1
|
Park JY, Lee MJ, Kim HJ, Nam JW. Evaluation of peripheral nerve injury according to the severity of damage using 18F-FDG PET/MRI in a rat Model of sciatic nerve injury. Neurol Res 2024; 46:356-366. [PMID: 38402903 DOI: 10.1080/01616412.2024.2321774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES We ascertained that the PET scan may be a valuable imaging modality for the noninvasive, objective diagnosis of neuropathic pain caused by peripheral nerve injury through the previous study. This study aimed to assess peripheral nerve damage according to severity using18F-FDG PET/MRI of the rat sciatic nerve. METHODS Eighteen rats were divided into three groups: 30-second (G1), 2-minute (G2), and 5-minute (G3) crushing injuries. The severity of nerve damage was measured in the third week after the crushing injury using three methods: the paw withdrawal threshold test (RevWT), standardized uptake values on PET (SUVR), and intensity analysis on immunohistochemistry (IntR). RESULTS There were significant differences between G1 and G3 in both SUVR and IntR (p = 0.012 and 0.029, respectively), and no significant differences in RevWT among the three groups (p = 0.438). There was a significant difference in SUVR (p = 0.012), but no significant difference in IntR between G1 and G2 (p = 0.202). There was no significant difference between G2 and G3 in SUVR and IntR (p = 0.810 and 0.544, respectively). DISCUSSION Although PET did not show results consistent with those of immunohistochemistry in all respects, this study demonstrated that PET uptake tended to increase with severe nerve damage. If this research is supplemented by further experiments, PET/MRI can be used as an effective diagnostic modality.
Collapse
Affiliation(s)
- Jong Yeol Park
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Mi Jee Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hyung Jun Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jung Woo Nam
- Department of Oral and Maxillofacial Surgery, Sanbon Dental Hospital, Wonkwang University, Gunpo-si, Republic of Korea
| |
Collapse
|
2
|
Pawitan JA, Margiana R, Aman RA, Jusuf AA, Ibrahim N, Wibowo H. The effect of human umbilical cord-derived mesenchymal stem cell conditioned medium on the peripheral nerve regeneration of injured rats. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/115468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Kokubu N, Tsujii M, Akeda K, Iino T, Sudo A. BMP-7/Smad expression in dedifferentiated Schwann cells during axonal regeneration and upregulation of endogenous BMP-7 following administration of PTH (1-34). J Orthop Surg (Hong Kong) 2019; 26:2309499018812953. [PMID: 30442072 DOI: 10.1177/2309499018812953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE: To determine the expression and distribution of bone morphogenetic protein (BMP)-7 and related molecules during peripheral nerve regeneration and to assess whether administration of parathyroid hormone (PTH) drug (1-34) potentiates the intrinsic upregulation of BMP-7/Smad signaling. METHODS: The rat sciatic nerves were crushed with an aneurysm clip resulting in axonal degeneration. In the normal nerve, and at 1, 2, 4, and 8 weeks after injury, BMP-7, BMP receptors, p-Smad 1/5/8, and Noggin, the endogenous BMP antagonist, were evaluated. Additionally, the distribution of BMP-7 was assessed by fluorescent double immunostaining. In vitro studies were also performed to examine the effect of BMP-7 and PTH (1-34) administration on rat Schwann cells (SCs). RESULTS: Aneurysm clip made reliable animal model of the nerve injury with recovery at 8 weeks after the injury. BMP-7/Smad protein and mRNA were significantly upregulated on axon-SCs units at 1 week after injury, and this upregulated expression was maintained for 4 weeks. Besides, significant upregulation of Noggin's expression was observed on axon-SCs units at 2 weeks after injury. Moreover, fluorescent double immunostaining showed co-localization between expression of BMP-7 and p75NTR during axonal regeneration. In the in vitro study, administration of BMP-7 induced significant proliferation of SCs. Application of PTH (1-34) upregulated BMP-7 on SCs. DISCUSSION/CONCLUSION: BMPs were reported to be involved in protection and recovery after injury as well as in neurogenesis. Our current study showed that BMP/Smad signaling molecules were upregulated on dedifferentiated SCs after peripheral nerve injury and that administration of BMP-7 increased SC viability in vitro. These results suggested that axonal regeneration could be induced via upregulation of endogenous BMP-7 on SCs by PTH (1-34) administration.
