1
|
Jakubiec M, Abram M, Zagaja M, Socała K, Panic V, Latacz G, Mogilski S, Szafarz M, Szala-Rycaj J, Saunders J, West PJ, Nieoczym D, Przejczowska-Pomierny K, Szulczyk B, Krupa A, Wyska E, Wlaź P, Metcalf CS, Wilcox K, Andres-Mach M, Kamiński RM, Kamiński K. Discovery and Profiling of New Multimodal Phenylglycinamide Derivatives as Potent Antiseizure and Antinociceptive Drug Candidates. ACS Chem Neurosci 2024; 15:3228-3256. [PMID: 39166702 PMCID: PMC11378297 DOI: 10.1021/acschemneuro.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
We developed a focused series of original phenyl-glycinamide derivatives which showed potent activity across in vivo mouse seizure models, namely, maximal electroshock (MES) and 6 Hz (using both 32 and 44 mA current intensities) seizure models. Following intraperitoneal (i.p.) administration, compound (R)-32, which was identified as a lead molecule, demonstrated potent protection against all seizure models with ED50 values of 73.9 mg/kg (MES test), 18.8 mg/kg (6 Hz, 32 mA test), and 26.5 mg/kg (6 Hz, 44 mA test). Furthermore, (R)-32 demonstrated efficacy in both the PTZ-induced kindling paradigm and the ivPTZ seizure threshold test. The expression of neurotrophic factors, such as mature brain-derived neurotrophic factor (mBDNF) and nerve growth factor (NGF), in the hippocampus and/or cortex of mice, and the levels of glutamate and GABA were normalized after PTZ-induced kindling by (R)-32. Importantly, besides antiseizure activity, (R)-32 demonstrated potent antinociceptive efficacy in formalin-induced pain, capsaicin-induced pain, as well as oxaliplatin- and streptozotocin-induced peripheral neuropathy in mice (i.p.). No influence on muscular strength and body temperature in mice was observed. Pharmacokinetic studies and in vitro ADME-Tox data (i.e., high metabolic stability in human liver microsomes, a weak influence on CYPs, no hepatotoxicity, satisfactory passive transport, etc.) proved favorable drug-like properties of (R)-32. Thermal stability of (R)-32 shown in thermogravimetry and differential scanning calorimetry gives the opportunity to develop innovative oral solid dosage forms loaded with this compound. The in vitro binding and functional assays indicated its multimodal mechanism of action. (R)-32, beyond TRPV1 antagonism, inhibited calcium and sodium currents at a concentration of 10 μM. Therefore, the data obtained in the current studies justify a more detailed preclinical development of (R)-32 for epilepsy and pain indications.
Collapse
Affiliation(s)
- Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Vanja Panic
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Szczepan Mogilski
- Department Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Joanna Szala-Rycaj
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Jerry Saunders
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Peter J West
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Katarzyna Przejczowska-Pomierny
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Bartłomiej Szulczyk
- Chair and Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, Warsaw 02-097, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Karen Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| |
Collapse
|
2
|
Alemán OR, Rosales C. Human neutrophil Fc gamma receptors: different buttons for different responses. J Leukoc Biol 2023; 114:571-584. [PMID: 37437115 DOI: 10.1093/jleuko/qiad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Neutrophils are fundamental cells in host defense. These leukocytes are quickly recruited from the blood to sites of infection or tissue damage. At these sites, neutrophils initiate several innate immune responses, including phagocytosis, production of reactive oxygen species, degranulation to release proteases and other antimicrobial compounds, production of inflammatory mediators, and formation of neutrophil extracellular traps. In addition to their role in innate immunity, neutrophils are now recognized as cells that also regulate adaptive immunity, via interaction with dendritic cells and lymphocytes. Neutrophils also respond to adaptive immunity by interacting with antibody molecules. Indeed, antibody molecules allow neutrophils to have antigen-specific responses. Neutrophils express different receptors for antibodies. The receptors for immunoglobulin G molecules are known as Fcγ receptors. Upon Fcγ receptor aggregation on the cell membrane, these receptors trigger distinct signal transduction cascades that activate particular cellular responses. In this review, we describe the major Fcγ receptors expressed on human neutrophils and discuss how each Fcγ receptor activates a choice of signaling pathways to stimulate particular neutrophil responses.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
3
|
Bustos D, Galarza C, Ordoñez W, Brauchi S, Benso B. Cost-Effective Pipeline for a Rational Design and Selection of Capsaicin Analogues Targeting TRPV1 Channels. ACS OMEGA 2023; 8:11736-11749. [PMID: 37033853 PMCID: PMC10077575 DOI: 10.1021/acsomega.2c05672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/25/2022] [Indexed: 06/19/2023]
Abstract
