOI: 10.3390/ijms25189918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer is reported to be one of the most prevalent cancers of the female reproductive organs worldwide, with increasing incidence and mortality rates over the past decade. Early diagnosis is critical for effective treatment. Recently, there has been a growing focus on the role of nutrition and micronutrient and macronutrient status in patients with gynecologic cancers, including endometrial cancer. In the following paper, we have conducted an in-depth narrative literature review with the aim of evaluating the results of metallomic studies specifically concerning the micro- and macronutrient status of patients with endometrial cancer. The main objective of the paper was to analyze the results regarding the nutritional status of endometrial cancer patients and describe the role of chosen elements in the onset and progression of endometrial carcinogenesis. Further, we have focused on the evaluation of the usage of the described elements in the potential treatment of the abovementioned cancer, as well as the possible prevention of cancer considering proper supplementation of chosen elements in healthy individuals. Calcium supplementation has been proposed to reduce the risk of endometrial cancer, although some studies offer conflicting evidence. Deficiencies in phosphorus, selenium, and zinc have been inversely associated with endometrial cancer risk, suggesting they may play a protective role, whereas excessive levels of iron, copper, and cadmium have been positively correlated with increased risk. However, the molecular mechanisms by which these elements affect endometrial carcinogenesis are not fully understood, and current findings are often contradictory. Further research is needed to clarify these relationships and to evaluate the potential of nutritional interventions for the prevention and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Julita Zembala
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Aleksandra Bełżek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland
| | - Zoulikha Jabiry-Zieniewicz
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Artur Ludwin
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| |
Collapse
|
3
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
4
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
5
|
Huang H, Chen H, Shou D, Quan Y, Cheng J, Chen H, Ning G, Li Y, Xia Y, Zhou Y. Engineering siRNA-loaded and RGDfC-targeted selenium nanoparticles for highly efficient silencing of DCBLD2 gene for colorectal cancer treatment. DISCOVER NANO 2023; 18:94. [PMID: 37477789 PMCID: PMC10361954 DOI: 10.1186/s11671-023-03870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Effective and safe delivery of small interfering RNA (siRNA) by nanomaterials to cancer cells is one of the main challenges in cancer treatment. In this study, we constructed the selenium nanoparticles conjugated with RGDfC (one tumor-targeted polypeptide) to prepare a biocompatible gene vector (RGDfC-SeNPs) and then loaded with siDCBLD2 to synthesize the RGDfC-Se@siDCBLD2 for colorectal cancer (CRC) therapy. As expected, RGDfC-SeNPs could enhance the cellular uptake of siDCBLD2 in human HCT-116 colon cancer cells by targeting polypeptide RGDfC on the surface of colon cancer cells. RGDfC-Se@siDCBLD2 could be effectively internalized by HCT-116 cells mainly through a clathrin-related endocytosis pathway. In addition, RGDfC-Se@siDCBLD2 exhibited high siRNA release efficiency in an acidic tumor environment. Moreover, RGDfC-Se@siDCBLD2 could inhibit the proliferation and induce apoptosis in HCT-116 cells by special silencing gene DCBLD2 expression. RGDfC-Se@siDCBLD2 could be specifically accumulated to the tumor sites and exhibited significantly anti-CRC efficacy on HCT-116 tumor-bearing mice without obvious side effects. Taken together, these results suggest that selenium nanoparticles can be used as an effective gene vector with good biocompatibility, and RGDfC-Se@siDCBLD2 provides a promising strategy for combining tumor-target and siRNA delivery in treating CRC.
Collapse
Affiliation(s)
- Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Hanqing Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Ying Quan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Jiemin Cheng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Gang Ning
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yu Xia
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| |
Collapse
|
6
|
Golara A, Kozłowski M, Guzik P, Kwiatkowski S, Cymbaluk-Płoska A. The Role of Selenium and Manganese in the Formation, Diagnosis and Treatment of Cervical, Endometrial and Ovarian Cancer. Int J Mol Sci 2023; 24:10887. [PMID: 37446063 DOI: 10.3390/ijms241310887] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Selenium (Se) and manganese (Mn) are essential micronutrients that are important elements of cell metabolism. They are involved in the composition of enzyme systems and regulate enzyme activity. Disturbances in the homeostasis of these micronutrients affect the development of many diseases and carcinogenesis, which can be linked to increased levels of oxidative stress and impaired antioxidant properties of many enzymes. Selenium has a very important function in maintaining immune-endocrine, metabolic and cellular homeostasis. Manganese, on the other hand, is important in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activity. We review the role of selenium and manganese and their effects on tumor growth, metastasis potential and remodeling of the microenvironment. We also describe their role as potential biomarkers in the diagnosis and the potential for the use of Se- and Mn-containing compounds in composition for the treatment of cancer of the reproductive organs.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paweł Guzik
- Clinical Department of Gynecology and Obstetrics, City Hospital, 35-241 Rzeszów, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Yuan Q, Xiao R, Afolabi M, Bomma M, Xiao Z. Evaluation of Antibacterial Activity of Selenium Nanoparticles against Food-Borne Pathogens. Microorganisms 2023; 11:1519. [PMID: 37375021 DOI: 10.3390/microorganisms11061519] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. Selenium nanoparticles (SeNPs) have been shown to demonstrate antioxidant and antimicrobial activity. The objective of this study was to explore whether SeNPs have the potential to be used as food preservatives with which to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite (Na2SeO3) in the presence of bovine serum albumin (BSA) as a capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation with an average diameter of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antibacterial activity of these SeNPs against ten common food-borne bacteria. A colony-forming unit assay showed that SeNPs exhibited inhibition on the growth of Listeria Monocytogens (ATCC15313) and Staphylococcus epidermidis (ATCC 700583) starting at 0.5 µg/mL, but higher concentrations were required to slow down the growth of Staphylococcus aureus (ATCC12600), Vibrio alginolyticus (ATCC 33787), and Salmonella enterica (ATCC19585). No inhibition was observed on the growth of the other five test bacteria in our study. Our data suggested that the chemically synthesized SeNPs were able to inhibit the growth of some food-borne bacteria. The size and shape of SeNPs, method of synthesis, and combination of SeNPs with other food preservatives should be considered when SeNPs are to be used for the prevention of bacteria-mediated food spoilage.
Collapse
Affiliation(s)
- Qunying Yuan
- Department of Biological and Environmental Science, Alabama A&M University, Huntsville, AL 35762, USA
| | - Rong Xiao
- Department of Biological and Environmental Science, Alabama A&M University, Huntsville, AL 35762, USA
| | - Mojetoluwa Afolabi
- Department of Biological and Environmental Science, Alabama A&M University, Huntsville, AL 35762, USA
| | - Manjula Bomma
- Department of Biological and Environmental Science, Alabama A&M University, Huntsville, AL 35762, USA
| | - Zhigang Xiao
- Department of Electrical Engineering and Computer Science, Alabama A&M University, Huntsville, AL 35762, USA
| |
Collapse
|
8
|
Peng T, Liu Q, Song H, Zhang C, Wang X, Ru P, Xu T, Liu X. Biodegradable hollowed mesoporous SeO2 nanoplatform loaded with indocyanine green for simultaneous NIR II fluorescence imaging and synergistic breast carcinoma therapy. Front Bioeng Biotechnol 2023; 11:1151148. [PMID: 37008031 PMCID: PMC10060888 DOI: 10.3389/fbioe.2023.1151148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Contrast agents in the second window of the near-infrared region (NIR II, 1000–1700 nm) have several advantages and indocyanine green (ICG), which emits NIR II fluorescence, is clinically approved and its use has been widely investigated for in vivo imaging, specifically for delineating tumor outlines; however, insufficient tumor targeting and rapid physiological metabolism of free ICG has substantially impeded its further clinical application. Here, we constructed novel hollowed mesoporous selenium oxide nanocarriers for precise ICG delivery. After surface modification with the active tumor targeting amino acid motif, RGD (hmSeO2@ICG-RGD), the nanocarriers were preferentially targeted toward tumor cells and subsequently degraded for ICG and Se-based nanogranule release under tumor tissue extracellular pH conditions (pH 6.5). The released ICG acted as an NIR II contrast agent, highlighting tumor tissue, after intravenous administration of hmSeO2@ICG-RGD into mammary tumor-bearing mice. Importantly, the photothermal effect of ICG improved reactive oxygen species production from SeO2 nanogranules, inducing oxidative therapy. The synergistic therapeutic effects of hyperthermia and increased oxidative stress on 808 nm laser exposure induced significant tumor cell killing. Thus, our nanoplatform can generate a high-performance diagnostic and therapeutic nanoagent that facilitates in vivo tumor outline discrimination and tumor ablation.
