1
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Chen A, Mesfin JM, Gianneschi NC, Christman KL. Intravascularly Deliverable Biomaterial Platforms for Tissue Repair and Regeneration Post-Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300603. [PMID: 36989469 PMCID: PMC10539487 DOI: 10.1002/adma.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Each year, nearly 19 million people die of cardiovascular disease with coronary heart disease and myocardial infarction (MI) as the leading cause of the progression of heart failure. Due to the high risk associated with surgical procedures, a variety of minimally invasive therapeutics aimed at tissue repair and regeneration are being developed. While biomaterials delivered via intramyocardial injection have shown promise, there are challenges associated with delivery in acute MI. In contrast, intravascularly injectable biomaterials are a desirable category of therapeutics due to their ability to be delivered immediately post-MI via less invasive methods. In addition to passive diffusion into the infarct, these biomaterials can be designed to target the molecular and cellular characteristics seen in MI pathophysiology, such as cells and proteins present in the ischemic myocardium, to reduce off-target localization. These injectable materials can also be stimuli-responsive through enzymes or chemical imbalances. This review outlines the natural and synthetic biomaterial designs that allow for retention and accumulation within the infarct via intravascular delivery, including intracoronary infusion and intravenous injection.
Collapse
Affiliation(s)
- Alexander Chen
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Joshua M. Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biomedical Engineering, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Wang Y, Li F, Wei S, Li W, Wu J, Li S, Hu X, Tang T, Liu X. Puerarin-Loaded Liposomes Co-Modified by Ischemic Myocardium-Targeting Peptide and Triphenylphosphonium Cations Ameliorate Myocardial Ischemia-Reperfusion Injury. Int J Nanomedicine 2024; 19:7997-8014. [PMID: 39130683 PMCID: PMC11317047 DOI: 10.2147/ijn.s468394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Mitochondrial damage may lead to uncontrolled oxidative stress and massive apoptosis, and thus plays a pivotal role in the pathological processes of myocardial ischemia-reperfusion (I/R) injury. However, it is difficult for the drugs such as puerarin (PUE) to reach the mitochondrial lesion due to lack of targeting ability, which seriously affects the expected efficacy of drug therapy for myocardial I/R injury. Methods We prepared triphenylphosphonium (TPP) cations and ischemic myocardium-targeting peptide (IMTP) co-modified puerarin-loaded liposomes (PUE@T/I-L), which effectively deliver the drug to mitochondria and improve the effectiveness of PUE in reducing myocardial I/R injury. Results In vitro test results showed that PUE@T/I-L had sustained release and excellent hemocompatibility. Fluorescence test results showed that TPP cations and IMTP double-modified liposomes (T/I-L) enhanced the intracellular uptake, escaped lysosomal capture and promoted drug targeting into the mitochondria. Notably, PUE@T/I-L inhibited the opening of the mitochondrial permeability transition pore, reduced intracellular reactive oxygen species (ROS) levels and increased superoxide dismutase (SOD) levels, thereby decreasing the percentage of Hoechst-positive cells and improving the survival of hypoxia-reoxygenated (H/R)-injured H9c2 cells. In a mouse myocardial I/R injury model, PUE@T/I-L showed a significant myocardial protective effect against myocardial I/R injury by protecting mitochondrial integrity, reducing myocardial apoptosis and decreasing infarct size. Conclusion This drug delivery system exhibited excellent mitochondrial targeting and reduction of myocardial apoptosis, which endowed it with good potential extension value in the precise treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
4
|
Song L, Jia K, Yang F, Wang J. Advanced Nanomedicine Approaches for Myocardial Infarction Treatment. Int J Nanomedicine 2024; 19:6399-6425. [PMID: 38952676 PMCID: PMC11215519 DOI: 10.2147/ijn.s467219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Myocardial infarction, usually caused by the rupture of atherosclerotic plaque, leads to irreversible ischemic cardiomyocyte death within hours followed by impaired cardiac performance or even heart failure. Current interventional reperfusion strategies for myocardial infarction still face high mortality with the development of heart failure. Nanomaterial-based therapy has made great progress in reducing infarct size and promoting cardiac repair after MI, although most studies are preclinical trials. This review focuses primarily on recent progress (2016-now) in the development of various nanomedicines in the treatment of myocardial infarction. We summarize these applications with the strategy of mechanism including anti-cardiomyocyte death strategy, activation of neovascularization, antioxidants strategy, immunomodulation, anti-cardiac remodeling, and cardiac repair.
