1
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
2
|
Di Dalmazi G, Giuliani C, Bucci I, Mascitti M, Napolitano G. Promising Role of Alkaloids in the Prevention and Treatment of Thyroid Cancer and Autoimmune Thyroid Disease: A Comprehensive Review of the Current Evidence. Int J Mol Sci 2024; 25:5395. [PMID: 38791433 PMCID: PMC11121374 DOI: 10.3390/ijms25105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Thyroid cancer (TC) and thyroid autoimmune disorders (AITD) are among the most common diseases in the general population, with higher incidence in women. Chronic inflammation and autoimmunity play a pivotal role in carcinogenesis. Some studies, indeed, have pointed out the presence of AITD as a risk factor for TC, although this issue remains controversial. Prevention of autoimmune disease and cancer is the ultimate goal for clinicians and scientists, but it is not always feasible. Thus, new treatments, that overcome the current barriers to prevention and treatment of TC and AITD are needed. Alkaloids are secondary plant metabolites endowed with several biological activities including anticancer and immunomodulatory properties. In this perspective, alkaloids may represent a promising source of prophylactic and therapeutic agents for TC and AITD. This review encompasses the current published literature on alkaloids effects on TC and AITD, with a specific focus on the pathways involved in TC and AITD development and progression.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Mascitti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgio Napolitano
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Tian X, Chen Z, Yang L, Liu Q, Zheng Z, Gao Z, Wang X, Lin C, Xie W, Wan Y, Yang J, Hou Z. Low-Temperature Photothermal Therapy Platform Based on Pd Nanozyme-Modified Hydrogenated TiO 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44631-44640. [PMID: 37706663 DOI: 10.1021/acsami.3c07130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In photothermal treatments (PTTs), normal tissues around cancerous tumors get injured by excessive heat, whereas damaged cancer cells are easily restored by stress-induced heat shock proteins (HSPs) at low temperatures. Therefore, to achieve a unique tumor microenvironment (TME), it is imperative to increase PTT efficiency and reduce normal tissue injury by adopting appropriate reactive oxygen species (ROS) and lipid peroxides (LPO) cross-linked with HSPs. In the present research, a potential strategy for mild photothermal treatments (mPTTs) was proposed by initiating localized catalytic chemical reactions in TME based on Pd nanozyme-modified hydrogenated TiO2 (H-TiO2@Pd). In vitro and in vivo evaluations demonstrated that H-TiO2@Pd had good peroxidase-like activities (POD), glutathione oxidase-like activities (GSHOx), and photodynamic properties and also satisfactory biocompatibility for 4T1 cells. Localized catalytic chemical reactions in H-TiO2@Pd significantly depleted GSH to downregulate the protein expression of GPX4 and promoted the accumulation of LPO and ROS, which consumed HSP70 or inhibited its function in 4T1 cells. Hence, the as-constructed low-temperature photothermal therapeutic platform based on Pd nanozyme-modified H-TiO2 can be a promising candidate to develop a safe and effective mPTT for cancer treatments.
Collapse
Affiliation(s)
- Xiumei Tian
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
| | - Zhankun Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
| | - Longcui Yang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
| | - Qianqian Liu
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
| | - Zhaocong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xiaozhao Wang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Chen Lin
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Wenyu Xie
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yuchi Wan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jingwen Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Zhiyao Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
4
|
Zhang P, Tao C, Shimura T, Huang AC, Kong N, Dai Y, Yao S, Xi Y, Wang X, Fang J, Moses MA, Guo P. ICAM1 antibody drug conjugates exert potent antitumor activity in papillary and anaplastic thyroid carcinoma. iScience 2023; 26:107272. [PMID: 37520726 PMCID: PMC10371847 DOI: 10.1016/j.isci.2023.107272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Treatment options for anaplastic thyroid cancer (ATC) and refractory papillary thyroid carcinoma (PTC) are limited and outcomes remain poor. In this study, we determined via bioinformatic expression analyses and immunohistochemistry staining that intercellular adhesion molecule-1(ICAM1) is an attractive target for ATC and PTC. We designed and engineered two ICAM1-directed antibody-drug conjugate (I1-MMAE and I1-DXd), both of which potently and selectively ablate multiple human ATC and PTC cell lines without affecting non-plastic cells in vitro. Furthermore, I1-MMAE and I1-DXd mediated a potent tumor regression in ATC and PTC xenograft models. To develop a precision medicine, we also explored magnetic resonance imaging (MRI) as a non-invasive biomarker detection method to quantitatively map ICAM1 antigen expression in heterogeneous thyroid tumors. Taken together, this study provides a strong rationale for the further development of I1-MMAE and I1-DXd as promising therapeutic candidates to treat advanced PTC and ATC.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Changjuan Tao
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | - Nana Kong
- MabPlex International, Yantai, Shandong 264006, China
| | - Yujie Dai
- MabPlex International, Yantai, Shandong 264006, China
| | - Shili Yao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yun Xi