Transient receptor potential (TRP) channels constitute a large group of membrane receptors associated with sensory pathways in vertebrates. One of the most studied is TRPV1, a polymodal receptor tuned for detecting heat and pungent compounds. Specific inhibition of the nociceptive transduction at the peripheral nerve represents a convenient approach to pain relief. While acting as a chemoreceptor, TRPV1 shows high sensitivity and selectivity for capsaicin. In contrast to the drugs available on the market that target the inflammatory system, TRPV1 antagonists act as negative modulators of nociceptive transduction. Therefore, the development of compounds modulating TRPV1 activity has expanded dramatically over time. Experimental data suggest that most agonist and antagonist drugs interact at or near capsaicin's binding site. In particular, the properties of capsaicin's head play an essential role in modulating potency and affinity. Here, we explored a cost-efficient pipeline to predict the effects of introducing chemical modifications into capsaicin's head region. An extensive set of molecules was selected by first considering the geometrical properties of capsaicin's binding site and then molecular docking. Finally, the novel ligands were ranked by combining molecular and pharmacokinetic predictions.
Collapse
Affiliation(s)
- Daniel Bustos
- Centro
de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría
de Investigación y Postgrado, Universidad
Católica del Maule, Talca 3460000, Chile
- Laboratorio
de Bioinformática y Química Computacional, Departamento
de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Christian Galarza
- Facultad
de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090703, Ecuador
| | - Wilson Ordoñez
- Facultad
de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090703, Ecuador
| | - Sebastian Brauchi
- Department
of Physiology, Faculty of Medicine, Universidad
Austral de Chile, Valdivia 5090000, Chile
- Millennium
Nucleus of Ion Channels Associated Diseases (MiNICAD), 8330024, Chile
| | - Bruna Benso
- Millennium
Nucleus of Ion Channels Associated Diseases (MiNICAD), 8330024, Chile
- School of
Dentistry, Faculty of Medicine, Pontificia
Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
4
|
Kuvaeva EE, Mertsalov IB, Simonova OB. Transient Receptor Potential (TRP) Family of Channel Proteins. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Soltani D, Azizi B, Rahimi R, Talasaz AH, Rezaeizadeh H, Vasheghani-Farahani A. Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: A comprehensive review of preclinical and clinical evidence. Front Cardiovasc Med 2022; 9:990063. [PMID: 36247473 PMCID: PMC9559844 DOI: 10.3389/fcvm.2022.990063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias, characterized by an irregular heartbeat, are associated with high mortality and morbidity. Because of the narrow therapeutic window of antiarrhythmic drugs (AADs), the management of arrhythmia is still challenging. Therefore, searching for new safe, and effective therapeutic options is unavoidable. In this study, the antiarrhythmic effects of medicinal plants and their active constituents were systematically reviewed to introduce some possible candidates for mechanism-based targeting of cardiac arrhythmias. PubMed, Embase, and Cochrane library were searched from inception to June 2021 to find the plant extracts, phytochemicals, and multi-component herbal preparations with antiarrhythmic activities. From 7337 identified results, 57 original studies consisting of 49 preclinical and eight clinical studies were finally included. Three plant extracts, eight multi-component herbal preparations, and 26 phytochemicals were found to have antiarrhythmic effects mostly mediated by affecting K+ channels, followed by modulating Ca2+ channels, upstream target pathways, Nav channels, gap junction channels, and autonomic receptors. The most investigated medicinal plants were Rhodiola crenulata and Vitis vinifera. Resveratrol, Oxymatrine, and Curcumin were the most studied phytochemicals found to have multiple mechanisms of antiarrhythmic action. This review emphasized the importance of research on the cardioprotective effect of medicinal plants and their bioactive compounds to guide the future development of new AADs. The most prevalent limitation of the studies was their unqualified methodology. Thus, future well-designed experimental and clinical studies are necessary to provide more reliable evidence.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Roja Rahimi,
| | - Azita H. Talasaz
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Hossein Rezaeizadeh
- Department of Persian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Ali Vasheghani-Farahani,
| |
Collapse
|
6
|
Fiani B, Jarrah R, Nathani KR. Laser oromaxillofacial photobiomodulation therapy: molecular mechanisms, outcomes and considerations. Regen Med 2022; 17:611-615. [PMID: 35730260 DOI: 10.2217/rme-2022-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tweetable abstract Photobiomodulation therapy is largely characterized as a safe therapeutic model that can modulate the activity of inflammatory and immune biomarkers while facilitating a metabolic response that can regenerate damaged tissue.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Cornell Medical Center/New York Presbyterian, New York, NY 10065, USA