Collapse
Affiliation(s)
| | | | | | | | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
4
|
Wu P, Chawla A, Spinner RJ, Yu C, Yaszemski MJ, Windebank AJ, Wang H. Key changes in denervated muscles and their impact on regeneration and reinnervation. Neural Regen Res 2014; 9:1796-809. [PMID: 25422641 PMCID: PMC4239769 DOI: 10.4103/1673-5374.143424] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2014] [Indexed: 11/29/2022] Open
Abstract
The neuromuscular junction becomes progressively less receptive to regenerating axons if nerve repair is delayed for a long period of time. It is difficult to ascertain the denervated muscle's residual receptivity by time alone. Other sensitive markers that closely correlate with the extent of denervation should be found. After a denervated muscle develops a fibrillation potential, muscle fiber conduction velocity, muscle fiber diameter, muscle wet weight, and maximal isometric force all decrease; remodeling increases neuromuscular junction fragmentation and plantar area, and expression of myogenesis-related genes is initially up-regulated and then down-regulated. All these changes correlate with both the time course and degree of denervation. The nature and time course of these denervation changes in muscle are reviewed from the literature to explore their roles in assessing both the degree of detrimental changes and the potential success of a nerve repair. Fibrillation potential amplitude, muscle fiber conduction velocity, muscle fiber diameter, mRNA expression levels of myogenic regulatory factors and nicotinic acetylcholine receptor could all reflect the severity and length of denervation and the receptiveness of denervated muscle to regenerating axons, which could possibly offer an important clue for surgical choices and predict the outcomes of delayed nerve repair.
Collapse
Affiliation(s)
- Peng Wu
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA ; Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China ; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Aditya Chawla
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA ; Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Cong Yu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Michael J Yaszemski
- Departments of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Huan Wang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA ; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
5
|
Long L, Huang Y, Wu H, Luan W, Zhang Q, Wen H, Ding T, Wang Y. Dynamic change of Prohibitin2 expression in rat sciatic nerve after crush. Cell Mol Neurobiol 2013; 33:689-98. [PMID: 23568660 DOI: 10.1007/s10571-013-9935-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.
Collapse
Affiliation(s)
- Long Long
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Y, Long L, Yang J, Wu Y, Wu H, Wei H, Deng X, Cheng X, Lou D, Chen H, Wen H. Spatiotemporal expression of SKIP after rat sciatic nerve crush. Neurochem Res 2013; 38:857-65. [PMID: 23389663 DOI: 10.1007/s11064-013-0990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/05/2013] [Accepted: 01/29/2013] [Indexed: 11/26/2022]
Abstract
Ski-interacting protein (SKIP) is a highly conserved protein from yeast to Human. As an essential spliceosomal component and transcriptional co-regulator it plays an important role in preinitiation, splicing and polyadenylation. SKIP can also combine with Ski to overcome the G1 arrest and the growth-suppressive activities of pRb. Furthermore SKIP has the capacity to augment TGF-β dependent transcription. While the distribution and function of SKIP in peripheral nervous system lesion and regeneration remain unclear. Here, we investigated the spatiotemporal expression of SKIP in an acute sciatic nerve crush model in adult rats. Western Blot analysis revealed that SKIP was expressed in normal sciatic nerves. It gradually increased, reached a peak at 1 week after crush, and then returned to the normal level at 4 weeks. Besides, we observed that up-regulation of SKIP was approximately in parallel with Proliferating cell nuclear antigen (PCNA), and numerous Schwann cells (SCs) expressing SKIP were PCNA and Ki-67 positive. Collectively, we hypothesized peripheral nerve crush induced up-regulation of SKIP in the sciatic nerve, which was associated with SCs proliferation.