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Xing Wang
- Department of Head and Neck Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Marsha A. Moses
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peng Guo
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
5
|
Hajareh Haghighi F, Mercurio M, Cerra S, Salamone TA, Bianymotlagh R, Palocci C, Romano Spica V, Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J Mater Chem B 2023; 11:2334-2366. [PMID: 36847384 DOI: 10.1039/d2tb02576k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In recent years, titanium(IV) dioxide nanoparticles (TiO2NPs) have shown promising potential in various biological applications such as antimicrobials, drug delivery, photodynamic therapy, biosensors, and tissue engineering. For employing TiO2NPs in these fields, their nanosurface must be coated or conjugated with organic and/or inorganic agents. This modification can improve their stability, photochemical properties, biocompatibility, and even surface area for further conjugation with other molecules such as drugs, targeting molecules, polymers, etc. This review describes the organic-based modification of TiO2NPs and their potential applications in the mentioned biological fields. In the first part of this review, around 75 recent publications (2017-2022) are mentioned on the common TiO2NP modifiers including organosilanes, polymers, small molecules, and hydrogels, which improve the photochemical features of TiO2NPs. In the second part of this review, we presented 149 recent papers (2020-2022) about the use of modified TiO2NPs in biological applications, in which specific bioactive modifiers are introduced in this part with their advantages. In this review, the following information is presented: (1) the common organic modifiers for TiO2NPs, (2) biologically important modifiers and their benefits, and (3) recent publications on biological studies on the modified TiO2NPs with their achievements. This review shows the paramount significance of the organic-based modification of TiO2NPs to enhance their biological effectiveness, paving the way toward the development of advanced TiO2-based nanomaterials in nanomedicine.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Martina Mercurio
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | - Roya Bianymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
6
|
Chen BQ, Zhao Y, Zhang Y, Pan YJ, Xia HY, Kankala RK, Wang SB, Liu G, Chen AZ. Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy. Bioact Mater 2023; 21:1-19. [PMID: 36017071 PMCID: PMC9382433 DOI: 10.1016/j.bioactmat.2022.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023] Open
Abstract
Although nano-immunotherapy has advanced dramatically in recent times, there remain two significant hurdles related to immune systems in cancer treatment, such as (namely) inevitable immune elimination of nanoplatforms and severely immunosuppressive microenvironment with low immunogenicity, hampering the performance of nanomedicines. To address these issues, several immune-regulating camouflaged nanocomposites have emerged as prevailing strategies due to their unique characteristics and specific functionalities. In this review, we emphasize the composition, performances, and mechanisms of various immune-regulating camouflaged nanoplatforms, including polymer-coated, cell membrane-camouflaged, and exosome-based nanoplatforms to evade the immune clearance of nanoplatforms or upregulate the immune function against the tumor. Further, we discuss the applications of these immune-regulating camouflaged nanoplatforms in directly boosting cancer immunotherapy and some immunogenic cell death-inducing immunotherapeutic modalities, such as chemotherapy, photothermal therapy, and reactive oxygen species-mediated immunotherapies, highlighting the current progress and recent advancements. Finally, we conclude the article with interesting perspectives, suggesting future tendencies of these innovative camouflaged constructs towards their translation pipeline.
Collapse
Affiliation(s)
- Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
7
|
Xing Y, Zeng B, Yang W. Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol 2022; 10:1075670. [PMID: 36588951 PMCID: PMC9800804 DOI: 10.3389/fbioe.2022.1075670] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Light is an easy acquired, effective and non-invasive external stimulus with great flexibility and focusability. Thus, light responsive hydrogels are of particular interests to researchers in developing accurate and controlled drug delivery systems. Light responsive hydrogels are obtained by incorporating photosensitive moieties into their polymeric structures. Drug release can be realized through three major mechanisms: photoisomerization, photochemical reaction and photothermal reaction. Recent advances in material science have resulted in great development of photosensitizers, such as rare metal nanostructures and black phosphorus nanoparticles, in order to respond to a variety of light sources. Hydrogels incorporated with photosensitizers are crucial for clinical applications, and the use of ultraviolet and near-infrared light as well as up-conversion nanoparticles has greatly increased the therapeutic effects. Existing light responsive drug delivery systems have been utilized in delivering drugs, proteins and genes for chemotherapy, immunotherapy, photodynamic therapy, gene therapy, wound healing and other applications. Principles associated with site-specific targeting, metabolism, and toxicity are used to optimize efficacy and safety, and to improve patient compliance and convenience. In view of the importance of this field, we review current development, challenges and future perspectives of light responsive hydrogels for controlled drug delivery.