| | - Ryan Jarrah
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
7
|
Peng C, Yang Z, Liu Z, Wang S, Yu H, Cui C, Hu Y, Xing Q, Hu J, Huang X, Bao Z. A Systematical Survey on the TRP Channels Provides New Insight into Its Functional Diversity in Zhikong Scallop ( Chlamys farreri). Int J Mol Sci 2021; 22:ijms222011075. [PMID: 34681735 PMCID: PMC8539334 DOI: 10.3390/ijms222011075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential (TRP) channel plays a significant role in mediating various sensory physiological functions. It is widely present in the vertebrate and invertebrate genomes and can be activated by multiple compounds, messenger molecules, temperature, and mechanical stimulation. Mollusks are the second largest phylum of the animal kingdom and are sensitive to environmental factors. However, the molecular underpinnings through which mollusks sense and respond to environmental stimulus are unknown. In this study, we systematically identified and characterized 17 TRP channels (C.FA TRPs, seven subfamilies) in the genome of the Zhikong scallop (Chlamys farreri). All C.FA TRPs had six transmembrane structures (TM1–TM6). The sequences and structural features of C.FA TRPs are highly conserved with TRP channels of other species. Spatiotemporal expression profiling suggested that some C.FA TRPs participated in the early embryonic development of scallops and the sensory process of adult tissues. Notably, the expression of C.FA TRPM3 continuously increased during developmental stages and was highest among all C.FA TRPs. C.FA TRPC-α was specifically expressed in eyes, which may be involved in light transmission of scallop eyes. Under high temperature stress, C.FA TRPA1 and C.FA TRPA1-homolog upregulated significantly, which indicated that the TRPA subfamily is the thermoTRPs channel of scallops. Our results provided the first systematic study of TRP channels in scallops, and the findings will provide a valuable resource for a better understanding of TRP evolution and function in mollusks.
Collapse
Affiliation(s)
- Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence:
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| |
Collapse
|
8
|
Alemán OR, Mora N, Rosales C. The Antibody Receptor Fc Gamma Receptor IIIb Induces Calcium Entry via Transient Receptor Potential Melastatin 2 in Human Neutrophils. Front Immunol 2021; 12:657393. [PMID: 34054821 PMCID: PMC8155622 DOI: 10.3389/fimmu.2021.657393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human neutrophils express two unique antibody receptors for IgG, the FcγRIIa and the FcγRIIIb. FcγRIIa contains an immunoreceptor tyrosine-based activation motif (ITAM) sequence within its cytoplasmic tail, which is important for initiating signaling. In contrast, FcγRIIIb is a glycosylphosphatidylinositol (GPI)-linked receptor with no cytoplasmic tail. Although, the initial signaling mechanism for FcγRIIIb remains unknown, it is clear that both receptors are capable of initiating distinct neutrophil cellular functions. For example, FcγRIIa is known to induce an increase in L-selectin expression and efficient phagocytosis, while FcγRIIIb does not promote these responses. In contrast, FcγRIIIb has been reported to induce actin polymerization, activation of β1 integrins, and formation of neutrophils extracellular traps (NET) much more efficiently than FcγRIIa. Another function where these receptors seem to act differently is the increase of cytoplasmic calcium concentration. It has been known for a long time that FcγRIIa induces production of inositol triphosphate (IP3) to release calcium from intracellular stores, while FcγRIIIb does not use this phospholipid. Thus, the mechanism for FcγRIIIb-mediated calcium rise remains unknown. Transient Receptor Potential Melastatin 2 (TRPM2) is a calcium permeable channel expressed in many cell types including vascular smooth cells, endothelial cells and leukocytes. TRPM2 can be activated by protein kinase C (PKC) and by oxidative stress. Because we previously found that FcγRIIIb stimulation leading to NET formation involves PKC activation and reactive oxygen species (ROS) production, in this report we explored whether TRPM2 is activated via FcγRIIIb and mediates calcium rise in human neutrophils. Calcium rise was monitored after Fcγ receptors were stimulated by specific monoclonal antibodies in Fura-2-loaded neutrophils. The bacterial peptide fMLF and FcγRIIa induced a calcium rise coming initially from internal pools. In contrast, FcγRIIIb caused a calcium rise by inducing calcium entry from the extracellular medium. In addition, in the presence of 2-aminoethoxydiphenyl borate (2-APB) or of clotrimazole, two inhibitors of TRPM2, FcγRIIIb-induced calcium rise was blocked. fMLF- or FcγRIIa-induced calcium rise was not affected by these inhibitors. These data suggest for the first time that FcγRIIIb aggregation activates TRPM2, to induce an increase in cytoplasmic calcium concentration through calcium internalization in human neutrophils.
