1
|
Yin A, Fu Y, Wang T, Li H, Wang X, Ye X, Dong P, Yao W. Fu-Zheng-Li-Fei Recipe (FZLFR) in the treatment of cancer cachexia: Exploration of the efficacy and molecular mechanism based on chemical characterization, experimental research and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118929. [PMID: 39395766 DOI: 10.1016/j.jep.2024.118929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE FZLFR was derived from a classic traditional Chinese medicine recipe, the Shiquan-Dabu decoction. FZLFR is commonly used in clinical practice to address muscle loss and associated cancer cachexia. However, the mechanism of by which FZLFR acts in cancer cachexia remains unclear. AIM This study aimed to assess the effects and explore the potential mechanism of action of FZLFR in treating cancer cachexia. METHODS Cancer cachexia was induced by inoculating Lewis lung carcinoma cells into the right flank of male C57BL/6 mice. The efficacy of FZLFR was evaluated by comparing changes in body weight, tumor mass, food intake, survival time, weight, and cross-sectional area of the gastrocnemius and anterior tibial muscles. Moreover, inflammatory cytokines, such as TNF-α and IL-6, were detected by ELISA. The chemical components of FZLFR were analyzed using ultra-performance liquid chromatography-coupled with time-of-flight mass spectrometry. Network pharmacology analysis was performed to screen the core targets and potential pathways involved in FZLFR treatment of cancer cachexia. Molecular docking was used to analyze the binding ability of the core targets and key compounds. The expression levels of core targets and targets correlated with skeletal muscle atrophy were also assessed using western blotting. RESULTS FZLFR enhanced the food intake and survival rate of mice with cancer cachexia. It also alleviated tumor-induced body weight loss, tumor growth, and muscle fiber atrophy in these mice. Additionally, it improved the weight and cross-sectional area of the gastrocnemius and anterior tibial muscles. FZLFR down-regulated the serum levels of TNF-α and IL-6. UPLC-ESI-Q-TOF-MS analysis identified 184 compounds in FZLFR. Network pharmacology analysis predicted that TNF signaling pathway, ErbB signaling pathway and VEGF signaling pathway might be essential in FZLFR action. Molecular docking showed that kaempferol, upafolin, apigenin, and luteolin might play key roles in FZLFR treatment. Moreover, FZLFR decreased MAFBx1, MURF1, NF-κB, TWEAK, MAPK8, and EGFR expression levels. FZLFR enhanced the expression of VEGFA and ESR1, as demonstrated by western blotting. CONCLUSIONS FZLFR increased food intake and alleviated muscle atrophy in mice with cancer cachexia. The potential pharmacological mechanisms underlying its anticachexia effects include reducing inflammation, enhancing muscle vascular growth, inhibiting tumor angiogenesis, and modulating estrogen receptors.
Collapse
Affiliation(s)
- Aining Yin
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China; Zhongshan College of Dalian Medical University, Dalian, 116085, China
| | - Yu Fu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China; Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Tingxin Wang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Honglin Li
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiufang Wang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China; Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xueke Ye
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China; Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Peipei Dong
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Wei Yao
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China; Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Wang C, Xiu Y, Zhang Y, Wang Y, Xu J, Yu W, Xing D. Recent advances in biotin-based therapeutic agents for cancer therapy. NANOSCALE 2024. [PMID: 39676680 DOI: 10.1039/d4nr03729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Biotin receptors, as biomarkers for cancer cells, are overexpressed in various tumor types. Compared to other vitamin receptors, such as folate receptors and vitamin B12 receptors, biotin receptor-based targeting strategies exhibit superior specificity and broader potential in treating aggressive cancers, including ovarian cancer, leukemia, colon cancer, breast cancer, kidney cancer, and lung cancer. These strategies promote biotin transport via receptor-mediated endocytosis, which is triggered upon ligand binding. Biotin, as the ligand of the biotin receptor, can be conjugated to anti-cancer drugs to form targeted therapies that bind to receptors overexpressed on tumor cells, thus increasing drug uptake. Despite these advantages, many candidate drugs have progressed slowly and remain in the preclinical stage, impeding clinical translation. This is mainly due to the effects of various conjugation methods and drug formulations on their functionality and efficacy. Therefore, developing novel biotin-based therapeutics is crucial. The innovation of this strategy lies in its multifunctionality-researchers can use different conjugation methods to design and synthesize these drugs, enabling precise targeting of various tumor types while minimizing toxicity to normal cells. These drugs include small-molecule-biotin conjugates (SMBCs) and nano-biotin conjugates (NBCs). This dual-platform approach represents a significant advancement in targeted therapy, offering unprecedented flexibility in drug design and delivery. Compared to chemotherapy drugs and traditional delivery systems, biotin-based drugs with tumor-specific targeting demonstrate enhanced targeting, improved efficacy, and reduced toxicity. This review examines strategies and applications for enhancing the delivery of chemotherapy drugs to cancer cells, highlighting the need for high-quality conjugates and strategies. It not only summarizes the latest progress but also provides key insights into how this emerging field could revolutionize personalized cancer treatment, especially in the context of precision medicine. Additionally, it offers perspectives on future research directions in this field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Wanpeng Yu
- Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Wang Q, Ma C, Wang N, Mao H. Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review. Food Funct 2024; 15:3897-3907. [PMID: 38535893 DOI: 10.1039/d3fo03831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Quercetin is a unique bioactive flavonoid, and is an excellent antioxidant and has anti-tumor effects by regulating different tumor-related processes like proliferation, apoptosis, invasion, and spread. The latest investigations reveal that quercetin may have the capability to influence DNA methylation modification, one of the primary factors in the development of tumors. Despite the fact that quercetin has significant therapeutic properties, its use as an anti-tumor medicine is constrained by its poor solubility, short half-life, and ineffective tumor targeting. Here, we review the structure and properties of quercetin, its capacity for DNA methylation modification in tumors, and the possibility of nanoscale delivery of quercetin for future tumor treatment.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Nan Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Huixian Mao
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
4
|
Xie Y, Li K, Liang J, Wang K, Gong Z, Chen X. Co-delivery of doxorubicin and STING agonist cGAMP for enhanced antitumor immunity. Int J Pharm 2024; 654:123955. [PMID: 38423155 DOI: 10.1016/j.ijpharm.2024.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Many chemotherapeutic agents can induce immunogenic cell death (ICD), which leads to the release of danger-associated molecular patterns (DAMPs) and tumor-associated antigens. This process promotes dendritic cells (DCs) maturation and cytotoxic T lymphocyte (CTL) infiltration. However, cancer cells can employ diverse mechanisms to evade the host immune system. Recent studies have shown that stimulator of interferon genes (STING) agonists, such as cGAMP, can amplify ICD-triggered immune responses and enhance the infiltration of immune cells into the tumor microenvironment (TME). Building upon these findings, we constructed a doxorubicin (DOX) and cGAMP co-delivery system (DOX/cGAMP@NPs) for melanoma and triple-negative breast cancer (TNBC) therapy. The results demonstrated that DOX could effectively destroy tumors and induce the release of DAMPs by ICD. Furthermore, in orthotopic 4T1 tumors mice model and subcutaneous B16 tumor mice model, cGAMP could promote the maturation of DCs and CD8+ T cell activation and infiltration by inducing the secretion of type I interferons and pro-inflammation cytokine, which amplified the antitumor immune response induced by DOX. This strategy also promoted the depletion of immunosuppressive cells, potentially alleviating the immunosuppressive TME. In conclusion, our study highlights the combination of DOX-induced ICD and the immune-enhancing properties of cGAMP holds significant implications for future research and clinical applications.
Collapse
Affiliation(s)
- Yi Xie
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kangkang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinxin Liang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaixuan Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zixuan Gong
- Qingdao No.58 High School of Shandong Province, Qingdao, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Parsaei M, Akhbari K. Magnetic UiO-66-NH 2 Core-Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells. ACS OMEGA 2023; 8:41321-41338. [PMID: 37969997 PMCID: PMC10633860 DOI: 10.1021/acsomega.3c04863] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
In this study, a magnetic core-shell metal-organic framework (MOF) nanocomposite, Fe3O4-COOH@UiO-66-NH2, was synthesized for tumor-targeting drug delivery by incorporating carboxylate groups as functional groups onto ferrite nanoparticle surfaces, followed by fabrication of the UiO-66-NH2 shell using a facile self-assembly approach. The anticancer drug quercetin (QU) was loaded into the magnetic core-shell nanoparticles. The synthesized magnetic nanoparticles were comprehensively evaluated through multiple techniques, including FT-IR, PXRD, FE-SEM, TEM, EDX, BET, UV-vis, ZP, and VSM. Drug release investigations were conducted to investigate the release behavior of QU from the nanocomposite at two different pH values (7.4 and 5.4). The results revealed that QU@Fe3O4-COOH@UiO-66-NH2 exhibited a high loading capacity of 43.1% and pH-dependent release behavior, maintaining sustained release characteristics over a prolonged duration of 11 days. Furthermore, cytotoxicity assays using the human breast cancer cell line MDA-MB-231 and the normal cell line HEK-293 were performed to evaluate the cytotoxic effects of QU, UiO-66-NH2, Fe3O4-COOH, Fe3O4-COOH@UiO-66-NH2, and QU@Fe3O4-COOH@UiO-66-NH2. Treatment with QU@Fe3O4-COOH@UiO-66-NH2 substantially reduced the cell viability in cancerous MDA-MB-231 cells. Cellular uptake and cell death mechanisms were further investigated, demonstrating the internalization of QU@Fe3O4-COOH@UiO-66-NH2 by cancer cells and the induction of cancer cell death through the apoptosis pathway. These findings highlight the considerable potential of Fe3O4-COOH@UiO-66-NH2 as a targeted nanocarrier for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
7
|
Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, Behl T, Rani R, Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2769-2792. [PMID: 37219615 DOI: 10.1007/s00210-023-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology, Jabalpur, M.P, 483001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong,, Brunei, Darussalam
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Radha Rani
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India.