Collapse
|
8
|
Shao C, Li Z, Zhang C, Zhang W, He R, Xu J, Cai Y. Optical diagnostic imaging and therapy for thyroid cancer. Mater Today Bio 2022; 17:100441. [PMID: 36388462 PMCID: PMC9640994 DOI: 10.1016/j.mtbio.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Thyroid cancer, as one of the most common endocrine cancers, has seen a surge in incidence in recent years. This is most likely due to the lack of specificity and accuracy of its traditional diagnostic modalities, leading to the overdiagnosis of thyroid nodules. Although there are several treatment options available, they are limited to surgery and 131I radiation therapy that come with significant side effects and hence cannot meet the treatment needs of anaplastic thyroid carcinoma with very high malignancy. Optical imaging that utilizes optical absorption, refraction and scattering properties, not only observes the structure and function of cells, tissues, organs, or even the whole organism to assist in diagnosis, but can also be used to perform optical therapy to achieve targeted non-invasive and precise treatment of thyroid cancer. These applications of screening, diagnosis, and treatment, lend to optical imaging's promising potential within the realm of thyroid cancer surgical navigation. Over the past decade, research on optical imaging in the diagnosis and treatment of thyroid cancer has been growing year by year, but no comprehensive review on this topic has been published. Here, we review key advances in the application of optical imaging in the diagnosis and treatment of thyroid cancer and discuss the challenges and potential for clinical translation of this technology.
Collapse
Key Words
- 131I-BSA@CuS, 131I-labeled BSA-modified CuS nanoparticles
- 5-ALA, 5-Aminolevulinic acid
- ASIR, age-standardized rates of cancer incidence
- ATC, anaplastic thyroid carcinoma
- Au@MSNs, photo-triggered Gold nanodots capped mesoporous silica nanoparticles
- AuNCs@BSA-I, innovative iodinated gold nanoclusters
- BRAF, V-Raf murine sarcoma viral oncogene homolog B
- CBDCA, Carboplatin
- CDFI, color doppler flow imaging ultrasound
- CLND, central compartmentalized node dissection
- CPDA-131I NPs, the 131I-radiolabeled cerebroid polydopamine nano-particles
- CT, Computed Tomography
- DOT, Diffuse Optical Tomography
- DTC, differentiated thyroid cancer
- ECDT, enhanced chemodynamical therapy
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- ESMO, European Society of Medical Oncology
- FDA, U.S. Food and Drug Administration
- FI, fluorescence imaging
- FNAB, fine-needle aspiration biopsy
- FNAs, fine needle aspirations
- FTC, follicular thyroid carcinoma
- GC, germinal center
- HAOA, Hyaluronic Acid and Oleic Acid
- HYP, hypericin
- ICG, indocyanine green
- IJV, internal jugular vein
- IR825@B-PPNs, Polymeric NPs with bevacizumab and IR825 conjugated on the surface
- L-A PTA, laparoscopic photothermal ablation
- MDR, multidrug resistance
- MTC, medullary thyroid carcinoma
- Multimodal therapy
- NIR, near-infrared
- NIR-FI, near-infrared fluorescence imaging
- NIR-PIT, near-infrared photoimmunotherapy
- NIRF, near-infrared fluorescence
- NMRI, Nuclear Magnetic Resonance Imaging
- OCT, Optical Coherence Tomography
- OI, optical imaging
- OS, overall survival
- Optical imaging
- Optical imaging-guided surgery
- PAI, Photoacoustic Imaging
- PDT, photodynamic therapy
- PET, Positron Emission Tomography
- PGs, parathyroid glands
- PLP, porphyrin-HDL nanoparticle
- PTA, photothermal reagents
- PTC, papillary thyroid carcinoma
- PTT, photothermal therapy
- Pd-MOF, porphyrin–palladium metal–organic framework
- Phototherapy
- RIT, radioactive iodine therapy
- ROS, reactive oxygen species
- SEC, Selenocysteine
- SV, subclavian vein
- SiRNA, interfering RNA
- TC, thyroid cancer
- TD, Thoracic Duct
- TF, tissue factor
- Thyroid cancer
- mETE, microscopic extrathyroidal extension
Collapse
Affiliation(s)
- Chengying Shao
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhenfang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310012, China