Collapse
Affiliation(s)
| | | | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Lee K, Jo YY, Chung G, Jung JH, Kim YH, Park CK. Functional Importance of Transient Receptor Potential (TRP) Channels in Neurological Disorders. Front Cell Dev Biol 2021; 9:611773. [PMID: 33748103 PMCID: PMC7969799 DOI: 10.3389/fcell.2021.611773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are transmembrane protein complexes that play important roles in the physiology and pathophysiology of both the central nervous system (CNS) and the peripheral nerve system (PNS). TRP channels function as non-selective cation channels that are activated by several chemical, mechanical, and thermal stimuli as well as by pH, osmolarity, and several endogenous or exogenous ligands, second messengers, and signaling molecules. On the pathophysiological side, these channels have been shown to play essential roles in the reproductive system, kidney, pancreas, lung, bone, intestine, as well as in neuropathic pain in both the CNS and PNS. In this context, TRP channels have been implicated in several neurological disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and epilepsy. Herein, we focus on the latest involvement of TRP channels, with a special emphasis on the recently identified functional roles of TRP channels in neurological disorders related to the disruption in calcium ion homeostasis.
Collapse
Affiliation(s)
- Kihwan Lee
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon, South Korea
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jung Hoon Jung
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
10
|
TRPC Channels in Cardiac Plasticity. Cells 2020; 9:cells9020454. [PMID: 32079284 PMCID: PMC7072762 DOI: 10.3390/cells9020454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023] Open
Abstract
The heart flexibly changes its structure in response to changing environments and oxygen/nutrition demands of the body. Increased and decreased mechanical loading induces hypertrophy and atrophy of cardiomyocytes, respectively. In physiological conditions, these structural changes of the heart are reversible. However, chronic stresses such as hypertension or cancer cachexia cause irreversible remodeling of the heart, leading to heart failure. Accumulating evidence indicates that calcium dyshomeostasis and aberrant reactive oxygen species production cause pathological heart remodeling. Canonical transient receptor potential (TRPC) is a nonselective cation channel subfamily whose multimodal activation or modulation of channel activity play important roles in a plethora of cellular physiology. Roles of TRPC channels in cardiac physiology have been reported in pathological cardiac remodeling. In this review, we summarize recent findings regarding the importance of TRPC channels in flexible cardiac remodeling (i.e., cardiac plasticity) in response to environmental stresses and discuss questions that should be addressed in the near future.
Collapse
|
11
|
Nishida M, Tanaka T, Mangmool S, Nishiyama K, Nishimura A. Canonical Transient Receptor Potential Channels and Vascular Smooth Muscle Cell Plasticity. J Lipid Atheroscler 2020; 9:124-139. [PMID: 32821726 PMCID: PMC7379077 DOI: 10.12997/jla.2020.9.1.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play a pivotal role in the stability and tonic regulation of vascular homeostasis. VSMCs can switch back and forth between highly proliferative (synthetic) and fully differentiated (contractile) phenotypes in response to changes in the vessel environment. Abnormal phenotypic switching of VSMCs is a distinctive characteristic of vascular disorders, including atherosclerosis, pulmonary hypertension, stroke, and peripheral artery disease; however, how the control of VSMC phenotypic switching is dysregulated under pathological conditions remains obscure. Canonical transient receptor potential (TRPC) channels have attracted attention as a key regulator of pathological phenotype switching in VSMCs. Several TRPC subfamily member proteins—especially TRPC1 and TRPC6—are upregulated in pathological VSMCs, and pharmacological inhibition of TRPC channel activity has been reported to improve hypertensive vascular remodeling in rodents. This review summarizes the current understanding of the role of TRPC channels in cardiovascular plasticity, including our recent finding that TRPC6 participates in aberrant VSMC phenotype switching under ischemic conditions, and discusses the therapeutic potential of TRPC channels.