| |
Collapse
|
8
|
Zandieh MA, Farahani MH, Daryab M, Motahari A, Gholami S, Salmani F, Karimi F, Samaei SS, Rezaee A, Rahmanian P, Khorrami R, Salimimoghadam S, Nabavi N, Zou R, Sethi G, Rashidi M, Hushmandi K. Stimuli-responsive (nano)architectures for phytochemical delivery in cancer therapy. Biomed Pharmacother 2023; 166:115283. [PMID: 37567073 DOI: 10.1016/j.biopha.2023.115283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The use of phytochemicals for purpose of cancer therapy has been accelerated due to resistance of tumor cells to conventional chemotherapy drugs and therefore, monotherapy does not cause significant improvement in the prognosis and survival of patients. Therefore, administration of natural products alone or in combination with chemotherapy drugs due to various mechanisms of action has been suggested. However, cancer therapy using phytochemicals requires more attention because of poor bioavailability of compounds and lack of specific accumulation at tumor site. Hence, nanocarriers for specific delivery of phytochemicals in tumor therapy has been suggested. The pharmacokinetic profile of natural products and their therapeutic indices can be improved. The nanocarriers can improve potential of natural products in crossing over BBB and also, promote internalization in cancer cells through endocytosis. Moreover, (nano)platforms can deliver both natural and synthetic anti-cancer drugs in combination cancer therapy. The surface functionalization of nanostructures with ligands improves ability in internalization in tumor cells and improving cytotoxicity of natural compounds. Interestingly, stimuli-responsive nanostructures that respond to endogenous and exogenous stimuli have been employed for delivery of natural compounds in cancer therapy. The decrease in pH in tumor microenvironment causes degradation of bonds in nanostructures to release cargo and when changes in GSH levels occur, it also mediates drug release from nanocarriers. Moreover, enzymes in the tumor microenvironment such as MMP-2 can mediate drug release from nanocarriers and more progresses in targeted drug delivery obtained by application of nanoparticles that are responsive to exogenous stimulus including light.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Xu B, Dan W, Wu J, Wang X, Qin X, Han Y, Song X, Zhang X, Li J. Integrating network pharmacology with molecular docking for elucidation of molecular biological mechanisms of Jiedu Qingjin formula for non-small cell lung cancer. J Biomol Struct Dyn 2023; 42:11322-11341. [PMID: 37771185 DOI: 10.1080/07391102.2023.2262587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Traditional Chinese medicine is an important part of complementary alternative medicine. Jiedu Qingjin formula (JDQJF) is an effective national invention patent for the treatment of non-small cell lung cancer (NSCLC). We investigated the molecular biological mechanisms based on network pharmacology, molecular docking, and molecular dynamics simulations. Compounds of JDQJF were screened through the TCMSP, ETCM, and literature. Targets were searched by DrugBank and predicted by SwissTargetPrediction. GEO database was applied for screening differentially expressed genes between cancerous tissues and healthy tissues of NSCLC. Subsequently, the protein-protein interaction between JDQJF and NSCLC were obtained by Cytoscape. Visual analyses were carried out to extract candidate genes, then subjected to Metascape for enrichment analyses. Finally, molecular docking was performed by AutoDock, and the best complexes were subjected to molecular dynamics simulation and binding energy calculations by MMPBSA. A total of 273 compounds, 390 targets, 3146 GO terms, and 174 KEGG pathways were obtained. Five potential compounds (quercetin, adenosine, apigenin, heptadecanoic acid, and luteolin) were notably modulated by key targets AKT1, MAPK3, and RAF1. Enrichment results included cell cycle process, growth transduction factor, immune response-activating transduction, and involved PI3K/AKT, MAPK, NF-κB and VEGF pathway. RAF1-quercetin showed the highest binding affinity (-9.1 kcal/mol), revealed stable interactions during the simulation, and the highest estimated relative binding energy of the RAF1-Heptadecanoic was -184.277 kcal/mol. This study suggested that EMT-related, inflammation-related, immune-related, and angiogenesis-related pathways may be associated with JDQJF, and involved in the advancement of NSCLC, which points out the research direction for subsequent utility mechanism validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bowen Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenchao Dan
- Department of Dermatological, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Qin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Alvarez De Lauro AE, Pelaez MA, Marquez AB, Wagner MS, Scolaro LA, García CC, Damonte EB, Sepúlveda CS. Effects of the Natural Flavonoid Quercetin on Arenavirus Junín Infection. Viruses 2023; 15:1741. [PMID: 37632083 PMCID: PMC10459926 DOI: 10.3390/v15081741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