Collapse
Affiliation(s)
- Tingwei Peng
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Qing Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hui Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Conghui Zhang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Xue Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Ping Ru
- Department of Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xinghui Liu, ; Tianzhao Xu, ; Ping Ru,
| | - Tianzhao Xu
- Hospital Department, Shanghai University of Medicine and Health Sciences Affiliated to Zhoupu Hospital, Shanghai, China
- *Correspondence: Xinghui Liu, ; Tianzhao Xu, ; Ping Ru,
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
- *Correspondence: Xinghui Liu, ; Tianzhao Xu, ; Ping Ru,
| |
Collapse
|
9
|
Mosley RJ, Rucci B, Byrne ME. Recent advancements in design of nucleic acid nanocarriers for controlled drug delivery. J Mater Chem B 2023; 11:2078-2094. [PMID: 36806872 DOI: 10.1039/d2tb02325c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Research of nanoscale nucleic acid carriers has garnered attention in recent years due to their distinctive and controllable properties. However, current knowledge is limited in how we can efficiently utilize these systems for clinical applications. Several researchers have pioneered new and innovative nanocarrier drug delivery systems, but understanding physiochemical properties and behavior in vivo is vital to implementing them as clinical drug delivery platforms. In this review, we outline the most significant innovations in the synthesis, physical properties, and utilization of nucleic acid nanocarriers in the past 5 years, addressing the crucial properties which improve nanocarrier characteristics, delivery, and drug release. The challenges of controlling the transport of nucleic acid nanocarriers and therapeutic release for biological applications are outlined. Barriers which inhibit effective transport into tissue are discussed with emphasis on the modifications needed to overcome such obstacles. The novel strategies discussed in this work summarize the pivotal features of modern nucleic nanocarriers and postulate where future developments could revolutionize the translation of these tools into a clinical setting.
Collapse
Affiliation(s)
- Robert J Mosley
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA.
| | - Brendan Rucci
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA.
| | - Mark E Byrne
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA. .,Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
10
|
Hegde YM, Theivendren P, Srinivas G, Palanivel M, Shanmugam N, Kunjiappan S, Vellaichamy S, Gopal M, Dharmalingam SR. A Recent Advancement in Nanotechnology Approaches for the Treatment of Cervical Cancer. Anticancer Agents Med Chem 2023; 23:37-59. [PMID: 35570521 DOI: 10.2174/1871520622666220513160706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cervical cancer is one of the leading causes of female death, with a mortality rate of over 200,000 per year in developing countries. Despite a decrease in cervical cancer occurrences in developed countries over the last decade, the frequency of the disease in developing nations continues to rise at an alarming rate, particularly when it is linked to the human papillomavirus (HPV). With just a few highly invasive conventional therapies available, there is a clear need for novel treatment options such as nanotechnology-based chemotherapeutic drug delivery. METHODS Traditional anticancer therapy is limited by poor drug potency, non-specificity, unwanted side effects, and the development of multiple drug resistance (MDR), leading to a decrease in long-term anticancer therapeutic efficacy. An ideal cancer therapy requires a personalized and specialized medication delivery method capable of eradicating even the last cancer cell responsible for disease recurrence. RESULTS Nanotechnology provides effective drug delivery mechanisms, allowing it to serve both therapeutic and diagnostic purposes. Nanotechnology-based formulations are widely used to accurately target the target organ, maintain drug load bioactivity, preferentially accumulate the drug at the target location, and reduce cytotoxicity. CONCLUSION The key benefits of this drug delivery are that it improves pharmacological activity, solubility, and bioavailability and reduces toxicity in the target tissue by targeting ligands, allowing for new innovative treatment methods in an area that is desperately required. The goal of this review is to highlight possible research on nanotechnologybased delivery systems for cancer detection and treatment.
Collapse
Affiliation(s)
- Yashoda Mariappa Hegde
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Geetha Srinivas
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Monashilpa Palanivel
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Nivetha Shanmugam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil-626126, India
| | - Murugananthan Gopal
- Department of Pharmacognosy, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Senthil Rajan Dharmalingam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| |
Collapse
|
11
|
Egorova EA, Nikitin MP. Delivery of Theranostic Nanoparticles to Various Cancers by Means of Integrin-Binding Peptides. Int J Mol Sci 2022; 23:ijms232213735. [PMID: 36430214 PMCID: PMC9696485 DOI: 10.3390/ijms232213735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Active targeting of tumors is believed to be the key to efficient cancer therapy and accurate, early-stage diagnostics. Active targeting implies minimized off-targeting and associated cytotoxicity towards healthy tissue. One way to acquire active targeting is to employ conjugates of therapeutic agents with ligands known to bind receptors overexpressed onto cancer cells. The integrin receptor family has been studied as a target for cancer treatment for almost fifty years. However, systematic knowledge on their effects on cancer cells, is yet lacking, especially when utilized as an active targeting ligand for particulate formulations. Decoration with various integrin-targeting peptides has been reported to increase nanoparticle accumulation in tumors ≥ 3-fold when compared to passively targeted delivery. In recent years, many newly discovered or rationally designed integrin-binding peptides with excellent specificity towards a single integrin receptor have emerged. Here, we show a comprehensive analysis of previously unreviewed integrin-binding peptides, provide diverse modification routes for nanoparticle conjugation, and showcase the most notable examples of their use for tumor and metastases visualization and eradication to date, as well as possibilities for combined cancer therapies for a synergetic effect. This review aims to highlight the latest advancements in integrin-binding peptide development and is directed to aid transition to the development of novel nanoparticle-based theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Elena A. Egorova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 1 Meditsinskaya Str., 603081 Nizhny Novgorod, Russia
| | - Maxim P. Nikitin
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
- Correspondence:
| |
Collapse
|
12
|
Zhou R, Zhao D, Beeraka NM, Wang X, Lu P, Song R, Chen K, Liu J. Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Metabolites 2022; 12:943. [PMID: 36295845 PMCID: PMC9612299 DOI: 10.3390/metabo12100943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and internal radioisotope therapy (brachytherapy) induce tumor cell death through different molecular signaling pathways. However, these therapies in cancer patients are constrained by dose-related adverse effects and local discomfort due to the prolonged exposure to the surrounding tissues. Technological advancements in nanotechnology have resulted in synthesis of high atomic elements such as nanomaterials, which can be used as radiosensitizers due to their photoelectric characteristics. The aim of this review is to elucidate the effects of novel nanomaterials in the field of radiation oncology to ameliorate dose-related toxicity through the application of ideal nanoparticle-based radiosensitizers such as Au (gold), Bi (bismuth), and Lu (Lutetium-177) for enhancing cytotoxic effects of radiotherapy via the high-Z effect. In addition, we discuss the role of nanoparticle-enhanced radiotherapy in alleviating tumor hypoxia through the nanodelivery of genes/drugs and other functional anticancer molecules. The implications of engineered nanoparticles in preclinical and clinical studies still need to be studied in order to explore potential mechanisms for radiosensitization by minimizing tumor hypoxia, operational/logistic complications and by overcoming tumor heterogeneity in radiotherapy/brachytherapy.
Collapse
Affiliation(s)
- Runze Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Di Zhao
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Pharmaceutical Chemistry, Jagadguru Sri Shivarathreeswara Academy of Higher Education and Research (JSS AHER), Jagadguru Sri Shivarathreeswara College of Pharmacy, Mysuru 570015, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruixia Song
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
13
|
Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants (Basel) 2022; 11:antiox11101965. [PMID: 36290687 PMCID: PMC9598587 DOI: 10.3390/antiox11101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
As an essential micronutrient, selenium participates in numerous life processes and plays a key role in human health. In the past decade, selenium nanoparticles (SeNPs) have attracted great attention due to their excellent functionality for potential applications in pharmaceuticals. However, the utilization of SeNPs has been restricted by their instability and low targeting ability. Since the existing reviews mainly focused on the applications of SeNPs, this review highlights the synthesis of SeNPs and the strategies to improve their stability and targeting ability through surface functionalization. In addition, the utilization of functionalized SeNPs for the single and co-delivery of drugs or genes to achieve the combination of therapy are also presented, with the emphasis on the potential mechanism. The current challenges and prospects of functionalized SeNPs are also summarized. This review may provide valuable information for the design of novel functionalized SeNPs and promote their future application in cancer therapy.