Collapse
Affiliation(s)
- Motohiro Nishida
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), NINS, Tokyo 105-0001, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), NINS, Tokyo 105-0001, Japan
| | | | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Gatica S, Eltit F, Santibanez JF, Varela D, Cabello-Verrugio C, Simon F. Expression Suppression and Activity Inhibition of TRPM7 Regulate Cytokine Production and Multiple Organ Dysfunction Syndrome During Endotoxemia: a New Target for Sepsis. Curr Mol Med 2019; 19:547-559. [PMID: 31288723 DOI: 10.2174/1566524019666190709181726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Main pathological features detected during sepsis and endotoxemia include over-secretion of pro-inflammatory cytokines and multiorgan dysfunction syndrome (MODS). Unfortunately, current clinical efforts to treat sepsis are unsatisfactory, and mortality remains high. Interestingly, transient receptor potential (TRP) melastatin 7 (TRPM7) ion channel controlling Ca2+ and Mg2+ permeability is involved in cytokine production and inflammatory response. Furthermore, TRPM7 downregulation has been shown to alleviate local symptoms in some models of sepsis, but its effects at a systemic level remain to be explored. OBJECTIVE To test whether TRPM7 mediates cytokine production and MODS during endotoxemia. METHODS Endotoxemic and sham-endotoxemic rats were subjected to pharmacological inhibition of TRPM7 using carvacrol, or to expression suppression by adenovirus delivery of shRNA (AdVshTRPM7). Then, cytokine and MODS levels in the blood were measured. RESULTS Inhibition of TRPM7 with carvacrol and suppression with AdVshTRPM7 were both efficient in inhibiting the over-secretion of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-12, in endotoxemic rats, without inducing downregulation in blood levels of antiinflammatory cytokines IL-10 and IL-4. Additionally, the use of carvacrol and AdVshTRPM7 significantly prevented liver and pancreas dysfunction, altered metabolic function, and hypoglycemia, induced by endotoxemia. Furthermore, muscle mass wasting and cardiac muscle damage were also significantly reduced by the use of carvacrol and AdVshTRPM7 in endotoxemic rats. CONCLUSION Our results indicate TRPM7 ion channel as a key protein regulating inflammatory responses and MODS during sepsis. Moreover, TRPM7 appears as a novel molecular target for the management of sepsis.
Collapse
Affiliation(s)
- Sebastian Gatica
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, 8331150, Santiago, Chile
| | - Felipe Eltit
- Department of Materials Engineering, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA). Universidad Bernardo O'Higgins, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Chile
| | - Claudio Cabello-Verrugio
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, 8331150, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, 8331150, Santiago, Chile
| |
Collapse
|
13
|
TRPC channels in exercise-mimetic therapy. Pflugers Arch 2018; 471:507-517. [PMID: 30298191 PMCID: PMC6515694 DOI: 10.1007/s00424-018-2211-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022]
Abstract
Physical exercise yields beneficial effects on all types of muscle cells, which are essential for the maintenance of cardiovascular homeostasis and good blood circulation. Daily moderate exercise increases systemic antioxidative capacity, which can lead to the prevention of the onset and progression of oxidative stress-related diseases. Therefore, exercise is now widely accepted as one of the best therapeutic strategies for the treatment of ischemic (hypoxic) diseases. Canonical transient receptor potential (TRPC) proteins are non-selective cation channels activated by mechanical stress and/or stimulation of phospholipase C-coupled surface receptors. TRPC channels, especially diacylglycerol-activated TRPC channels (TRPC3 and TRPC6; TRPC3/6), play a key role in the development of cardiovascular remodeling. We have recently found that physical interaction between TRPC3 and NADPH oxidase (Nox) 2 under hypoxic stress promotes Nox2-dependent reactive oxygen species (ROS) production and mediates rodent cardiac plasticity, and inhibition of the TRPC3-Nox2 protein complex results in enhancement of myocardial compliance and flexibility similar to that observed in exercise-treated hearts. In this review, we describe current understanding of the roles of TRPC channels in striated muscle (patho)physiology and propose that targeting TRPC-based protein complexes could be a new strategy to imitate exercise therapy.
