1
|
Cao T, Wei Z, Xue C. Recent advances in nutraceutical delivery systems constructed by protein-polysaccharide complexes: A systematic review. Compr Rev Food Sci Food Saf 2025; 24:e70115. [PMID: 39865638 DOI: 10.1111/1541-4337.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Most nutraceuticals have low stability and solubility, making it difficult to achieve ideal bioavailability by directly incorporating into food. Therefore, constructing delivery systems to protect nutraceuticals is an essential strategy. Proteins and polysaccharides have become ideal materials for encapsulating nutraceuticals due to their superior nutritional value, edible safety, and physicochemical properties. This review first introduces the binding methods of protein-polysaccharide complexes and analyzes their respective merits, defects, and applications. Then, various protein-polysaccharide complex-based nutraceutical delivery systems are systematically summarized, including emulsions, gels, nanoparticles, microcapsules, complexes, and films, which can improve the stability, encapsulation efficiency, and bioaccessibility of nutraceuticals. In addition to traditional globular proteins mentioned in previous reviews, this review also introduces the advantages of another morphology of proteins (protein fibrils with linear structure) in the formation of protein-polysaccharide complexes and the construction of nutraceutical delivery systems. Next, the affecting factors are analyzed to achieve the precise control of protein-polysaccharide complex-based nutraceutical delivery systems. To improve public acceptability of protein-polysaccharide complex-based nutraceutical delivery systems, the safety and regulatory aspects are also discussed in detail. Moreover, the applications of such delivery systems are presented, including dietary supplements, food ingredients, food packaging, and food detection. Finally, several promising research directions that had not been provided before are innovatively proposed, including cell-cultured meat scaffolds, plant-based meat analogs, three-dimensional printing inks, and "three reductions" foods. Overall, this review provides guidance for designing protein-polysaccharide complex-based nutraceutical delivery systems with customized nutrition and superior bioavailability.
Collapse
Affiliation(s)
- Tianqi Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Li X, Tang C, Ye H, Fang C. Injectable Hydrogel-Encapsulating Pickering Emulsion for Overcoming Lenvatinib-Resistant Hepatocellular Carcinoma via Cuproptosis Induction and Stemness Inhibition. Polymers (Basel) 2024; 16:2418. [PMID: 39274051 PMCID: PMC11397159 DOI: 10.3390/polym16172418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Lenvatinib resistance (LenR) presents a significant challenge in hepatocellular carcinoma (HCC) treatment, leading to high cancer-related mortality rates globally. Unlike traditional chemotherapy resistance mechanisms, LenR in HCC is primarily driven by increased cancer cell stemness. Disulfiram, (DSF), functioning as a Cu ionophore, can coordinate with Cu2+ to overcome LenR in HCC by inhibiting cancer cell stemness and cuproptosis. However, DSF faces challenges due to its poor water solubility, while copper ions present issues related to systemic toxicity during widespread use. To address this, DSF and CuO nanoparticles (NPs) were co-encapsulated to form an oil-in-water Pickering emulsion (DSF@CuO), effectively elevating DSF and copper ion concentrations within the tumor microenvironment (TME). DSF@CuO was then combined with sodium alginate (SA) to form a DSF@CuO-SA solution, which gelatinizes in situ with Ca2+ in the TME to form a DSF@CuO Gel, enhancing Pickering emulsion stability and sustaining DSF and copper ion release. A DSF@CuO Gel exhibits enhanced stability and therapeutic efficacy compared to conventional administration methods. It effectively induces mitochondrial dysfunction and cuproptosis in LenR HCC cells by downregulating DLAT, LIAS, and CDKN2A, while upregulating FDX1. Furthermore, it suppresses cancer stemness pathways through activation of the JNK/p38 MAPK pathway and inhibition of the NF-κB and NOTCH signaling pathways. These findings suggest that DSF@CuO Gels are a promising therapeutic strategy for treating LenR HCC. In vivo and in vitro LenR HCC models demonstrated significant therapeutic efficacy. In conclusion, this novel approach underscores DSF@CuO Gel's potential to overcome LenR in HCC, offering a novel approach to address this clinical challenge.