There is no specific chemotherapy approved for the treatment of pathogenic arenaviruses that cause severe hemorrhagic fever (HF) in the population of endemic regions in America and Africa. The present study reports the effects of the natural flavonoid quercetin (QUER) on the infection of A549 and Vero cells with Junín virus (JUNV), agent of the Argentine HF. By infectivity assays, a very effective dose-dependent reduction of JUNV multiplication was shown by cell pretreatment at 2-6 h prior to the infection at non-cytotoxic concentrations, with 50% effective concentration values in the range of 6.1-7.5 µg/mL. QUER was also active by post-infection treatment but with minor efficacy. Mechanistic studies indicated that QUER mainly affected the early steps of virus adsorption and internalization in the multiplication cycle of JUNV. Treatment with QUER blocked the phosphorylation of Akt without changes in the total protein expression, detected by Western blot, and the consequent perturbation of the PI3K/Akt pathway was also associated with the fluorescence redistribution from membrane to cytoplasm of TfR1, the cell receptor recognized by JUNV. Then, it appears that the cellular antiviral state, induced by QUER treatment, leads to the prevention of JUNV entry into the cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elsa Beatriz Damonte
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Claudia Soledad Sepúlveda
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| |
Collapse
|
11
|
Li K, Cai X, Fan Y, Jin M, Xie Y, Jing Z, Zang X, Han Y. Codelivery of Que and BCL-2 siRNA with Lipid-Copolymer Hybrid Nanocomplexes for Efficient Tumor Regression. ACS Biomater Sci Eng 2023; 9:4805-4820. [PMID: 37463126 DOI: 10.1021/acsbiomaterials.3c00489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The efficacy of chemotherapy is often reduced due to the chemotherapy resistance of tumor cells, which is usually caused by abnormal gene overexpression. Herein, multifunctional nanocomplexes (Que/siBCL2@BioMICs) were developed to deliver quercetin (Que) and BCL-2 siRNA (siBCL2) to synergistically inhibit tumor growth. The nanocomplexes were composed of an amphiphilic triblock copolymer of poly(ethylene glycol) methyl ether methacrylate-poly[2-(dimethylamino) ethyl acrylate]-polycaprolactone (PEGMA-PDMAEA-PCL) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-biotin (DSPE-PEG-biotin). Que was encapsulated into the cores through hydrophobic interactions, while negatively charged siBCL2 was loaded through electrostatic interactions. The nanocomplexes could effectively facilitate cellular uptake via biotin-mediated active targeting and cytosolic release of cargos by the "proton sponge effect" of PDMAEA. Que/siBCL2@BioMICs achieved enhanced cytotoxicity and anti-metastasis activity due to a synergistic effect of Que and siBCL2 in vitro. More importantly, superior anti-tumor efficacy was observed in orthotopic 4T1 tumor-bearing mice with reduced primary tumor burden and lung metastatic nodules, while no obvious side effects to major organs were observed. In conclusion, the biotin-targeted nanocomplexes with chemotherapeutic and nucleotide agent entrapment provide a promising strategy for efficient triple-negative breast cancer (TNBC) therapy.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Xiaohua Cai
- Department of Pharmacy, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Yong Fan
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao 266032, China
| | - Meng Jin
- Department of Positron Emission Tomography-Computed Tomography (PET-CT) Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Zhenghui Jing
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| |
Collapse
|
12
|
Song J, Cheng M, Xie Y, Li K, Zang X. Efficient tumor synergistic chemoimmunotherapy by self-augmented ROS-responsive immunomodulatory polymeric nanodrug. J Nanobiotechnology 2023; 21:93. [PMID: 36927803 PMCID: PMC10018933 DOI: 10.1186/s12951-023-01842-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy has emerged as a promising therapeutic strategy for cancer therapy. However, the therapeutic efficacy has been distracted due to poor immunogenicity and immunosuppressive tumor microenvironment. In this study, a self-augmented reactive oxygen species (ROS) responsive nanocarrier with immunogenic inducer paclitaxel (PTX) and indoleamine 2,3-dixoygenase 1 (IDO1) blocker 1-methyl-D, L-tryptophan (1-MT) co-entrapment was developed for tumor rejection. The carrier was composed of poly (ethylene glycol) (PEG) as hydrophilic segments, enzyme cleavable 1-MT ester and ROS-sensitive peroxalate conjugation as hydrophobic blocks. The copolymer could self-assemble into prodrug-based nanoparticles with PTX, realizing a positive feedback loop of ROS-accelerated PTX release and PTX induced ROS generation. Our nanoparticles presented efficient immunogenic cell death (ICD) which provoked antitumor immune responses with high effector T cells infiltration. Meanwhile immunosuppressive tumor microenvironment was simultaneously modulated with reduced regulatory T cells (Tregs) and M2-tumor associated macrophages (M2-TAMs) infiltration mediated by IDO inhibition. The combination of PTX and 1-MT achieved significant primary tumor regression and reduction of lung metastasis in 4T1 tumor bearing mice. Therefore, the above results demonstrated co-delivery of immunogenic inducer and IDO inhibitor using the ROS amplifying nanoplatform with potent potential for tumor chemoimmunotherapy.