Collapse
|
14
|
Han L, Li J. Canonical transient receptor potential 3 channels in atrial fibrillation. Eur J Pharmacol 2018; 837:1-7. [PMID: 30153442 DOI: 10.1016/j.ejphar.2018.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
The pathogenesis of atrial fibrillation (AF) is largely dependent on structural remodeling and electrical reconfiguration, which in turn drive localized fibrosis. Canonical transient receptor potential 3 (TRPC3) channel is indispensable regulator of fibrosis development, promoting fibroblasts to transition into myofibroblasts via intracellular Ca2+ overload. TRPC3 is a non-voltage gated, non-selective cation channel that regulates the permeability of the cell to Ca2+. When subjected to various external physical and chemical stimuli, such as angiotensin II (AngII), mechanical stretch, hypoxia, or oxidative stress, TRPC3 coordinates with downstream signal transduction pathways to alter gene expression and thereby regulate a number of distinct pathological patterns and mechanisms. This review will focus on how TRPC3 affects AF pathogenesis by exploring the underlying mechanisms governing fibrosis associated with particular signaling proteins, ultimately highlighting the characteristics of TPRC3 that mark it as a novel therapeutic target for AF alleviation.
Collapse
Affiliation(s)
- Lu Han
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
15
|
Abstract
Endothelium-dependent relaxations are predominantly regulated by nitric oxide (NO) in large conduit arteries and by endothelium-dependent hyperpolarization (EDH) in small resistance vessels. Although the nature of EDH factors varies depending on species and vascular beds, we have previously demonstrated that endothelial NO synthases (eNOS)-derived hydrogen peroxide (H2O2) is an EDH factor in animals and humans. This vessel size-dependent contribution of NO and EDH is, at least in part, attributable to the diverse roles of endothelial NOSs system; in large conduit arteries, eNOS mainly serves as a NO-generating system to elicit soluble guanylate cyclase–cyclic guanosine monophosphate-mediated relaxations, whereas in small resistance vessels, it serves as a superoxide-generating system to cause EDH/H2O2-mediated relaxations. Endothelial caveolin-1 may play an important role for the diverse roles of NOSs. Although reactive oxygen species are generally regarded harmful, the physiological roles of H2O2 have attracted much attention as accumulating evidence has shown that endothelium-derived H2O2 contributes to cardiovascular homeostasis. The diverse functions of endothelial NOSs system with NO and EDH/H2O2 could account for a compensatory mechanism in the setting of endothelial dysfunction. In this review, we will briefly summarize the current knowledge on the diverse functions of endothelial NOSs system: NO and EDH/H2O2.