Collapse
Affiliation(s)
- Lin Song
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Kangwei Jia
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fuqing Yang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
5
|
Li F, Wang Y, Li W, Wu J, Li S, Hu X, Tang T, Liu X. Enhanced protection against hypoxia/reoxygenation-induced apoptosis in H9c2 cells by puerarin-loaded liposomes modified with matrix metalloproteinases-targeting peptide and triphenylphosphonium. J Liposome Res 2023; 33:378-391. [PMID: 37017315 DOI: 10.1080/08982104.2023.2193845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
Based on the inhibition of mitochondrial permeability transition pore (mPTP) opening, puerarin (PUE) has a good potential to reduce myocardial ischemia/reperfusion injury (MI/RI). However, the lack of targeting of free PUE makes it difficult to reach the mitochondria. In this paper, we constructed matrix metalloproteinase-targeting peptide (MMP-TP) and triphenylphosphonium (TPP) cation co-modified liposomes loaded with PUE (PUE@T/M-L) for mitochondria-targeted drug delivery. PUE@T/M-L had a favorable particle size of 144.9 ± 0.8 nm, an encapsulation efficiency of 78.9 ± 0.6%, and a sustained-release behavior. The results of cytofluorimetric experiments showed that MMP-TP and TPP double-modified liposomes (T/M-L) enhanced intracellular uptake, escaped lysosomal capture, and promoted drug targeting into mitochondria. In addition, PUE@T/M-L enhanced the viability of hypoxia-reoxygenation (H/R) injured H9c2 cells by inhibiting mPTP opening and reactive oxygen species (ROS) production, reducing Bax expression and increasing Bcl-2 expression. It was inferred that PUE@T/M-L delivered PUE into the mitochondria of H/R injured H9c2 cells, resulting in a significant increase in cellular potency. Based on the ability of MMP-TP to bind the elevated expression of matrix metalloproteinases (MMPs), T/M-L had excellent tropism for Lipopolysaccharide (LPS) -stimulated macrophages and can significantly reduce TNF-α and ROS levels, thus allowing both drug accumulation in ischemic cardiomyocytes and reducing inflammatory stimulation during MI/RI. Fluorescence imaging results of the targeting effect using a DiR probe also indicated that DiR@T/M-L could accumulate and retain in the ischemic myocardium. Taken together, these results demonstrated the promising application of PUE@T/M-L for mitochondria-targeted drug delivery to achieve maximum therapeutic efficacy of PUE.
Collapse
Affiliation(s)
- Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
6
|
Yang R, Gu Y, Qin J, Liu Q, Liu Q. Potential role of Chinese medicine nanoparticles to treat coronary artery disease. Heliyon 2023; 9:e19766. [PMID: 37809499 PMCID: PMC10559060 DOI: 10.1016/j.heliyon.2023.e19766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death worldwide, while conventional treatments such as percutaneous coronary intervention (PCI) have limitations. This review aims to explore the potential of nanoparticles loaded with Chinese medicine in the treatment of CAD. We conducted a comprehensive literature search to summarize the characteristics of nanovehicle systems, targeting strategies, and administration methods of various nanoparticles containing Chinese medicine for CAD treatment. Nanoparticle-based drug delivery systems, capable of delivering Chinese medicine, offer several advantages, including high targeting efficiency, prolonged half-life, and low systemic toxicity, making them promising for CAD treatment. Overall, nanoparticles containing Chinese medicine present a promising approach for the treatment of CAD.