Collapse
Affiliation(s)
- Jinxiao Song
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Mingyang Cheng
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Kangkang Li
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China.
| |
Collapse
|
13
|
Pulmonary delivery of curcumin and quercetin nanoparticles for lung cancer – Part 2: Toxicity and endocytosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Kaur N, Popli P, Tiwary N, Swami R. Small molecules as cancer targeting ligands: Shifting the paradigm. J Control Release 2023; 355:417-433. [PMID: 36754149 DOI: 10.1016/j.jconrel.2023.01.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Abstract
Conventional chemotherapeutics exploration is hampered due to their nonspecific distribution leading to unintended serious toxicity. Toxicity is so severe that deciding to go for chemotherapy becomes a question of concern for many terminally ill cancer patients. However, with evolving times nanotechnology assisted in reducing the haywire distribution and channelizing the movement of drug-enclosing drug delivery systems to cancer cells to a greater extent, yet toxicity issues still could not be obliterated. Thus, active targeting appeared as a refuge, where ligands actively or specifically deliver linked chemotherapeutics and carriers to cancer cells. For a very long time, large molecule weight/macromolecular ligands (peptides and big polymers) were considered the first choice for ligand-directed active cancer targeting, due to their specificity towards overexpressed native cancer receptors. However, complex characterization, instability, and the expensive nature demanded to reconnoitre better alternatives for macromolecule ligands. The concept of small molecules as ligands emerged from the idea that few chemical molecules including chemotherapeutics have a higher affinity for cancer receptors, which are overexpressed on cell membranes, and may have the ability to assist in drug cellular uptake through endocytosis. But now the question is, can they assist the conjugated macro cargos to enter the cell or not? This present review will provide a holistic overview of the small molecule ligands explored till now.
Collapse
Affiliation(s)
- Navjeet Kaur
- Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Pankaj Popli
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, India
| | - Neha Tiwary
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chikara University, Punjab, India.
| |
Collapse
|
15
|
Naeimi A, Ghadi FE, Parizi ZP, Rezakhani MS. 68Ga radiolabeled chitosan/curcumin/biotin nanocomposite as a drug carrier and early-stage cancer detection. Int J Biol Macromol 2023; 235:123619. [PMID: 36773877 DOI: 10.1016/j.ijbiomac.2023.123619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Nano chitosan was extracted from shrimp wastes. Biotin, as a tumor-targeting agent, and curcumin, as potential carriers of 68Ga, were immobilized on the nano chitosan, and a novel bio-nanocomposite was designed. It was characterized by FT-IR, SEM, TEM, XRD, TGA, and elemental analysis. It seems that the chitosan has a fibril shape with an average size of 70 nm, and the biotin and curcumin are evenly distributed as obtained SEM images. While, the size of Chit/Cur@Biot bio-nanocomposite was between 10 and 20 nm according to the TEM images. Cell cytotoxicity assay, cellular uptake, and fluorescence spectroscopy on A549 lung cancer cells were performed to show the potential applications of this bio-nanocomposite. The obtained results were demonstrated that Chit/Cur and Chit/Cur@Biot bio-nanocomposite exhibit antitumor activity, while, the Chit/Cur@Biot bio-nanocomposite is more effective than Chit/Cur against cancer cell lines at high concentrations. The results of fluoresce microscopy show that fluoresce of Chit/Cur@Biot was much stronger than Chit/Cur in the A549 cell lines. Moreover, the cellular uptake of Chit/Cur@Biot was enhanced when compared with the control group. The potentials of this bio-nanocomposite as anticancer and cancer-detecting agent in nuclear medicine were confirmed.