Collapse
Affiliation(s)
- Xin Li
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chuanyu Tang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hanjie Ye
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Institute of Digital Intelligent Minimally Invasive Surger, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China
- South China Institute of National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Guangzhou 510280, China
| |
Collapse
|
3
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Zhang W, Meng L, Lv X, Wang L, Zhao P, Wang J, Zhang X, Chen J, Wu Z. Enhancing Stability and Antioxidant Activity of Resveratrol-Loaded Emulsions by Ovalbumin-Dextran Conjugates. Foods 2024; 13:1246. [PMID: 38672918 PMCID: PMC11049361 DOI: 10.3390/foods13081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A reliable strategy for improving the stability and shelf life of protein-stabilized systems is by covalently attaching the protein onto a polysaccharide. In this study, ovalbumin (OVA) was modified with dextran (DEX) of different molecular weights by the Maillard reaction, and was used to enhance the stability of emulsions loaded with resveratrol. The surface hydrophobicity, thermal stability, and FT-IR spectroscopy of the OVA-DEX conjugates were evaluated. The results showed that the surface hydrophobicity of OVA decreased, while the thermal stability of OVA was significantly improved after DEX covalent modification. The OVA-DEX1k-stabilized emulsion exhibited high encapsulation efficiency of resveratrol, with the value of 89.0%. In addition, OVA-DEX was considerably more effective in droplet stabilization against different environmental stresses (heat, pH, and ionic strength). After 28 days of storage at 25 °C, the OVA-stabilized emulsion showed faster decomposition of resveratrol, whereas the OVA-DEX-conjugate-stabilized emulsion had approximately 73% retention of resveratrol. Moreover, the antioxidant activity of resveratrol-loaded emulsions stabilized by OVA-DEX was higher during storage under different temperatures. These results proved that the OVA-DEX conjugates had the potential to form stable, food-grade emulsion-based delivery systems against environmental stresses, which strongly supports their potential in the field of food and biomedical applications.
Collapse
Affiliation(s)
- Wen Zhang
- Correspondence: (W.Z.); (Z.W.); Tel.: +86-151-2261-5896 (Z.W.)
| | | | | | | | | | | | | | | | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China (J.W.)
| |
Collapse
|
5
|
Huang J, Xu S, Liu L, Zhang J, Xu J, Zhang L, Zhou X, Huang L, Peng J, Wang J, Gong Z, Chen Y. Targeted treatment of atherosclerosis with protein-polysaccharide nanoemulsion co-loaded with photosensitiser and upconversion nanoparticles. J Drug Target 2023; 31:1111-1127. [PMID: 37962293 DOI: 10.1080/1061186x.2023.2284093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Macrophages are the most abundant cell group in atherosclerosis (AS) lesions and play a vital role in all stages of AS progression. Recent research has shown that reactive oxygen species (ROS) generation from photodynamic therapy (PDT) induces macrophage autophagy to improve abnormal lipid metabolism and inflammatory environment. Especially in macrophage-derived foam cells, which has become a potential strategy for the treatment of AS. In this study, we prepared the conjugate (DB) of dextran (DEX) and bovine serum albumin (BSA). The DB was used as the emulsifier to prepare nanoemulsion loaded with upconversion nanoparticles (UCNPs) and chlorin e6 (Ce6) (UCNPs-Ce6@DB). The DEX modified on the surface of the nanoemulsion can recognise and bind to the scavenger receptor class A (SR-A) highly expressed on macrophages and promote the uptake of macrophage-derived foam cells in AS plates through SR-A-mediated endocytosis. In addition, UCNPs-Ce6@DB-mediated PDT enhanced ROS generation and induced autophagy in macrophage-derived foam cells, enhanced the expression of ABCA1, a protein closely related to cholesterol efflux, and inhibited the secretion of pro-inflammatory cytokines. Ultimately, UCNPs-Ce6@DB was shown to inhibit plaque formation in mouse models of AS. In conclusion, UCNPs-Ce6@DB offers a promising treatment for AS.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lina Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang Zhou
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Jiangsu, Nanjing, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Bögels BWA, Nguyen BH, Ward D, Gascoigne L, Schrijver DP, Makri Pistikou AM, Joesaar A, Yang S, Voets IK, Mulder WJM, Phillips A, Mann S, Seelig G, Strauss K, Chen YJ, de Greef TFA. DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access. NATURE NANOTECHNOLOGY 2023; 18:912-921. [PMID: 37142708 PMCID: PMC10427423 DOI: 10.1038/s41565-023-01377-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/19/2023] [Indexed: 05/06/2023]
Abstract
DNA has emerged as an attractive medium for archival data storage due to its durability and high information density. Scalable parallel random access to information is a desirable property of any storage system. For DNA-based storage systems, however, this still needs to be robustly established. Here we report on a thermoconfined polymerase chain reaction, which enables multiplexed, repeated random access to compartmentalized DNA files. The strategy is based on localizing biotin-functionalized oligonucleotides inside thermoresponsive, semipermeable microcapsules. At low temperatures, microcapsules are permeable to enzymes, primers and amplified products, whereas at high temperatures, membrane collapse prevents molecular crosstalk during amplification. Our data show that the platform outperforms non-compartmentalized DNA storage compared with repeated random access and reduces amplification bias tenfold during multiplex polymerase chain reaction. Using fluorescent sorting, we also demonstrate sample pooling and data retrieval by microcapsule barcoding. Therefore, the thermoresponsive microcapsule technology offers a scalable, sequence-agnostic approach for repeated random access to archival DNA files.