Collapse
|
14
|
Antony D, Balasubramanian K, Yadav R. Experimental and computational studies of phytomediated selenium-CuO and ZnO nanoparticles-potential drugs for breast cancer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Pan Y, Wei M, Gong T. Ultrasound microbubble-mediated delivery of ANLN silencing-repressed EZH2 expression alleviates cervical cancer progression. Tissue Cell 2022; 77:101843. [PMID: 35679682 DOI: 10.1016/j.tice.2022.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) is a new gene therapy method that uses ultrasound and microbubbles carrying target genes to achieve gene transfection. However, whether UTMD-mediated ANLN silencing transfection helps to restrain the growth of cervical cancer (CC) is obscure. ANLN level in tumor tissues, adjacent tissues, and cells was tested using the database, qRT-PCR, and western blot. The optimal concentration of SF6 was determined by MTT assay. Mechanical index (MI) was selected by flow cytometry. After transfection with liposome or UTMD-mediated liposome, cell function experiments, qRT-PCR, and western blot were employed to assess CC cell biological behaviors and EZH2 level. Epithelial-mesenchymal transition (EMT)-related marker and apoptosis-related marker expressions were examined utilizing qRT-PCR and western blot. 10% SF6 and MI of 0.28 were selected for subsequent tests. ANLN was highly expressed in CC and cells. The transfection efficiency of the UTMD-siANLN group was higher than that of the L-siANLN group. Moreover, the repression of UTMD-siANLN on CC cell malignant phenotypes was stronger than L-siANLN. UTMD-siANLN attenuated EZH2 expression in CC cells. The modulatory role of UTMD-siANLN on EMT- and apoptosis-related markers was reversed by EZH2 overexpression. UTMD can improve the efficiency of siANLN transfection into CC cells to induce suppression of CC cell malignant phenotypes, which may become a new target of gene therapy for CC.
Collapse
Affiliation(s)
- Yanyan Pan
- Ultrasonic Diagnosis Center, Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Min Wei
- Department of Ultrasonic, Shanghai Rici Women's and Children's Hospital, Shanghai 200040, China
| | - Ting Gong
- Ultrasonic Diagnosis Center, Northwest Women's and Children's Hospital, Xi'an 710061, China.
| |
Collapse
|
16
|
Poniewierza P, Panek G. Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives. Healthcare (Basel) 2022; 10:healthcare10071325. [PMID: 35885852 PMCID: PMC9319342 DOI: 10.3390/healthcare10071325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Each year 604,127 new cases of cervical cancer (CC) are diagnosed, and 341,831 individuals die from the disease. It is the fourth most common cancer among women and the fourth most common cause of death from female cancers worldwide. The pathogenesis of CC is associated with human papillomavirus (HPV) infections and consists of several steps involving cell proliferation outside the human body’s control mechanisms. Strategies to prevent CC are based on screening and vaccination. Scope of the Review: The aim of this paper was to collect and analyze the available literature on the issue of CC prevention and the impact of the COVID-19 pandemic on its implementation. For this purpose, PubMed and Google Scholar databases were searched using keywords, such as “cervical cancer”; “HPV”; “prevention”; “prophylaxis”; “vaccination”; “screening” and “COVID-19” in different variations. Only articles published since 2018 were included in the study. Conclusions: Selected European countries have different CC prevention programs funded by national budgets. This translates into observed differences in the risk of death from CC (age-standardized rate Malta = 1.1, Poland = 5.9). COVID-19 pandemic due to disruption of CC screening may exacerbate these differences in the future. To improve the situation, new screening methods, such as p16/Ki67, HPV self-testing, and the use of artificial intelligence in colposcopic assessment, should be disseminated, as well as free HPV vaccination programs implemented in all countries. The search for new solutions is not without significance and entails ultra-sensitive screening tests for risk groups (mRNA E6/E7, SOX1/SOX14), HPV vaccines with shorter dosing schedules, and new therapeutic pathways using nanotheranostics.
Collapse
Affiliation(s)
- Patryk Poniewierza
- Medicover SP ZOO Company, Aleje Jerozolimskie 96, 00-807 Warsaw, Poland
- Correspondence:
| | - Grzegorz Panek
- Department of Oncologic Gynecology and Obstetrics, The Center of Postgraduate Medical Education, 00-416 Warsaw, Poland;
| |
Collapse
|
17
|
L-Selenocysteine induced HepG-2 cells apoptosis through reactive oxygen species-mediated signaling pathway. Mol Biol Rep 2022; 49:8381-8390. [PMID: 35716289 DOI: 10.1007/s11033-022-07655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Currently, Liver cancer is the fifth most common tumor and the second most important reason for cancer-related death in the world. However, there are still many limitations of the clinical treatment of liver cancer, and new treatment options are clearly needed. Fortunately, studies have shown that L-Selenocysteine has a certain effect on cancer. This study was to investigate the effects of L-Selenocysteine on the inhibition of cell proliferation and the promotion of apoptosis of HepG-2 cells through ROS mediated fine signaling pathway. MATERIALS AND METHODS CCK-8 assay was applied to evaluating the cytotoxic effect of L-Selenocysteine on HepG-2 cells. Electron microscopy, flow cytometry and Western Blot was utilization in further researching cells signaling pathways. RESULTS The growth of HepG-2 cells was inhibited by L-selenocysteine treatment in a dose-dependent manner. The cell viability decreased to 52.20%, 43.20% and 30.83% under the treatment of 4, 8, 16 µM L-selenocysteine, respectively. L-Selenocysteine had higher cytotoxicity towards HepG-2 cells than normal cells. L-Selenocysteine can induce the apoptosis of HepG-2 cells by increasing the DNA fragmentation, and activating the Caspase-3. In addition, it was found that the mechanism of the induction to HepG-2 cell apoptosis by L-Selenocysteine was closely related to the overproduction of ROS and promoted apoptosis through the Bcl-2 signaling pathway. CONCLUSIONS Our data suggest that L-selenocysteine may cause mitochondrial damage and subsequently stimulate ROS production. ROS can damage cellular DNA and mediate the production of Casapase-8, Bid, Bcl-2 and other proteins, affecting downstream signaling pathways, and ultimately induced apoptosis.
Collapse
|
18
|
Himiniuc LM, Toma BF, Popovici R, Grigore AM, Hamod A, Volovat C, Volovat S, Nica I, Vasincu D, Agop M, Tirnovanu M, Ochiuz L, Negura A, Grigore M. Update on the Use of Nanocarriers and Drug Delivery Systems and Future Directions in Cervical Cancer. J Immunol Res 2022; 2022:1636908. [PMID: 35571568 PMCID: PMC9095399 DOI: 10.1155/2022/1636908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer represents a major health problem among females due to its increased mortality rate. The conventional therapies are very aggressive and unsatisfactory when it comes to survival rate, especially in terminal stages, which requires the development of new treatment alternatives. With the use of nanotechnology, various chemotherapeutic drugs can be transported via nanocarriers directly to cervical cancerous cells, thus skipping the hepatic first-pass effect and decreasing the rate of chemotherapy side effects. This review comprises various drug delivery systems that were applied in cervical cancer, such as lipid-based nanocarriers, polymeric and dendrimeric nanoparticles, carbon-based nanoparticles, metallic nanoparticles, inorganic nanoparticles, micellar nanocarriers, and protein and polysaccharide nanoparticles. Nanoparticles have a great therapeutic potential by increasing the pharmacological activity, drug solubility, and bioavailability. Through their mechanisms, they highly increase the toxicity in the targeted cervical tumor cells or tissues by linking to specific ligands. In addition, a nondifferentiable model is proposed through holographic implementation in the dynamics of drug delivery dynamics. As any hologram functions as a deep learning process, the artificial intelligence can be proposed as a new analyzing method in cervical cancer.