Collapse
|
16
|
Numaga-Tomita T, Oda S, Shimauchi T, Nishimura A, Mangmool S, Nishida M. TRPC3 Channels in Cardiac Fibrosis. Front Cardiovasc Med 2017; 4:56. [PMID: 28936433 PMCID: PMC5594069 DOI: 10.3389/fcvm.2017.00056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiac stiffness, caused by interstitial fibrosis due to deposition of extracellular matrix proteins, is thought as a major clinical outcome of heart failure with preserved ejection fraction (HFpEF). Canonical transient receptor potential (TRPC) subfamily proteins are components of Ca2+-permeable non-selective cation channels activated by receptor stimulation and mechanical stress, and have been attracted attention as a key mediator of maladaptive cardiac remodeling. How TRPC-mediated local Ca2+ influx encodes a specific signal to induce maladaptive cardiac remodeling has been long obscure, but our recent studies suggest a pathophysiological significance of channel activity-independent function of TRPC proteins for amplifying redox signaling in heart. This review introduces the current understanding of the physiological and pathophysiological roles of TRPCs, especially focuses on the role of TRPC3 as a positive regulator of reactive oxygen species (PRROS) in heart. We have revealed that TRPC3 stabilizes NADPH oxidase 2 (Nox2), a membrane-bound reactive oxygen species (ROS)-generating enzyme, by forming stable protein complex with Nox2, which leads to amplification of mechanical stress-induced ROS signaling in cardiomyocytes, resulting in induction of fibrotic responses in cardiomyocytes and cardiac fibroblasts. Thus, the TRPC3 function as PRROS will offer a new therapeutic strategy for the prevention or treatment of HFpEF.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Sayaka Oda
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tsukasa Shimauchi
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Supachoke Mangmool
- Faculty of Pharmacy, Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
17
|
Godo S, Shimokawa H. Divergent roles of endothelial nitric oxide synthases system in maintaining cardiovascular homeostasis. Free Radic Biol Med 2017; 109:4-10. [PMID: 27988339 DOI: 10.1016/j.freeradbiomed.2016.12.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has demonstrated the importance of reactive oxygen species (ROS) as an essential second messenger in health and disease. Endothelial dysfunction is the hallmark of atherosclerotic cardiovascular diseases, in which pathological levels of ROS are substantially involved. The endothelium plays a crucial role in modulating tone of underlying vascular smooth muscle by synthesizing and releasing nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors in a distinct vessel size-dependent manner through the diverse roles of the endothelial NO synthases (NOSs) system. Endothelium-derived hydrogen peroxide (H2O2) is a physiological signaling molecule serving as one of the major EDH factors especially in microcirculations and has gained increasing attention in view of its emerging relevance for cardiovascular homeostasis. In the clinical settings, it has been reported that antioxidant supplements are unexpectedly ineffective to prevent cardiovascular events. These lines of evidence indicate the potential importance of the physiological balance between NO and H2O2/EDH through the diverse functions of endothelial NOSs system in maintaining cardiovascular homeostasis. A better understanding of cardiovascular redox signaling is certainly needed to develop novel therapeutic strategies in cardiovascular medicine. In this review, we will briefly summarize the current knowledge on the emerging regulatory roles of redox signaling pathways in cardiovascular homeostasis, with particular focus on the two endothelial NOSs-derived mediators, NO and H2O2/EDH.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
18
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
19
|
Abstract
Transcranial photobiomodulation (PBM) also known as low level laser therapy (tLLLT) relies on the use of red/NIR light to stimulate, preserve and regenerate cells and tissues. The mechanism of action involves photon absorption in the mitochondria (cytochrome c oxidase), and ion channels in cells leading to activation of signaling pathways, up-regulation of transcription factors, and increased expression of protective genes. We have studied PBM for treating traumatic brain injury (TBI) in mice using a NIR laser spot delivered to the head. Mice had improved memory and learning, increased neuroprogenitor cells in the dentate gyrus and subventricular zone, increased BDNF and more synaptogenesis in the cortex. These highly beneficial effects on the brain suggest that the applications of tLLLT are much broader than at first conceived. Other groups have studied stroke (animal models and clinical trials), Alzheimer's disease, Parkinson's disease, depression, and cognitive enhancement in healthy subjects.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
MORI Y, TAKAHASHI N, KUROKAWA T, KIYONAKA S. TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O 2 sensing. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:464-482. [PMID: 28769017 PMCID: PMC5713176 DOI: 10.2183/pjab.93.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/20/2017] [Indexed: 05/22/2023]
Abstract
Transient Receptor Potential (TRP) proteins form cation channels characterized by a wide variety of activation triggers. Here, we overview a group of TRP channels that respond to reactive redox species to transduce physiological signals, with a focus on TRPA1 and its role in oxygen physiology. Our systematic evaluation of oxidation sensitivity using cysteine-selective reactive disulphides with different redox potentials reveals that TRPA1 has the highest sensitivity to oxidants/electrophiles among the TRP channels, which enables it to sense O2. Proline hydroxylation by O2-dependent hydroxylases also regulates the O2-sensing function by inhibiting TRPA1 in normoxia; TRPA1 is activated by hypoxia through relief from the inhibition and by hyperoxia through cysteine oxidation that overrides the inhibition. TRPA1 enhances neuronal discharges induced by hyperoxia and hypoxia in the vagus to underlie respiratory adaptation to changes in O2 availability. This importance of TRPA1 in non-carotid body O2 sensors can be extended to the universal significance of redox-sensitive TRP channels in O2 adaptation.