Collapse
Affiliation(s)
- Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bichlien H Nguyen
- Microsoft, Redmond, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - David Ward
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Levena Gascoigne
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - David P Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna-Maria Makri Pistikou
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alex Joesaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Shuo Yang
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ilja K Voets
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Karin Strauss
- Microsoft, Redmond, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Yuan-Jyue Chen
- Microsoft, Redmond, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Chen Y, Wang J, Xu J, Zhang J, Xu S, Zhang Q, Huang J, Peng J, Xu H, Du Q, Gong Z. Fabrication of a Polysaccharide-Protein/Protein Complex Stabilized Oral Nanoemulsion to Facilitate the Therapeutic Effects of 1,8-Cineole on Atherosclerosis. ACS NANO 2023; 17:9090-9109. [PMID: 37172004 DOI: 10.1021/acsnano.2c12230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Atherosclerosis (AS) is a systemic disease characterized by lipid deposition in the blood vessel wall that urgently requires effective and safe therapeutic drugs for long-term treatment. An essential oil monomer-1,8-cineole (CIN) with ameliorative effects on vascular injuries has considerable potential for preventing the progression of AS because of its antioxidant, anti-inflammation, and cholesterol regulatory effects. However, the high volatility and instability of CIN result in low oral bioavailability and a short half-life, thereby limiting its clinical application. We formulated a nanoemulsion using a polysaccharide-protein/protein complex (dextran-bovine serum albumin/protamine, DEX5k-BSA/PTM) as an emulsifier, with vitamin B12 (VB12) as the ligand to facilitate the transportation across the small intestine. An emulsion preparation method using a microjet followed by ultraviolet irradiation was developed to obtain the CIN-loaded oral nanoemulsion CIN@DEX5k-BSA/PTM/VB12. The nanoemulsion improved the stability of CIN both in vitro and in vivo, prolonged the retention time in the gastrointestinal tract (GIT), and enhanced the permeability across the mucus layer and intestinal epithelial cells to increase oral bioavailability and plaque accumulation of CIN. Validated in an AS mouse model, CIN@DEX5k-BSA/PTM/VB12 achieved prominent therapeutic efficacy combating AS. This study highlights the advantages of DEX5k-BSA/PTM and VB12 in the development of nanoemulsions for CIN and provides a promising oral nanoplatform for the delivery of essential oils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | |
Collapse
|
8
|
Hanafy NAN, Eltonouby EAB, Salim EI, Mahfouz ME, Leporatti S, Hafez EH. Simultaneous Administration of Bevacizumab with Bee-Pollen Extract-Loaded Hybrid Protein Hydrogel NPs Is a Promising Targeted Strategy against Cancer Cells. Int J Mol Sci 2023; 24:3548. [PMID: 36834960 PMCID: PMC9963805 DOI: 10.3390/ijms24043548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Bevacizumab (Bev) a humanized monoclonal antibody that fights vascular endothelial growth factor A (VEGF-A). It was the first specifically considered angiogenesis inhibitor and it has now become the normative first-line therapy for advanced non-small-cell lung cancer (NSCLC). In the current study, polyphenolic compounds were isolated from bee pollen (PCIBP) and encapsulated (EPCIBP) inside moieties of hybrid peptide-protein hydrogel nanoparticles in which bovine serum albumin (BSA) was combined with protamine-free sulfate and targeted with folic acid (FA). The apoptotic effects of PCIBP and its encapsulation (EPCIBP) were further investigated using A549 and MCF-7 cell lines, providing significant upregulation of Bax and caspase 3 genes and downregulation of Bcl2, HRAS, and MAPK as well. This effect was synergistically improved in combination with Bev. Our findings may contribute to the use of EPCIBP simultaneously with chemotherapy to strengthen the effectiveness and minimize the required dose.
Collapse
Affiliation(s)
- Nemany A. N. Hanafy
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Eman Ali Bakr Eltonouby
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed I. Salim
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Magdy E. Mahfouz
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Stefano Leporatti
- CNR NANOTEC-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Ezar H. Hafez
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
9
|
Ashaolu TJ, Khoder RM, Alkaltham MS, Nawaz A, Walayat N, Umair M, Khalifa I. Mechanism and technological evaluation of biopeptidal-based emulsions. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Wang ZD, Peng HH, Guan YX, Yao SJ. Supercritical CO2 assisted micronization of curcumin-loaded oil-in-water emulsion promising in colon targeted delivery. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Miyaguchi Y, Sasaki S, Shibuya T, Ogawa Y. Effect of salmon protamine on the physicochemical properties of porcine myofibril. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|