Collapse
Affiliation(s)
- Atena Naeimi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran.
| | | | | | - Mohamad Saleh Rezakhani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran; Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
16
|
Inhalant cannabidiol impedes tumor growth through decreased tumor stemness and impaired angiogenic switch in NCI-H1437-induced human lung cancer model. Hum Cell 2023; 36:1204-1210. [PMID: 36737540 DOI: 10.1007/s13577-023-00869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Lung cancer remains the most chronic form of cancer and the leading cause of cancer mortality in the world. Despite significant improvements in the treatment of lung cancer, the current therapeutic interventions are only partially effective, necessitating the continued search for better, novel alternative treatments. Angiogenesis and cancer stem cells play a central role in the initiation and propagation of cancers. Tumor angiogenesis is triggered by an angiogenic switch when pro-angiogenic factors exceed anti-angiogenic components. Although many anti-angiogenic agents are used in cancer treatment, there are therapeutic limitations with significant side effects. In recent years, cannabinoids have been investigated extensively for their potential anti-neoplastic effects. Our previous findings showed that cannabidiol (CBD) could impede tumor growth in mouse models of melanoma and glioblastoma. Importantly, CBD has been suggested to possess anti-angiogenic activity. In this study, we tested, for the first time, inhalant CBD in the treatment of heterotopic lung cancer and whether such potential effects could reduce cancer stem cell numbers and inhibit tumor angiogenesis. We implanted NCI H1437 human lung cancer cells in nude mice and treated the mice with inhalant CBD or placebo. The outcomes were measured by tumor size and imaging, as well as by immunohistochemistry and flow cytometric analysis for CD44, VEGF, and P-selectin. Our findings showed that CBD decreased tumor growth rate and suppressed expression of CD44 and the angiogenic factors VEGF and P-selectin. These results suggest, for the first time, that inhalant CBD can impede lung cancer growth by suppressing CD44 and angiogenesis.
Collapse
|
17
|
Lotfi N, Yousefi Z, Golabi M, Khalilian P, Ghezelbash B, Montazeri M, Shams MH, Baghbadorani PZ, Eskandari N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front Immunol 2023; 14:1077531. [PMID: 36926328 PMCID: PMC10011078 DOI: 10.3389/fimmu.2023.1077531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer is caused by abnormal proliferation of cells and aberrant recognition of the immune system. According to recent studies, natural products are most likely to be effective at preventing cancer without causing any noticeable complications. Among the bioactive flavonoids found in fruits and vegetables, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties. This review aims to highlight the potential therapeutic effects of quercetin on some different types of cancers including blood, lung and prostate cancers.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Golabi
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ghezelbash
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Montazeri
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Shams
- Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Nahid Eskandari
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Xie RF, Song ZY, Xu-shao LY, Huang JG, Zhao T, Yang Z. The mechanism of Bai He Gu Jin Tang against non-small cell lung cancer revealed by network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e32555. [PMID: 36596057 PMCID: PMC9803515 DOI: 10.1097/md.0000000000032555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related burden and deaths, thus effective treatment strategies with lower side effects for NSCLC are urgently needed. To systematically analyze the mechanism of Bai He Gu Jin Tang (BHGJT) against NSCLC by network pharmacology and molecular docking. METHODS The active compounds of BHGJT were obtained by searching the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine and Encyclopaedia of Traditional Chinese Medicine. Search tool for interactions of chemicals was used for acquiring the targets of BHGJT. The component-target network was mapped by Cytoscape. NSCLC-related genes were obtained by searching Genecards, DrugBank and Therapeutic Target Database. The protein-protein interaction network of intersection targets was established based on Search Tool for Recurring Instances of Neighboring Genes (STRING), and further, the therapeutic core targets were selected by topological parameters. The hub targets were transmitted to Database for Annotation, Visualization and Integrated Discovery for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, AutoDock Vina and MglTools were employed for molecular docking validation. RESULTS Two hundred fifty-six compounds and 237 putative targets of BHGJT-related active compounds as well as 1721potential targets of NSCLC were retrieved. Network analysis showed that 8 active compounds of BHGJT including kaempferol, quercetin, luteolin, isorhamnetin, beta-sitosterol, stigmasterol, mairin and liquiritigenin as well as 15 hub targets such as AKR1B10 and AKR1C2 contribute to the treatment of BHGJT against NSCLC. GO functional enrichment analysis shows that BHGJT could regulate many biological processes, such as apoptotic process. Three modules of the endocrine related pathways including the inflammation, hypoxia related pathways as well as the other cancer related pathways based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis might explain the biological mechanisms of BHGJT in treating BHGJT. The results of molecular docking verified that AKR1B10 and AKR1C2 had the strongest binding activity with the 8 key compounds of NSCLC. CONCLUSION Our study reveals the mechanism of BHGJT in treating NSCLC involving multiple components, multiple targets and multiple pathways. The present study laid an initial foundation for the subsequent research and clinical application of BHGJT and its active compounds against NSCLC.