| | - Chengchi Zhang
- Zhejiang University of Technology, Hangzhou, 310023, China
| | - Wanchen Zhang
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ru He
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310012, China
| | - Jiajie Xu
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China
| | - Yu Cai
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Chen J, Yu X, Liu X, Ni J, Yang G, Zhang K. Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. NANOSCALE 2022; 14:12984-12998. [PMID: 36056710 DOI: 10.1039/d2nr04418h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multidrug resistance (MDR) is one of the main reasons for the failure of tumor chemotherapy and has a negative influence on the therapeutic effect. MDR is primarily attributable to two mechanisms: the activation of efflux pumps for drugs, which can transport intracellular drug molecules from cells, and other mechanisms not related to efflux pumps, e.g., apoptosis prevention, strengthened DNA repair, and strong oxidation resistance. Nanodrug-delivery systems have recently attracted much attention, showing some unparalleled advantages such as drug targeting and reduced drug efflux, drug toxicity and side effects in reversing MDR. Notably, in drug-delivery platforms based on nanotechnology, multiple therapeutic strategies are integrated into one system, which can compensate for the limitations of individual strategies. In this review, the mechanisms of tumor MDR as well as common vectors and nanocarrier-combined therapy strategies to reverse MDR were summarized to promote the understanding of the latest progress in improving the efficiency of chemotherapy and synergistic strategies. In particular, the adoption of nanotechnology has been highlighted and the principles underlying this phenomenon have been elucidated, which may provide guidance for the development of more effective anticancer strategies.
Collapse
Affiliation(s)
- Jie Chen
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
- Department of Medical Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai 200030, P. R. China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Jinliang Ni
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Guangcan Yang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| |
Collapse
|
10
|
Xu M, Zhao D, Chen Y, Chen C, Zhang L, Sun L, Chen J, Tang Q, Sun S, Ma C, Liang X, Wang S. Charge Reversal Polypyrrole Nanocomplex-Mediated Gene Delivery and Photothermal Therapy for Effectively Treating Papillary Thyroid Cancer and Inhibiting Lymphatic Metastasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14072-14086. [PMID: 35289594 DOI: 10.1021/acsami.1c25179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a traditional treatment for papillary thyroid cancer (PTC), surgical resection of diseased tissues often brings lots of inconveniences to patients, and the tumor recurrence and metastasis are difficult to avoid. Herein, we developed a gene and photothermal combined therapy nanosystem based on a polypyrrole (Ppy)-poly(ethylene imine)-siILK nanocomplex (PPRILK) to achieve minimally invasive ablation and lymphatic metastasis inhibition in PTC simultaneously. In this system, gelatin-stabilized Ppy mainly acted as a photothermal- and photoacoustic (PA)-responsive nanomaterial and contributed to its well-behaved photosensitivity in the near-infrared region. Moreover, gelatin-stabilized Ppy possessed a charge reversal function, facilitating the tight conjunction of siILK gene at physiological pH (7.35-7.45) and its automatic release into acidic lysosomes (pH 4.0-5.5); the proton sponge effect generated during this process further facilitated the escape of siILK from lysosomes to the cytoplasm and played its role in inhibiting PTC proliferation and lymphatic metastasis. With the guidance of fluorescence and PA bimodal imaging, gene delivery and Ppy location in tumor regions could be clearly observed. As a result, tumors were completely eradicated by photothermal therapy, and the recurrences and metastases were obviously restrained by siILK.