Collapse
Affiliation(s)
| | - Bogdan Florin Toma
- ”Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Razvan Popovici
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ana Maria Grigore
- ”Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Constantin Volovat
- Center of Oncology Euroclinic, 700110 Iasi, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Department of Medical Oncology Radiotherapy, 700115 Iași, Romania
| | - Simona Volovat
- Center of Oncology Euroclinic, 700110 Iasi, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Department of Medical Oncology Radiotherapy, 700115 Iași, Romania
| | - Irina Nica
- Department of Odontology, Periodontics and Fixed Restoration, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Decebal Vasincu
- Department of Dental and Oro-Maxillo-Facial Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, Iasi 700050, Romania
- Romanian Scientists Academy, Bucharest 050094, Romania
| | - Mihaela Tirnovanu
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Anca Negura
- Oncogenetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Biology Department, “Alexandru Ioan Cuza” University, 700506 Iaşi, Romania
| | - Mihaela Grigore
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
19
|
Liu CH, Shih PY, Lin CH, Chen YJ, Wu WC, Wang CC. Tetraethylenepentamine-Coated β Cyclodextrin Nanoparticles for Dual DNA and siRNA Delivery. Pharmaceutics 2022; 14:pharmaceutics14050921. [PMID: 35631507 PMCID: PMC9145619 DOI: 10.3390/pharmaceutics14050921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Nucleic acid reagents, including plasmid-encoded genes and small interfering RNA (siRNA), are promising tools for validating gene function and for the development of therapeutic agents. Native β-cyclodextrins (BCDs) have limited efficiency in gene delivery due to their instable complexes with nucleic acid. We hypothesized that cationic BCD nanoparticles could be an efficient carrier for both DNA and siRNA. Tetraethylenepentamine-coated β-cyclodextrin (TEPA-BCD) nanoparticles were synthesized, characterized, and evaluated for targeted cell delivery of plasmid DNA and siRNA. The cationic TEPA coating provided ideal zeta potential and effective nucleic acid binding ability. When transfecting plasmid encoding green fluorescent protein (GFP) by TEPA-BCD, excellent GFP expression could be achieved in multiple cell lines. In addition, siRNA transfected by TEPA-BCD suppressed target GFP gene expression. We showed that TEPA-BCD internalization was mediated by energy-dependent endocytosis via both clathrin-dependent and caveolin-dependent endocytic pathways. TEPA-BCD nanoparticles provide an effective means of nucleic acid delivery and can act as potential carriers in future pharmaceutical application.
Collapse
Affiliation(s)
- Chi-Hsien Liu
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-H.L.); (Y.-J.C.)
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan 33302, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City 24301, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan 33305, Taiwan;
- Correspondence: (C.-H.L.); (C.-C.W.)
| | - Pei-Yin Shih
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Cheng-Han Lin
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-H.L.); (Y.-J.C.)
| | - Yi-Jun Chen
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-H.L.); (Y.-J.C.)
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Chao Wang
- Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, 101, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Correspondence: (C.-H.L.); (C.-C.W.)
| |
Collapse
|
20
|
Aboud HM, Hussein AK, Zayan AZ, Makram TS, Sarhan MO, El-Sharawy DM. Tailoring of Selenium-Plated Novasomes for Fine-Tuning Pharmacokinetic and Tumor Uptake of Quercetin: In Vitro Optimization and In Vivo Radiobiodistribution Assessment in Ehrlich Tumor-Bearing Mice. Pharmaceutics 2022; 14:pharmaceutics14040875. [PMID: 35456709 PMCID: PMC9032182 DOI: 10.3390/pharmaceutics14040875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin (QRC) is a bioflavonoid with anti-inflammatory, antioxidant, and anticancer activities, yet QRC poor bioavailability has hampered its clinical implementation. The aim of the current work was to harness novasomes (NOVs), free fatty acid enriched vesicles, as a novel nano-cargo for felicitous QRC delivery with subsequent functionalization with selenium (SeNOVs), to extend the systemic bio-fate of NOVs and potentiate QRC anticancer efficacy through the synergy with selenium. QRC-NOVs were primed embedding oleic acid, Brij 35, and cholesterol adopting thin-film hydration technique according to Box–Behnken design. Employing Design-Expert® software, the impact of formulation variables on NOVs physicochemical characteristics besides the optimum formulation election were explored. Based on the optimal NOVs formulation, QRC-SeNOVs were assembled via electrostatic complexation/in situ reduction method. The MTT cytotoxicity assay of the uncoated, and coated nanovectors versus crude QRC was investigated in human rhabdomyosarcoma (RD) cells. The in vivo pharmacokinetic and biodistribution studies after intravenous administrations of technetium-99m (99mTc)-labeled QRC-NOVs, QRC-SeNOVs, and QRC-solution were scrutinized in Ehrlich tumor-bearing mice. QRC-NOVs and QRC-SeNOVs disclosed entrapment efficiency of 67.21 and 70.85%, vesicle size of 107.29 and 129.16 nm, ζ potential of −34.71 and −43.25 mV, and accumulatively released 43.26 and 31.30% QRC within 24 h, respectively. Additionally, QRC-SeNOVs manifested a far lower IC50 of 5.56 μg/mL on RD cells than that of QRC-NOVs (17.63 μg/mL) and crude QRC (38.71 μg/mL). Moreover, the biodistribution study elicited higher preferential uptake of 99mTc-QRC-SeNOVs within the tumorous tissues by 1.73- and 5.67-fold as compared to 99mTc-QRC-NOVs and 99mTc-QRC-solution, respectively. Furthermore, the relative uptake efficiency of 99mTc-QRC-SeNOVs was 5.78, the concentration efficiency was 4.74 and the drug-targeting efficiency was 3.21. Hence, the engineered QRC-SeNOVs could confer an auspicious hybrid nanoparadigm for QRC delivery with fine-tuned pharmacokinetics, and synergized antitumor traits.
Collapse
Affiliation(s)
- Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: ; Tel.: +20-822162135
| | - Amal K. Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Abdallah Z. Zayan
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Tarek Saad Makram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Mona O. Sarhan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt; (M.O.S.); (D.M.E.-S.)
| | - Dina M. El-Sharawy
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt; (M.O.S.); (D.M.E.-S.)
- Cyclotron Project, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt
| |
Collapse
|
21
|
Song X, Jiang Y, Zhang W, Elfawal G, Wang K, Jiang D, Hong H, Wu J, He C, Mo X, Wang H. Transcutaneous tumor vaccination combined with anti-programmed death-1 monoclonal antibody treatment produces a synergistic antitumor effect. Acta Biomater 2022; 140:247-260. [PMID: 34843953 DOI: 10.1016/j.actbio.2021.11.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Transcutaneous immunization (TCI) has the advantages of safety, high efficiency, non-invasiveness and convenient use. The key for a TCI system is transdermal targeted delivery of antigen to dendritic cells (DCs), the most powerful antigen presenting cells. DCs also play an important role in tumor immunotherapy, which provides a huge imagination for the application of TCI to tumor treatment. In this study, a transcutaneous tumor vaccine (TTV) delivery system was developed using the electrospun silk fibroin (SF) and polyvinyl alcohol (PVA) composite nanofibrous patch loaded with mannosylated polyethyleneimine (PEIman)-modified ethosome (Eth) (termed Eth-PEIman). Eth-PEIman showed a good performance in targeting DCs, and the carriers loaded with antigen (encapsulated in Eths) and adjuvant (absorbed in PEIman) were observed effectively induce DCs maturation in vitro. With the tyrosinase-related protein-2 (TRP2) peptide as antigen and oligodeoxynucleotides containing unmethylated CpG motifs as adjuvant, the TTV-loaded patches (TTVP) significantly inhibited the growth of melanoma in a syngeneic mouse model for melanoma by subcutaneous injection of B16F10 cell lines. Moreover, the combined application of the TTVP and anti-programmed death-1 monoclonal antibody (aPD-1) produced a synergistic antitumor effect, which could be related to the infiltration of more CD4+ and CD8+ T cells in the tumor tissues. The application of TTVP also increased the expression of IL-12, which may be part of the mechanism of synergistic antitumor effect between the TTVP and aPD-1. These results suggest that the combination of the TTVP and immune checkpoint blockers could be an effective strategy for tumor treatment. STATEMENT OF SIGNIFICANCE: Transcutaneous immunization has the advantages of safety, high efficiency, non-invasiveness and convenient use. In this study, a novel transcutaneous tumor vaccine patch (TTVP) was developed using tumor antigens-loaded ethosomes that can target dendritic cells percutaneously. Our data demonstrated that the TTVP can significantly inhibit tumor growth. Furthermore, the combination of TTVP and aPD-1 produced a synergistic anti-melanoma effect. Considering its convenience and non-invasiveness, this TTVP system could find good application prospects in immunotherapy. The combination of TTVP and aPD-1 could be a useful strategy for the prevention and treatment of tumors.