Collapse
Affiliation(s)
- Rui-fei Xie
- Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- Hangzhou Cancer Institute, Hangzhou Cancer Hospital, Hangzhou, China
| | - Zi-yu Song
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu-yao Xu-shao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jin-ge Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Yang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- * Correspondence: Zi Yang, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China (e-mail: )
| |
Collapse
|
19
|
Xie B, Chen X, Deng Q, Shi K, Xiao J, Zou Y, Yang B, Guan A, Yang S, Dai Z, Xie H, He S, Chen Q. Development and Validation of a Prognostic Nomogram for Lung Adenocarcinoma: A Population-Based Study. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5698582. [PMID: 36536690 PMCID: PMC9759395 DOI: 10.1155/2022/5698582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 01/22/2024]
Abstract
PURPOSE To establish an effective and accurate prognostic nomogram for lung adenocarcinoma (LUAD). Patients and Methods. 62,355 LUAD patients from 1975 to 2016 enrolled in the Surveillance, Epidemiology, and End Results (SEER) database were randomly and equally divided into the training cohort (n = 31,179) and the validation cohort (n = 31,176). Univariate and multivariate Cox regression analyses screened the predictive effects of each variable on survival. The concordance index (C-index), calibration curves, receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC) were used to examine and validate the predictive accuracy of the nomogram. Kaplan-Meier curves were used to estimate overall survival (OS). RESULTS 10 prognostic factors associated with OS were identified, including age, sex, race, marital status, American Joint Committee on Cancer (AJCC) TNM stage, tumor size, grade, and primary site. A nomogram was established based on these results. C-indexes of the nomogram model reached 0.777 (95% confidence interval (CI), 0.773 to 0.781) and 0.779 (95% CI, 0.775 to 0.783) in the training and validation cohorts, respectively. The calibration curves were well-fitted for both cohorts. The AUC for the 3- and 5-year OS presented great prognostic accuracy in the training cohort (AUC = 0.832 and 0.827, respectively) and validation cohort (AUC = 0.835 and 0.828, respectively). The Kaplan-Meier curves presented significant differences in OS among the groups. CONCLUSION The nomogram allows accurate and comprehensive prognostic prediction for patients with LUAD.
Collapse
Affiliation(s)
- Bin Xie
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics,Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ke Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jian Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics,Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yong Zou
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Baishuang Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics,Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Anqi Guan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics,Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shasha Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics,Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics,Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huayan Xie
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics,Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Qiong Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics,Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
20
|
Zeng X, Teng Y, Zhu C, Li Z, Liu T, Sun Y, Han S. Combined Ibuprofen-Nanoconjugate Micelles with E-Selectin for Effective Sunitinib Anticancer Therapy. Int J Nanomedicine 2022; 17:6031-6046. [PMID: 36510619 PMCID: PMC9740013 DOI: 10.2147/ijn.s388234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Sunitinib, a first-line therapy with a certain effect, was utilized in the early stages of renal cell carcinoma treatment. However, its clinical toxicity, side effects, and its limited bioavailability, resulted in inadequate clinical therapeutic efficacy. Building neoteric, simple, and safe drug delivery systems with existing drugs offers new options. Therefore, we aimed to construct a micelle to improve the clinical efficacy of sunitinib by reusing ibuprofen. Methods We synthesized the sialic acid-poly (ethylene glycol)-ibuprofen (SA-PEG-IBU) amphipathic conjugate in two-step reaction. The SA-PEG-IBU amphiphilic conjugates can form into stable SPI nanomicelles in aqueous solution, which can be further loaded sunitinib (SU) to obtain the SPI/SU system. Following nanomicelle creation, sialic acid exposed to the nanomicelle surface can recognize the overexpressed E-selectin receptor on the membrane of cancer cells to enhance cellular uptake. The properties of morphology, stability, and drug release about the SPI/SU nanomicelles were investigated. Confocal microscopy and flow cytometry were used to assess the cellular uptake efficiency of nanomicelles in vitro. Finally, a xenograft tumor model in nude mice was constructed to investigate the body distribution and tumor suppression of SPI/SU in vivo. Results The result showed that SPI nanomicelles exhibited excellent tumor targeting performance and inhibited the migration and invasion of tumor cell in vitro. The SPI nanomicelles can improve the accumulation of drugs in the tumor site that showed effective tumor inhibition in vivo. In addition, H&E staining and immunohistochemical analysis demonstrated that the SPI/SU nanomicelles had a superior therapeutic effect and lower biotoxicity. Conclusion The SPI/SU nanomicelles displayed excellent anti-tumor ability, and can suppress the metastasis of tumor cell by decreasing the expression of Cyclooxygenase-2 due to the ibuprofen, providing an optimistic clinical application potential by developing a simple but safe drug delivery system.