Collapse
Affiliation(s)
- Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001 Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Changes in CLIP3 expression after sciatic nerve injury in adult rats. J Mol Histol 2012; 43:669-79. [PMID: 23014974 DOI: 10.1007/s10735-012-9450-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/14/2012] [Indexed: 02/04/2023]
Abstract
CLIP3 (cytoplasmic linker protein 3) is a 547 amino acid residue cytoplasmic protein that localises to Golgi stacks and tubulovesicular elements juxtaposed to Golgi cisternae. Composed of three Ank (ankyrin) repeats and two CAP-Gly (cytoskeleton-associated protein-glycine) domains, CLIP3 may function as a cytoplasmic linker protein that is involved in TGN-endosome dynamics. To define the expression and role of CLIP3 during peripheral nervous system degeneration and regeneration, we created an acute sciatic nerve injury (SNI) model in adult rats. Western blot analyses revealed prominent up-regulation of CLIP3 and PCNA (proliferating cell nuclear antigen) protein levels at 3 days after SNI. Immunohistochemistry displayed that the expression of CLIP3 was noticeably increased in the injured nerve. Immunofluorescence further revealed that the CLIP3 and PCNA proteins colocalised respectively with S100 in the cytoplasm of Schwann cells. The expression profile of the SC/neuron co-cultures demonstrated that CLIP3 and PCNA protein levels were markedly expressed during the early stage of myelination. These results suggest that CLIP3 is likely associated with the myelination of proliferating Schwann cells, and nerve tissue regeneration after peripheral nerve injury. CLIP3 and PCNA expression during early myelination may be related to the direct uptake and transport of lipids and cholesterol, which were derived from the degenerating myelin, by Schwann cells to prepare for the formation of myelin sheath-like structures around regenerated axons after SNI.
Collapse
|
8
|
Minasyan AL, Aznauryan AV, Meliksetyan IB, Chavushyan VA, Sarkissian JS, Galoyan AA. A morphological-histochemical study of neurodegenerative and regenerative processes in flexor and extensor collaterals of the sciatic nerve after crushing in the presence of PRP-1. NEUROCHEM J+ 2011. [DOI: 10.1134/s181971241104012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
|
10
|
Sox2 up-regulation and glial cell proliferation following degeneration of spiral ganglion neurons in the adult mouse inner ear. J Assoc Res Otolaryngol 2011; 12:151-71. [PMID: 21061038 DOI: 10.1007/s10162-010-0244-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022] Open
Abstract
In the present study, glial cell responses to spiral ganglion neuron (SGN) degeneration were evaluated using a murine model of auditory neuropathy. Ouabain, a well-known Na,K-ATPase inhibitor, has been shown to induce SGN degeneration while sparing hair cell function. In addition to selectively removing type I SGNs, ouabain leads to hyperplasia and hypertrophy of glia-like cells in the injured auditory nerves. As the transcription factor Sox2 is predominantly expressed in proliferating and undifferentiated neural precursors during neurogenesis,we sought to examine Sox2 expression patterns following SGN injury by ouabain. Real-time RT-PCR and Western blot analyses of cochlea indicated a significant increase in Sox2 expression by 3 days posttreatment with ouabain. Cells incorporating bromodeoxyuridine(BrdU) and expressing Sox2 were counted in the auditory nerves of control and ouabain-treated ears. The glial phenotype of Sox2+cells was identified by two neural glial markers: S100 and Sox10. The number of Sox2+ glial cells significantly increased at 3 days post-treatment and reached its maximum level at 7 days post-treatment. Similarly,the number of BrdU+ cells increased at 3 and 7 days post-treatment in the injured nerves. Quantitative analysis with dual-immunostaining procedures indicated that about 70% of BrdU+ cells in the injured nerves were Sox2+ glial cells. These results demonstrate that up-regulation of Sox2 expression is associated with increased cell proliferation in the auditory nerve after injury.