Collapse
Affiliation(s)
- Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Duo Zhao
- Department of Ultrasound, Ordos City Central Hospital, Ordos City, Inner Mongolia 017000, P. R. China
| | - Yuwen Chen
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Chaoyi Chen
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Cheng Ma
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| |
Collapse
|
11
|
Xiao X, Zhang Z, Xie H, Li S, Li J. Bone Marrow Mesenchymal Stem Cells Derived Discoidin Domain-Containing Receptor 2 (DDR2) as a Communication Mediator to Strengthen the Invasiveness and Metastasis of Papillary Thyroid Carcinoma. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our current study plans to dissect the impacts and its underlying mechanisms of bone marrow mesenchymal stem cells (BMSCs) on the invasive and metastatic features of PTC. Clinical specimens from distantly metastatic PTC were collected to measure DRR2 level. After being identified via
tri-lineage differentiation and flow cytometry, BMSCs were co-cultured with PTC cells followed by analysis of cell proliferation and migration by CCK-8 and Transwell assays, expression of DDR2 and EMT-associated proteins by Western blot. Eventually, shDDR2-transfected BMSCs were infused with
PTC cells into the abdominal cavity of mice to establish a mouse model assess their effect on tumor growth and distant metastasis. DDR2 was upregulated in BMSCs and malignant cells located in the metastatic sites. Co-culture with BMSCs enhanced DRR2 expression in PTC cells, which was simultaneously
accompanied by the escalated mesenchymalization process. In vivo experiments exhibited that co-injection with BMSCs facilitated disease progression and distant metastasis of malignancies. Instead, DDR2 knockdown significantly impeded BMSCs-triggered migrative and proliferative behaviors
of malignant cells. In conclusion, DDR2 derived from BMSCs can function as a communication mediator to strengthen the invasiveness and metastasis of PTC.
Collapse
Affiliation(s)
- Xiongsheng Xiao
- Department of Vascular Thyroid Breast Surger, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Zhi Zhang
- Department of Vascular Thyroid Breast Surger, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Hongpo Xie
- Department of Vascular Thyroid Breast Surger, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Siyi Li
- Department of Vascular Thyroid Breast Surger, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Jianwen Li
- Department of Vascular Thyroid Breast Surger, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
12
|
Abstract
Achieving a novel drug delivery system needs site-specificity along with dosage control. Many physical, chemical, mechanical, and biological signals are used for developing these systems, out of which light has been used predominantly in the past decade. Light responsive drug delivery systems have tremendous potential, and their exploration is crucial in developing a precise and controlled delivery system. Spatio-temporal and intensity control of light allows better manipulation of drug delivery vehicles than mechanical, chemical, and biological signals. The use of ultraviolet (UV) and near-infrared (NIR) light has helped in upgrading therapeutic functionalities, while the use of up-conversion nanoparticles (UCNPs) has delivered an extension into theranostic tools. Biomaterials incorporated with photosensitizers can readily respond to changes in light and are vital in achieving clinical success via translational research. Further, the inclusion of biological macromolecules for the transportation of drugs, genes, and proteins has seen a broader application of light-controlled systems. The key objective of this review paper is to summarise the evolution of light-activated targeted drug delivery systems and the importance of biomaterials in developing one.
Collapse
Affiliation(s)
- Mishal Pokharel
- Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, Dartmouth, MA, USA
| | - Kihan Park
- Mechanical Engineering, University of Massachusetts, Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
13
|
Wang X, Zheng J, Wen D, Li C, Li X. MiR-153 Enriched in Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promotes Chemotherapy Sensitivity of Papillary Thyroid Carcinoma. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study assesses the effect of bone marrow mesenchymal stem cells (BMSCs) exosomes miR-153 on papillary thyroid carcinoma (PTC). Adipogenesis and osteogenic induction of MSCs was performed and labeled with Cy5 labeled miR inhibitor. Cells were transfected followed by analysis of miR-153
level by real-time PCR, P-gp level by immunoblotting, and cell viability. MSCs are non-hematopoietic bone marrow-derived cells and symmetrical fibroblasts have the same characteristics as MSCs. MSCs have the potential for adipogenesis and osteogenic differentiation; miR-Cy5 can only enter
PTC cells through vesicle transfer. TMZ treatment upregulated miR-153 in exosomes; MSC-derived exosomes can be directly transferred to PTC cells. miR-153-inhibitor-Cy5 can effectively inhibit miR-153 transcription and expression of resistance-related proteins. miR-153-inhibitor can promote
TMZ’s effect and lead to cell death as demonstrated by increased level of active caspase-3. Inhibiting the endogenous transcription of miR-153 by miR-153 inhibitor can significantly down-regulate cell resistance protein, thereby promoting cell apoptosis under the action of TMZ.
Collapse
Affiliation(s)
- Xiaoxin Wang
- Department of Nuclear Medicine, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Jia Zheng
- Department of Ultrasound, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Donghu Wen
- Department of Hematology, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Chunxiang Li
- Department of Nuclear Medicine, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Xingjiang Li
- Department of Thyroid Surgery, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| |
Collapse
|
14
|
|