Collapse
Affiliation(s)
- Xianhu Zeng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Yi Teng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Chunrong Zhu
- Department of Pharmacy Intravenous Admixture Service, Weifang Maternal and Child Health Hospital, Weifang, People’s Republic of China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Tian Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China,Correspondence: Shangcong Han; Yong Sun, Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China, Tel/Fax +86 532 82991508, Email ;
| |
Collapse
|
21
|
Palma JM, Corpas FJ, Freschi L. Editorial: Fruit ripening: From present knowledge to future development, Volume II. FRONTIERS IN PLANT SCIENCE 2022; 13:1078841. [PMID: 36531343 PMCID: PMC9753976 DOI: 10.3389/fpls.2022.1078841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Affiliation(s)
- José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Caro C, Pourmadadi M, Eshaghi MM, Rahmani E, Shojaei S, Paiva-Santos AC, Rahdar A, Behzadmehr R, García-Martín ML, Díez-Pascual AM. Nanomaterials loaded with Quercetin as an advanced tool for cancer treatment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Hu X, Zhang K, Pan G, Wang Y, Shen Y, Peng C, Deng L, Cui H. Cortex Mori extracts induce apoptosis and inhibit tumor invasion via blockage of the PI3K/AKT signaling in melanoma cells. Front Pharmacol 2022; 13:1007279. [PMID: 36339598 PMCID: PMC9627489 DOI: 10.3389/fphar.2022.1007279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 08/22/2023] Open
Abstract
Melanoma, the most aggressive and deadliest form of skin cancer, has attracted increased attention due to its increasing incidence worldwide. The Cortex Mori (CM) has long been used as a classical traditional Chinese medicine (TCM) to treat various diseases, including cancer. The bioactive components and underlying mechanisms, however, remain largely unknown. The current study aims to investigate the anti-melanoma effects of CM and potential mechanisms through combined network pharmacology and bioinformatic analyses, and validated by in vitro and in vivo experiments. We report here that CM has anti-melanoma activity both in vitro and in vivo. Furthermore, 25 bioactive compounds in CM were found to share 142 melanoma targets, and network pharmacology and enrichment analyses suggested that CM inhibits melanoma through multiple biological processes and signaling pathways, particularly the PI3K-AKT signaling inhibition and activation of apoptotic pathways, which were further confirmed by biochemical and histological examinations. Finally, partial CM-derived bioactive compounds were found to show anti-melanoma effects, validating the anti-melanoma potential of bioactive ingredients of CM. Taken together, these results reveal bioactive components and mechanisms of CM in inhibiting melanoma, providing them as potential anti-cancer natural products for the treatment of melanoma.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Yinggang Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Yue Shen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| |
Collapse
|
25
|
Molecular Mechanisms of Gynostemma pentaphyllum in Prevention and Treatment of Non-Small-Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9938936. [PMID: 36110188 PMCID: PMC9470321 DOI: 10.1155/2022/9938936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Objective Lung cancer represents the leading cause of cancer death on a global scale. Gynostemma pentaphyllum (G. pentaphyllum), a traditional medicinal material with a high medicinal and health value, has recently been reported for its anticancer activity. However, the pharmacological mechanism of G. pentaphyllum in non-small-cell lung cancer (NSCLC) remains to be elucidated. Methods The active ingredients of G. pentaphyllum were obtained from the TCMSP database and known therapeutic targets of NSCLC from the GeneCards and OMIM databases. Disease-drug common targets are subjected to protein-protein interaction (PPI), GO enrichment analysis, and KEGG pathway enrichment analysis. A molecular docking strategy was performed to verify the interaction between molecules. Results We found a total of 24 compounds of G. pentaphyllum fulfilling OB ≥ 30% concomitant with DL ≥ 0.18 and corresponding 81 target genes in the TCMSP database, with 5062 NSCLC-related genes collected in the GeneCards and OMIM databases. The network consisting of the disease-target compound was obtained, including 8 active ingredients and 69 common targets. The PPI network with 65 nodes and 645 edges was visualized. After functional enrichment analysis, it was revealed that the therapeutic effects of G. pentaphyllum on NSCLC were achieved through response to ketone, gland development, and cellular response to xenobiotic stimulus. After molecular docking analysis, it was revealed that the two active ingredients of G. pentaphyllum, quercetin and rhamnazin, bound well and stably to their targets (MYC, ESR1, and HIF1A). Conclusion Our study, based on network pharmacology, identifies active ingredients, targets, and pathways model mechanism of G. pentaphyllum when it is used to treat NSCLC.
Collapse
|