Collapse
|
22
|
Abstract
Finding out predisposition and makeup alterations in cancer cells has prompted the exploration of exogenous small interference RNA (siRNA) as a therapeutic agent to deal with cancer. siRNA is subjected to many limitations that hinders its cellular uptake. Various nanocarriers have been loaded with siRNA to improve their cellular transportation and have moved to clinical trials. However, many restrictions as low encapsulation efficiency, nanocarrier cytotoxicity and premature release of siRNA have impeded the single nanocarrier use. The realm of nanohybrid systems has emerged to overcome these limitations and to synergize the criteria of two or more nanocarriers. Different nanohybrid systems that were developed as cellular pathfinders for the exogenous siRNA to target cancer will be illustrated in this review.
Collapse
|
23
|
Arshad R, Fatima I, Sargazi S, Rahdar A, Karamzadeh-Jahromi M, Pandey S, Díez-Pascual AM, Bilal M. Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3330. [PMID: 34947679 PMCID: PMC8708502 DOI: 10.3390/nano11123330] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022]
Abstract
In the fight against cancer, early diagnosis is critical for effective treatment. Traditional cancer diagnostic technologies, on the other hand, have limitations that make early detection difficult. Therefore, multi-functionalized nanoparticles (NPs) and nano-biosensors have revolutionized the era of cancer diagnosis and treatment for targeted action via attaching specified and biocompatible ligands to target the tissues, which are highly over-expressed in certain types of cancers. Advancements in multi-functionalized NPs can be achieved via modifying molecular genetics to develop personalized and targeted treatments based on RNA interference. Modification in RNA therapies utilized small RNA subunits in the form of small interfering RNAs (siRNA) for overexpressing the specific genes of, most commonly, breast, colon, gastric, cervical, and hepatocellular cancer. RNA-conjugated nanomaterials appear to be the gold standard for preventing various malignant tumors through focused diagnosis and delivering to a specific tissue, resulting in cancer cells going into programmed death. The latest advances in RNA nanotechnology applications for cancer diagnosis and treatment are summarized in this review.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan;
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | | | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
| |
Collapse
|
24
|
Pairoj S, Damrongsak P, Damrongsak B, Jinawath N, Kaewkhaw R, Ruttanasirawit C, Leelawattananon T, Locharoenrat K. Antitumor activities of carboplatin-doxorubicin-ZnO complexes in different human cancer cell lines (breast, cervix uteri, colon, liver and oral) under UV exposition. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:120-135. [PMID: 33491496 DOI: 10.1080/21691401.2021.1876718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/10/2021] [Indexed: 01/01/2023]
Abstract
This study aimed to examine the pharmacological profiles of multiple chemo drug candidates in systematic circulation to enhance their specific interactions with five human cancer cell lines. ZnO nanoparticles were successfully bound with chemo drugs via physical adsorption. The drug loading capacity was confirmed by FTIR, whereas the loading efficiency was determined via UV-vis spectrometry. The mean hydrodynamic size increased to 69-82 nm after chemo-drug immobilization via non-covalent interaction with ZnO. Among the nine formulated chemo drugs, the carboplatin (CP)-doxorubicin (DOX)-ZnO complex under UV light irradiation exhibited high sensitivity towards human breast adenocarcinoma cells without affecting human keratinocyte immortal cells with an IC50 of 0.137 µg/mL, whereas the loading capacity and efficiency of CP-DOX-ZnO were 77.81% and 99.05%, respectively. Fluorescence images confirmed that CP-DOX-ZnO using DOX served as a fluorescence enhancer specifically bound onto the cell membranes, which became almost saturated after 24 h incubation. Carboplatin-DOX-ZnO was possibly endocytosed by cancer cells and was selectively internalized into the target cells; thus, free chemo drug was released in the cytoplasm, which induced acute apoptosis. This resulted in complete inhabitation of growth signal of target cancer cells.
Collapse
Affiliation(s)
- Suttirak Pairoj
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pattareeya Damrongsak
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Badin Damrongsak
- Department of Physics, Faculty of Science, Silpakorn University, Nakornpathom, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Rossukon Kaewkhaw
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Chinnapat Ruttanasirawit
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Tanaporn Leelawattananon
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Kitsakorn Locharoenrat
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
25
|
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021; 10:cells10123348. [PMID: 34943856 PMCID: PMC8699513 DOI: 10.3390/cells10123348] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.
Collapse
|
26
|
Varlamova EG, Turovsky EA, Blinova EV. Therapeutic Potential and Main Methods of Obtaining Selenium Nanoparticles. Int J Mol Sci 2021; 22:ijms221910808. [PMID: 34639150 PMCID: PMC8509153 DOI: 10.3390/ijms221910808] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
This review presents the latest data on the importance of selenium nanoparticles in human health, their use in medicine, and the main known methods of their production by various methods. In recent years, a multifaceted study of nanoscale complexes in medicine, including selenium nanoparticles, has become very important in view of a number of positive features that make it possible to create new drugs based on them or significantly improve the properties of existing drugs. It is known that selenium is an essential trace element that is part of key antioxidant enzymes. In mammals, there are 25 selenoproteins, in which selenium is a key component of the active site. The important role of selenium in human health has been repeatedly proven by several hundred works in the past few decades; in recent years, the study of selenium nanocomplexes has become the focus of researchers. A large amount of accumulated data requires generalization and systematization in order to improve understanding of the key mechanisms and prospects for the use of selenium nanoparticles in medicine, which is the purpose of this review.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Ekaterina V. Blinova
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmacological Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia;
| |
Collapse
|
27
|
Martínez-Esquivias F, Gutiérrez-Angulo M, Pérez-Larios A, Sánchez-Burgos J, Becerra-Ruiz J, Guzmán-Flores JM. Anticancer Activity of Selenium Nanoparticles In Vitro Studies. Anticancer Agents Med Chem 2021; 22:1658-1673. [PMID: 34515010 DOI: 10.2174/1871520621666210910084216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Health systems worldwide consider cancer a disease that causes the highest number of deaths per year. The low efficacy of current cancer therapies has led other areas of science to search for new alternatives, including nanomaterial sciences. Selenium nanoparticles have anticancer activity, as revealed by in vitro tests performed on prostate, breast, cervical, lung, colorectal, and liver cancer cell lines. Studies attribute anticancer activity to the anti-metastatic effect due to the inhibition of migration and invasion processes. The antiproliferative effect is the low expression of molecules such as cyclin D1, cyclin E, and CDK2. In addition to the activation of cell apoptosis by caspase-dependent mechanisms, there is a low expression of anti-apoptotic proteins such as Bcl-2 and a high expression of the apoptotic proteins like Bax and Bad. Other studies attribute anticancer activity to the activation of cell necroptosis, where molecules such as TNF and IRF1 participate. The pharmacological potential of selenium nanoparticles depends primarily on the administered dose, particle size, and chemical composition. Furthermore, several studies have shown that the administration of these nanoparticles is safe due to their low toxicity in non-cancerous cells. In this review, the most relevant antecedents on the anticancer potential of selenium nanoparticles in prostate, breast, cervical, lung, liver, and colorectal cancer cell lines are discussed.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Melva Gutiérrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Alejandro Pérez-Larios
- Laboratorio de Materiales, Agua y Energía, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | | | - Julieta Becerra-Ruiz
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| |
Collapse
|
28
|
Ferro C, Florindo HF, Santos HA. Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Adv Healthc Mater 2021; 10:e2100598. [PMID: 34121366 DOI: 10.1002/adhm.202100598] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Indexed: 12/11/2022]
Abstract
Selenium (Se) is an essential element to human health that can be obtained in nature through several sources. In the human body, it is incorporated into selenocysteine, an amino acid used to synthesize several selenoproteins, which have an active center usually dependent on the presence of Se. Although Se shows several beneficial properties in human health, it has also a narrow therapeutic window, and therefore the excessive intake of inorganic and organic Se-based compounds often leads to toxicity. Nanoparticles based on Se (SeNPs) are less toxic than inorganic and organic Se. They are both biocompatible and capable of effectively delivering combinations of payloads to specific cells following their functionalization with active targeting ligands. Herein, the main origin of Se intake, its role on the human body, and its primary biomedical applications are revised. Particular focus will be given to the main therapeutic targets that are explored for SeNPs in cancer therapies, discussing the different functionalization methodologies used to improve SeNPs stability, while enabling the extensive delivery of drug-loaded SeNP to tumor sites, thus avoiding off-target effects.