Collapse
|
11
|
Zhang P, Kou Y, Yin X, Wang Y, Zhang H, Jiang B. The experimental research of nerve fibers compensation amplification innervation of ulnar nerve and musculocutaneous nerve in rhesus monkeys. ACTA ACUST UNITED AC 2010; 39:39-43. [PMID: 20677901 DOI: 10.3109/10731199.2010.494583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This experiment intended to authenticate the compensation and amplification effect of regenerated nerve fibers after nerve injury in primate. The Rhesus Monkeys right ulnar nerves and musculocutaneous nerves were chosed. The proximal impaired ulnar nerve as the proximal end and the distal impaired ulnar nerve musculocutaneous nerve as the distal ends. The ulnar nerve proximal stump fibers can grow into both the ulnar nerve distal stump and the musculocutaneus nerve at the same time and established two different electrophysiological conduction passageway. There exist nerve fibers compensation amplification effect after peripheral nerve injury on Rhesus Monkeys.
Collapse
Affiliation(s)
- Peixun Zhang
- Department of Trauma Orthopeadics, Peking University People's Hospital, Beijing, China.
| | | | | | | | | | | |
Collapse
|
12
|
Wang W, Zhang P, Yan J, Han N, Kou Y, Zhang H, Jiang B. Histological analysis of single peripheral nerve fiber in acute nerve elongation process. ACTA ACUST UNITED AC 2010; 38:165-8. [PMID: 20491608 DOI: 10.3109/10731191003670558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To observe the histological alterations of single nerve fiber structures after nerve elongation by employing a rabbit peroneal nerve stretching model. 14 rabbits weighing mean 3. 0 kg (2.02-3.31 kg.) were used in the experiment. Two rabbits were used as control when only a sham operation was done (group one, 0% stretch). Acute stretching of the peroneal nerves to elongate them by 10% was done in 6 rabbits (group two, 10% elongation) and by 20% (group three, 20% elongation) in another 6 rabbits. All animals were evaluated by tissue staining technology in a teased-fiber study. The internodal lengths were measured, and nodes of Ranvier and Schmidt-Lanterman notch were observed. The nerve fiber length was increased after stretching. The mean internodal length was 1208.31 microm in group one, 1347.26 microm in group two, and 1411.35 microm in group three. Compared with the control group, mean internodal length was elongated by 11.50% in group two and 16.80% in group three. The difference was statistically significant. The node of Ranvier and Schmidt-Lanterman notch was wider in both group two and group three. Rupture of nerve fiber at the node of Ranvier was observed in group three. The peroneal nerve in rabbits can adapt to mild stretching by internodal length elongation. Elongation by 20% will cause structural rupture and therefore is the limit for nerve elongation.
Collapse
Affiliation(s)
- Weibin Wang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Kraus A, Täger J, Kohler K, Manoli T, Haerle M, Werdin F, Hoffmann J, Schaller HE, Sinis N. Efficacy of Various Durations ofIn VitroPredegeneration on the Cell Count and Purity of Rat Schwann-Cell Cultures. J Neurotrauma 2010; 27:197-203. [DOI: 10.1089/neu.2009.0995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Armin Kraus
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
- Center for Regenerative Biology and Regenerative Medicine, Eberhard Karls University, Tüebingen, Germany
| | - Joachim Täger
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
- Center for Regenerative Biology and Regenerative Medicine, Eberhard Karls University, Tüebingen, Germany
| | - Konrad Kohler
- Center for Regenerative Biology and Regenerative Medicine, Eberhard Karls University, Tüebingen, Germany
| | - Theodora Manoli
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
| | - Max Haerle
- Department of Hand and Plastic Surgery, Orthopaedic Hospital Markgroeningen, Germany
| | - Frank Werdin
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
| | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Hospital, Tüebingen, Germany
| | - Hans-Eberhard Schaller
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
| | - Nektarios Sinis
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
- Center for Regenerative Biology and Regenerative Medicine, Eberhard Karls University, Tüebingen, Germany
| |
Collapse
|