Collapse
Affiliation(s)
- Rongyuan Yang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Yingming Gu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Jinying Qin
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Qingqing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| |
Collapse
|
7
|
Li D, Son Y, Jang M, Wang S, Zhu W. Nanoparticle Based Cardiac Specific Drug Delivery. BIOLOGY 2023; 12:biology12010082. [PMID: 36671774 PMCID: PMC9856055 DOI: 10.3390/biology12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Heart failure secondary to myocardial injuries is a leading cause of death worldwide. Recently, a growing number of novel therapies have emerged for injured myocardium repairment. However, delivering therapeutic agents specifically to the injured heart remains a significant challenge. Nanoparticles are the most commonly used vehicles for targeted drug delivery. Various nanoparticles have been synthesized to deliver drugs and other therapeutic molecules to the injured heart via passive or active targeting approaches, and their targeting specificity and therapeutic efficacies have been investigated. Here, we summarized nanoparticle-based, cardiac-specific drug delivery systems, their potency for treating heart diseases, and the mechanisms underlying these cardiac-targeting strategies. We also discussed the clinical studies that have employed nanoparticle-based cardiac-specific drug delivery.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Department of Cardiology, Dongfang Hospital, The Second Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yura Son
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (S.W.); (W.Z.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Correspondence: (S.W.); (W.Z.)
| |
Collapse
|
8
|
Wang D, Bu T, Li Y, He Y, Yang F, Zou L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants (Basel) 2022; 11:2121. [PMID: 36358493 PMCID: PMC9686758 DOI: 10.3390/antiox11112121] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/01/2023] Open
Abstract
As a kind of medicine and food homologous plant, kudzu root (Pueraria lobata (Willd.) Ohwi) is called an "official medicine" in Chinese folk medicine. Puerarin is the main active component extracted from kudzu root, and its structural formula is 8-β-D-grapes pyranose-4, 7-dihydroxy isoflavone, with a white needle crystal; it is slightly soluble in water, and its aqueous solution is colorless or light yellow. Puerarin is a natural antioxidant with high health value and has a series of biological activities such as antioxidation, anti-inflammation, anti-tumor effects, immunity improvement, and cardio-cerebrovascular and nerve cell protection. In particular, for the past few years, it has also been extensively used in clinical study. This review focuses on the antioxidant activity of puerarin, the therapy of diverse types of inflammatory diseases, various new drug delivery systems of puerarin, the "structure-activity relationship" of puerarin and its derivatives, and pharmacokinetic and clinical studies, which can provide a new perspective for the puerarin-related drug research and development, clinical application, and further development and utilization.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Bu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Yang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
George TA, Hsu CC, Meeson A, Lundy DJ. Nanocarrier-Based Targeted Therapies for Myocardial Infarction. Pharmaceutics 2022; 14:930. [PMID: 35631516 PMCID: PMC9143269 DOI: 10.3390/pharmaceutics14050930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
Myocardial infarction is a major cause of morbidity and mortality worldwide. Due to poor inherent regeneration of the adult mammalian myocardium and challenges with effective drug delivery, there has been little progress in regenerative therapies. Nanocarriers, including liposomes, nanoparticles, and exosomes, offer many potential advantages for the therapy of myocardial infarction, including improved delivery, retention, and prolonged activity of therapeutics. However, there are many challenges that have prevented the widespread clinical use of these technologies. This review aims to summarize significant principles and developments in the field, with a focus on nanocarriers using ligand-based or cell mimicry-based targeting. Lastly, a discussion of limitations and potential future direction is provided.
Collapse
Affiliation(s)
- Thomashire A. George
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Chuan-Chih Hsu
- Department of Cardiovascular Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Annette Meeson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK;
| | - David J. Lundy
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|