Collapse
Affiliation(s)
- Cláudio Ferro
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Research Institute for Medicines iMed.ULisboa Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 Portugal
| | - Helena F. Florindo
- Research Institute for Medicines iMed.ULisboa Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 Portugal
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| |
Collapse
|
29
|
Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22157798. [PMID: 34360564 PMCID: PMC8346078 DOI: 10.3390/ijms22157798] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, studies on the functional features of Se nanoparticles (SeNP) have gained great popularity due to their high biocompatibility, stability, and pronounced selectivity. A large number of works prove the anticarcinogenic effect of SeNP. In this work, the molecular mechanisms regulating the cytotoxic effects of SeNP, obtained by laser ablation, were studied by the example of four human cancer cell lines: A-172 (glioblastoma), Caco-2, (colorectal adenocarcinoma), DU-145 (prostate carcinoma), MCF-7 (breast adenocarcinoma). It was found that SeNP had different concentration-dependent effects on cancer cells of the four studied human lines. SeNP at concentrations of less than 1 μg/mL had no cytotoxic effect on the studied cancer cells, with the exception of the A-172 cell line, for which 0.5 μg/mL SeNP was the minimum concentration affecting its metabolic activity. It was shown that SeNP concentration-dependently caused cancer cell apoptosis, but not necrosis. In addition, it was found that SeNP enhanced the expression of pro-apoptotic genes in almost all cancer cell lines, with the exception of Caco-2 and activated various pathways of adaptive and pro-apoptotic signaling pathways of UPR. Different effects of SeNP on the expression of ER-resident selenoproteins and selenium-containing glutathione peroxidases and thioredoxin reductases, depending on the cell line, were established. In addition, SeNP triggered Ca2+ signals in all investigated cancer cell lines. Different sensitivity of cancer cell lines to SeNP can determine the induction of the process of apoptosis in them through regulation of the Ca2+ signaling system, mechanisms of ER stress, and activation of various expression patterns of genes encoding pro-apoptotic proteins.
Collapse
|
30
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
31
|
Yu Z, Gao L, Chen K, Zhang W, Zhang Q, Li Q, Hu K. Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. NANOSCALE RESEARCH LETTERS 2021; 16:88. [PMID: 34014432 PMCID: PMC8137776 DOI: 10.1186/s11671-021-03489-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 05/07/2023]
Abstract
Traditional cancer therapeutics have been criticized due to various adverse effects and insufficient damage to targeted tumors. The breakthrough of nanoparticles provides a novel approach for upgrading traditional treatments and diagnosis. Actually, nanoparticles can not only solve the shortcomings of traditional cancer diagnosis and treatment, but also create brand-new perspectives and cutting-edge devices for tumor diagnosis and treatment. However, most of the research about nanoparticles stays in vivo and in vitro stage, and only few clinical researches about nanoparticles have been reported. In this review, we first summarize the current applications of nanoparticles in cancer diagnosis and treatment. After that, we propose the challenges that hinder the clinical applications of NPs and provide feasible solutions in combination with the updated literature in the last two years. At the end, we will provide our opinions on the future developments of NPs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zhongyang Yu
- Beijing University of Chinese Medicine, 11 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Lei Gao
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Qihang Zhang
- Department of Management, Fredericton Campus, University of New Brunswick, 3 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
32
|
Xia Y, Tang G, Chen Y, Wang C, Guo M, Xu T, Zhao M, Zhou Y. Tumor-targeted delivery of siRNA to silence Sox2 gene expression enhances therapeutic response in hepatocellular carcinoma. Bioact Mater 2021; 6:1330-1340. [PMID: 33210026 PMCID: PMC7658325 DOI: 10.1016/j.bioactmat.2020.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is one of the most promising methods for the treatment of malignant tumors. However, developing an efficient biocompatible delivery vector for small interfering RNA (siRNA) remains a challenging issue. This study aimed to prepare a non-viral tumor-targeted carrier, named RGDfC-modified functionalized selenium nanoparticles (RGDfC-SeNPs). RGDfC-SeNPs were used to selectively deliver siSox2 to HepG2 liver cancer cells and tissues for the treatment of hepatocellular carcinoma (HCC). In the current study, RGDfC-SeNPs were successfully synthesized and characterized. It was shown that RGDfC-SeNPs could effectively load siSox2 to prepare an antitumor prodrug RGDfC-Se@siSox2. RGDfC-Se@siSox2 exhibited selective uptake in HepG2 liver cancer cells and LO2 normal liver cells, indicating RGDfC-SeNPs could effectively deliver siSox2 to HepG2 liver cancer cells. RGDfC-Se@siSox2 entered HepG2 cells via clathrin-mediated endocytosis by firstly encircling the cytoplasm and then releasing siSox2 in the lysosomes. RGDfC-Se@siSox2 could effectively silence Sox2 and inhibit the proliferation, migration and invasion of HepG2 cells. RGDfC-Se@siSox2 induced HepG2 cells apoptosis most likely via overproduction of reactive oxygen species and disruption of the mitochondrial membrane potentials. Most importantly, RGDfC-Se@siSox2 significantly inhibited the tumor growth in HepG2 tumor-bearing mice without obvious toxic side effects. These studies indicated that RGDfC-SeNPs may be an ideal gene carrier for delivering siSox2 to HepG2 cells and that RGDfC-Se@siSox2 may be a novel and highly specific gene-targeted prodrug therapy for HCC.
Collapse
Affiliation(s)
- Yu Xia
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Guoyi Tang
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
33
|
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, De Rycke R, De Smedt S, Faridi-Majidi R, Braeckmans K, Fraire JC. Enhanced siRNA Delivery and Selective Apoptosis Induction in H1299 Cancer Cells by Layer-by-Layer-Assembled Se Nanocomplexes: Toward More Efficient Cancer Therapy. Front Mol Biosci 2021; 8:639184. [PMID: 33959633 PMCID: PMC8093573 DOI: 10.3389/fmolb.2021.639184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology has made an important contribution to oncology in recent years, especially for drug delivery. While many different nano-delivery systems have been suggested for cancer therapy, selenium nanoparticles (SeNPs) are particularly promising anticancer drug carriers as their core material offers interesting synergistic effects to cancer cells. Se compounds can exert cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis, eventually leading to apoptosis induction in many kinds of cancer cells. Herein, we report on the design and synthesis of novel layer-by-layer Se-based nanocomplexes (LBL-Se-NCs) as carriers of small interfering RNA (siRNA) for combined gene silencing and apoptosis induction in cancer cells. The LBL-Se-NCs were prepared using a straightforward electrostatic assembly of siRNA and chitosan (CS) on the solid core of the SeNP. In this study, we started by investigating the colloidal stability and protection of the complexed siRNA. The results show that CS not only functioned as an anchoring layer for siRNA, but also provided colloidal stability for at least 20 days in different media when CS was applied as a third layer. The release study revealed that siRNA remained better associated with LBL-Se-NCs, with only a release of 35% after 7 days, as compared to CS-NCs with a siRNA release of 100% after 48 h, making the LBL nanocarrier an excellent candidate as an off-the-shelf formulation. When applied to H1299 cells, it was found that they can selectively induce around 32% apoptosis, while significantly less apoptosis (5.6%) was induced in NIH/3T3 normal cells. At the same time, they were capable of efficiently inducing siRNA downregulation (35%) without loss of activity 7 days post-synthesis. We conclude that LBL-Se-NCs are promising siRNA carriers with enhanced stability and with a dual mode of action against cancer cells.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, Belgium
| | - Juan C. Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Zhang J, Wei K, Shi J, Zhu Y, Guan M, Fu X, Zhang Z. Biomimetic Nanoscale Erythrocyte Delivery System for Enhancing Chemotherapy via Overcoming Biological Barriers. ACS Biomater Sci Eng 2021; 7:1496-1505. [PMID: 33651596 DOI: 10.1021/acsbiomaterials.1c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overcoming multiple biological barriers, including circulation time in vivo, tumor vascular endothelium, reticuloendothelial system (RES), extracellular matrix (ECM), etc., is the key to improve the therapeutic efficacy of drug delivery systems in treating tumors. Inspired by the ability of natural erythrocytes to cross multiple barriers, in this study, a biomimetic delivery system named NE@DOX-Ang2 was developed for enhancing the chemotherapy of breast cancer, which employed nano-erythrocyte (NE) encapsulating doxorubicin (DOX) and surface modification with a targeted angiopep-2 peptide (Ang2). NE@DOX-Ang2 enhanced the capacity to cross biological barriers in a three-dimensional (3D) tumor spheroid model and in vivo in mice. Compared with a conventional drug delivery system of liposomes, the half-life of NE@DOX-Ang2 increased approximately 2.5 times. Moreover, NE@DOX-Ang2 exhibited excellent tumor-targeting ability and antitumor effects in vitro and in vivo. Briefly, the prepared nano-erythrocyte drug carrier has features of favorable biocompatibility and low immunogenicity and the advantage of prolonging the half-life of drugs, which may provide a novel perspective for development of clinically available nanomedicines.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Kaiyan Wei
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, 3 Kangfu Road, Zhengzhou 450052, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Yifan Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Mengting Guan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, 3 Kangfu Road, Zhengzhou 450052, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| |
Collapse
|
35
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
36
|
Jablonska E, Li Q, Reszka E, Wieczorek E, Tarhonska K, Wang T. Therapeutic Potential of Selenium and Selenium Compounds in Cervical Cancer. Cancer Control 2021; 28:10732748211001808. [PMID: 33754876 PMCID: PMC8204638 DOI: 10.1177/10732748211001808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cervical cancer is a common female cancer. It is strongly associated with human papillomavirus (HPV) infection. However, HPV infection alone is not sufficient to induce cervical cancer because its development is dependent on the coexistence of several factors that enable the virus to overcome the host immune system. These include individual genetic background, environmental factors, or diet, including dietary selenium intake. Selenium is an essential trace element with antiviral properties and has been shown to exert antitumor effects. Surprisingly, the role of selenium in cervical cancer has not been studied as intensively as in other cancers. Here, we have summarized the existing experimental data on selenium and cervical cancer. It may be helpful in evaluating the role of this nutrient in treatment of the mentioned malignancy as well as in planning further studies in this area.
Collapse
Affiliation(s)
- Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Qi Li
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Tong Wang
- Harbin Medical University, Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, China
| |
Collapse
|
37
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
38
|
Chen X, Cheng P, Hu C. LncRNA FEZF1-AS1 accelerates the migration and invasion of laryngeal squamous cell carcinoma cells through miR-4497 targeting GBX2. Eur Arch Otorhinolaryngol 2021; 278:1523-1535. [PMID: 33550476 DOI: 10.1007/s00405-021-06636-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND MiR-4497 has been previously proved to exert an anti-cancer role in laryngeal squamous cell carcinoma (LSCC) by negatively regulating gastrulation brain homeobox 2 (GBX2). However, the mechanism of miR-4497 in LSCC has yet to be fully elucidated. This study intended to investigate the role of FEZF1-AS1 in the migration and invasion of LSCC cells and clarified its mechanism through miR-4497 and GBX2. METHODS qPCR evaluated the expression of FEZF1-AS1, miR-4497 and GBX2 in LSCC tissues and cells, compared with controls. Western blotting analyzed GBX2, E-cadherin, N-cadherin and Vimentin. CCK8, wound healing and transwell assays assessed the viability, migration and invasion of TU686 and UM-SCC-17A cells. Luciferase reporter assay affirmed the interplay of miR-4497 with FEZF1-AS1 or GBX2 and Pearson's correlation analysis explored the association between each two genes in both tumor and non-tumor tissues. RESULTS FEZF1-AS1 was highly expressed in LSCC tissues and cells. Silence or elevation of FEZF1-AS1 inhibited or promoted the migration and invasion of TU686 and UM-SCC-17A cells. FEZF1-AS1 targeted and negatively modulated miR-4497. Inhibition of miR-4497 markedly restored the FEZF1-AS1 silence-repressed cell viability of TU686 and UM-SCC-17A cells. Further, FEZF1-AS1 could positively regulate GBX2 via negative regulation of miR-4497. In these two cells, GBX2 deficiency reversed the promoting impacts of miR-4497 repression on migration and invasion. CONCLUSION Taken together, FEZF1-AS1, heightened in LSCC tissues and cells, promotes cell migration and invasion of LSCC cells via targeting miR-4497 that inhibits GBX2. The finding may offer new options for the treatment of this cancer.
Collapse
Affiliation(s)
- Xudong Chen
- Department of Otolaryngology, First Hospital of Ningbo City, Ningbo, Zhejiang, 315000, People's Republic of China.
| | - Peng Cheng
- Department of Otolaryngology, First Hospital of Ningbo City, Ningbo, Zhejiang, 315000, People's Republic of China
| | - Cihao Hu
- Department of Otolaryngology, First Hospital of Ningbo City, Ningbo, Zhejiang, 315000, People's Republic of China
| |
Collapse
|
39
|
Yousefvand P, Mohammadi E, Zhuang Y, Bloukh SH, Edis Z, Gamasaee NA, Zanganeh H, Mansour FN, Heidarzadeh M, Attar F, Babadaei MMN, Keshtali AB, Shahpasand K, Sharifi M, Falahati M, Cai Y. Biothermodynamic, antiproliferative and antimicrobial properties of synthesized copper oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Selenium nanostructure: Progress towards green synthesis and functionalization for biomedicine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-020-00510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
43
|
Li D, Hu C, Yang J, Liao Y, Chen Y, Fu SZ, Wu JB. Enhanced Anti-Cancer Effect of Folate-Conjugated Olaparib Nanoparticles Combined with Radiotherapy in Cervical Carcinoma. Int J Nanomedicine 2020; 15:10045-10058. [PMID: 33328733 PMCID: PMC7735794 DOI: 10.2147/ijn.s272730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Radiotherapy (RT), one of the main treatments for cervical cancer, has tremendous potential for improvement in the efficacy. Poly (ADP-ribose) polymerase (PARP) is a key enzyme in the repair of DNA strand breaks (DSB). Olaparib (Ola) is a PARP inhibitor that is involved in preventing the release of PARP from RT-induced damaged DNA to potentiate the effect of RT. Although the basic mechanism of Ola's radiosensitization is well known, the radiosensitization mechanism of its nanomedicine is still unclear. In addition, the lack of tumor tissue targeting is a major obstacle for the clinical success of Ola. MATERIALS AND METHODS In this study, we developed folate-conjugated active targeting olaparib nanoparticles (ATO) and investigated the anti-tumor effect of ATO combined with radiotherapy (RT) in nude mice using cervical cancer xenograft models. We used folate (FA)-conjugated poly (ε-caprolactone)-poly (ethyleneglycol)-poly (e-caprolactone) (PCEC) copolymer to prepare ATO via emulsification/solvent diffusion. Further, we evaluated ATO particle size, potential, encapsulation efficiency, and in vitro release characteristics, and evaluated the shape of ATO via transmission electron microscopy (TEM). We then performed MTT and cell uptake assays to detect cytotoxicity and targeting uptake in vitro. We investigated the anti-tumor properties of ATO in vivo by apoptosis test, 18 F-FDG PET/CT, and immunohistochemical analysis. Finally, the xenografted tumor in nude mice was subjected to RT and/or ATO treatment. RESULTS The results confirmed that ATO in combination with RT significantly inhibited tumor growth and prolonged survival time of tumor-bearing mice. This may be related to the inhibition of tumor proliferation and DNA damage repair and induction of cell apoptosis in vivo. CONCLUSION The ATO developed in this study may represent a novel formulation for olaparib delivery and have promising potential for treating tumors with an over-expression of folate receptors.
Collapse
Affiliation(s)
- Dong Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Chuanfei Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Shao Zhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Jing Bo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| |
Collapse
|
44
|
Wang C, Xia Y, Huo S, Shou D, Mei Q, Tang W, Li Y, Liu H, Zhou Y, Zhu B. Silencing of MEF2D by siRNA Loaded Selenium Nanoparticles for Ovarian Cancer Therapy. Int J Nanomedicine 2020; 15:9759-9770. [PMID: 33304100 PMCID: PMC7723231 DOI: 10.2147/ijn.s270441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Delivery of therapeutic small interfering RNA (siRNA) via functionalized nanoparticles holds great promise for cancer therapy. However, developing a safe and efficient delivery carrier of siRNA is a challenging issue. METHODS RGDfC peptide was used to modify the surface of selenium nanoparticles (SeNPs) to synthesize a biocompatible siRNA delivery vehicle (R-SeNPs), and MEF2D-siRNA was loaded onto R-SeNPs to prepare a functionalized selenium nanoparticle R-Se@MEF2D-siRNA. The chemical properties of R-SeNPs were characterized, and the anticancer efficacy as well as related mechanisms of R-Se@MEF2D-siRNA were further explored. RESULTS R-Se@MEF2D-siRNA was significantly taken up by SKOV3 cells and could enter SKOV3 cells mainly in the clathrin-associated endocytosis way. The result of in vitro siRNA release demonstrated that R-Se@MEF2D-siRNA could release MEF2D-siRNA quicker in a microenvironment simulating a lysosomal environment in tumor cells compared to a normal physiological environment. The results of qRT-PCR assay proved that R-Se@MEF2D-siRNA could effectively silence the expression of the MEF2D gene in SKOV3 cells. R-Se@MEF2D-siRNA remarkably suppressed the proliferation of SKOV3 cells and further triggered its apoptosis. In addition, R-Se@MEF2D-siRNA had the capability to disrupt mitochondrial membrane potential (MMP) in SKOV3 cells and resulted in the overproduction of reactive oxygen species (ROS), indicating that mitochondrial dysfunction and ROS generation played an important role in the apoptosis of SKOV3 cells induced by R-Se@MEF2D-siRNA. In vivo, R-Se@MEF2D-siRNA also exhibited excellent antitumor activity mainly through decreasing tumor cells proliferation and triggering their apoptosis in tumor-bearing nude mice. CONCLUSION R-Se@MEF2D-siRNA provides an alternative strategy for ovarian cancer treatment in the clinic.
Collapse
Affiliation(s)
- Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou510230, People’s Republic of China
| | - Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Shaochuan Huo
- Department of Orthopedics, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen518048, People’s Republic of China
- Shenzhen Research Institute of Guangzhou University of Chinese Medicine, Shenzhen518048, People’s Republic of China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Qing Mei
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Wenjuan Tang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| |
Collapse
|
45
|
Kaundal B, Kushwaha AC, Srivastava AK, Karmakar S, Choudhury SR. A non-viral nano-delivery system targeting epigenetic methyltransferase EZH2 for precise acute myeloid leukemia therapy. J Mater Chem B 2020; 8:8658-8670. [PMID: 32844866 DOI: 10.1039/d0tb01177k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML), which is common in the elderly population, accounts for poor long-term survival with a high possibility of relapse. The associated lack of currently developed therapeutics is directing the search for new therapeutic targets relating to AML. EZH2 (Enhancer of Zeste Homolog 2) is a histone methyltransferase member of the polycomb-group (PcG) family, and its significant overexpression in AML means it has emerged as a potential epigenetic target. Here, we propose the human serum albumin (HSA) nanoparticle based delivery of small interfering RNA (siRNA), which can target EZH2-expressing genes in AML. EZH2 specific siRNA loaded in a polyethyleneimine (PEI) conjugated HSA nanocarrier can overcome the systemic instability of siRNA and precisely target the AML cell population for increased EZH2 gene silencing. A stable nanosized complex (HSANPs-PEI@EZH2siRNA), achieved via the electrostatic interaction of PEI and EZH2 siRNA, shows increased systemic stability and hemocompatibility, and enhanced EZH2 gene silencing activity in vitro, compared to conventional transfection reagents. HSANPs-PEI@EZH2siRNA-treated AML cells showed downregulated EZH2, which is associated with a reduced level of Bmi-1 protein, and H3K27me3 and H2AK119ub modification. The ubiquitin-mediated proteasomal degradation pathway plays a critical role in the downregulation of associated proteins following HSANPs-PEI@EZH2siRNA exposure to AML cells. c-Myb is the AML-responsive transcription factor that directly binds on the EZH2 promoter and was downregulated in HSANPs-PEI@EZH2siRNA-treated AML cells. The systemic exposure to HSANPs-PEI@EZH2siRNA of AML engrafted immunodeficient nude mice displayed efficient EZH2 gene silencing and a reduced AML cell population in peripheral blood and bone marrow. The present study demonstrates a non-viral siRNA delivery system for epigenetic targeting based superior anti-leukemic therapy.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | |
Collapse
|
46
|
Lin Z, Li Y, Xu T, Guo M, Wang C, Zhao M, Chen H, Kuang J, Li W, Zhang Y, Lin T, Chen Y, Chen H, Zhu B. Inhibition of Enterovirus 71 by Selenium Nanoparticles Loaded with siRNA through Bax Signaling Pathways. ACS OMEGA 2020; 5:12495-12500. [PMID: 32548434 PMCID: PMC7271353 DOI: 10.1021/acsomega.0c01382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/04/2020] [Indexed: 05/09/2023]
Abstract
Enterovirus 71 (EV71) is the principal pathogen leading to severe cases of hand, foot, and mouth disease (HFMD). Specific drugs for EV71 are not discovered currently. Small interfering RNA (siRNA) provides a promising antiviral treatment pathway, but it is difficult to cross cell membranes and is easy to degrade. Nanoparticles are promising for their carrying capacity currently. In this study, the siRNA targeting EV71 VP1 gene was loaded with selenium nanoparticles (SeNPs) and surface decorated with polyethylenimine (PEI) (Se@PEI@siRNA). Se@PEI@siRNA showed a remarkable interference efficiency in the nerve cell line SK-N-SH and prevented the cells to be infected. The mechanism study revealed that Se@PEI@siRNA could lighten the extent of SK-N-SH cells for staying in the sub-G1 phase. Activation of Bax apoptosis signaling was restrained either. Taken together, this study demonstrated that Se@PEI@siRNA is a promising drug against EV71 virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Bing Zhu
- . Tel: +86 20-81330740. Fax: +86 20 81885978
| |
Collapse
|
47
|
Xia Y, Tang G, Guo M, Xu T, Chen H, Lin Z, Li Y, Chen Y, Zhu B, Liu H, Cao J. Silencing KLK12 expression via RGDfC-decorated selenium nanoparticles for the treatment of colorectal cancer in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110594. [PMID: 32204058 DOI: 10.1016/j.msec.2019.110594] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023]
Abstract
Short interfering RNA (siRNA) has been investigated as a promising modality of cancer treatment due to its capability to target specific target genes for downregulation. However, the successful application of this strategy depends on producing a safe and effective carrier system for delivering siRNA to the tumor. Thus, investigation of siRNA delivery carriers is a fundamental step in the field of siRNA-based therapeutics. In the current research, the surface of selenium nanoparticles (SeNPs) were modified with the tumor-targeted molecular RGDfC peptide with positive charge to synthetize the biocompatible siRNA carrier RGDfC-SeNPs. Subsequently, KLK12-siRNA was loaded onto the surface of RGDfC-SeNPs to create functionalized nanoparticles (RGDfC-Se@siRNA) that we tested for in vitro and in vivo antitumor efficacy. We measured significantly greater particle uptake in HT-29 colorectal cancer cells relative to HUVECs, providing evidence for the targeted delivery of RGDfC-Se@siRNA. We found that RGDfC-Se@siRNA could enter HT-29 cells primarily via clathrin-mediated endocytosis. Further, these particles experienced faster siRNA release in an acidic microenvironment compared to pH 7.4. The results from quantitative PCR and Western blot assays suggested that the target gene of KLK12 in HT-29 cells were obviously silenced by RGDfC-Se@siRNA. The further biological studies showed that treatment with RGDfC-Se@siRNA had ability to suppress the proliferation and migration/invasion of HT-29 cells, and triggered HT-29 cells apoptosis. RGDfC-Se@siRNA could induce the mitochondrial membrane potential (MMP) disruption and enhance the reactive oxygen species (ROS) generation in HT-29 cells, indicating that RGDfC-Se@siRNA induced the HT-29 cells apoptosis possibly by a ROS-mediated mitochondrial dysfunction pathway. Importantly, the in vivo antitumor study also verified that RGDfC-Se@siRNA could significantly suppress the growth of tumor in vivo. In addition, we did not observe any signs of systemic or tissue-specific toxicity after administration of RGDfC-Se@siRNA in mice. As a whole, these findings suggest that RGDfC-Se@siRNA has promising potential as a therapy for colorectal cancer.
Collapse
Affiliation(s)
- Yu Xia
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Guoyi Tang
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Haiyang Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhengfang Lin
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|