Collapse
Affiliation(s)
- Yasuo MORI
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Correspondence should be addressed: Y. Mori, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan (e-mail: )
| | - Nobuaki TAKAHASHI
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tatsuki KUROKAWA
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shigeki KIYONAKA
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci Rep 2016; 6:37001. [PMID: 27833156 PMCID: PMC5105134 DOI: 10.1038/srep37001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/20/2016] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.
Collapse
|
22
|
Abstract
Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Ogawa N, Kurokawa T, Mori Y. Sensing of redox status by TRP channels. Cell Calcium 2016; 60:115-22. [PMID: 26969190 DOI: 10.1016/j.ceca.2016.02.009] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/17/2022]
Abstract
Cellular redox status is maintained by the balance between series of antioxidant systems and production of reactive oxygen/nitrogenous species. Cells utilize this redox balance to mediate diverse physiological functions. Transient receptor potential (TRP) channels are non-selective cation channels that act as biosensors for environmental and noxious stimuli, such as capsaicin and allicin, as well as changes in temperature and conditions inside the cell. TRP channels also have an emerging role as essential players in detecting cellular redox status to regulate cellular signals mediating physiological phenomena. Reactive species activate TRP channels either directly through oxidative amino acid modifications or indirectly through second messengers. For instance, TRPA1, TRPV1 and TRPC5 channels are directly activated by oxidizing agents through cysteine modification; whereas, TRPM2 channel is indirectly activated by production of ADP-ribose. One intriguing property of several TRP channels is susceptibility to both oxidizing and reducing stimuli, suggesting TRP channels could potentially act as a bidirectional sensor for detecting deviations in redox status. In this review, we discuss the unique chemical physiologies of redox sensitive TRP channels and their physiological significance in Ca(2+) signaling.
Collapse
Affiliation(s)
- Nozomi Ogawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tatsuki Kurokawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
24
|
Light and Dark of Reactive Oxygen Species for Vascular Function: 2014 ASVB (Asian Society of Vascular Biology). J Cardiovasc Pharmacol 2016; 65:412-8. [PMID: 25162437 DOI: 10.1097/fjc.0000000000000159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.
Collapse
|
25
|
Ferreira LGB, Faria RX. TRPing on the pore phenomenon: what do we know about transient receptor potential ion channel-related pore dilation up to now? J Bioenerg Biomembr 2016; 48:1-12. [PMID: 26728159 DOI: 10.1007/s10863-015-9634-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Ion channels allow for rapid ion diffusion through the plasma membrane. In some conditions, ion channels induce changes in the critical plasma membrane permeability that permit 900-Da solutes to enter cells. This process is known as the pore phenomenon. Some transient receptor potential (TRP) channel subtypes have been highlighted such as the P2X7 receptor, plasma membrane VDAC-1 channel, and pannexin hemichannels. The TRP ion channels are considered multimodal transducers that respond to several kinds of stimuli. In addition, many TRP channel subtypes are involved in physiological and pathophysiological processes such as inflammation, pain, and cancer. The TRPA1, TRPM8, and TRPV1-4 subtypes have been shown to promote large-molecular-weight solute uptake, including impermeable fluorescent dyes, QX-314 hydrophilic lidocaine derivative, gabapentin, and antineoplastic drugs. This review discusses the current knowledge of TRP-associated pores and encourages scientists to study their features and explore them as novel therapeutic tools.
Collapse
Affiliation(s)
- L G B Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil.
| | - R X Faria
- Laboratory of Cellular Communication, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE Environmental and endogenous reactive species such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and other electrophiles are not only known to exert toxic effects on organisms, but are also emerging as molecules that mediate cell signaling responses. However, the mechanisms underlying this cellular redox signaling by reactive species remains largely uncharacterized. RECENT ADVANCES Ca2+-permeable cation channels encoded by the transient receptor potential (trp) gene superfamily are characterized by a wide variety of activation triggers that act from outside and inside the cell. Recent studies have revealed that multiple TRP channels sense reactive species and induce diverse physiological and pathological responses, such as cell death, chemokine production, and pain transduction. TRP channels sense reactive species either indirectly through second messengers or directly via oxidative modification of cysteine residues. In this review, we describe the activation mechanisms and biological roles of redox-sensitive TRP channels, including TRPM2, TRPM7, TRPC5, TRPV1, and TRPA1. CRITICAL ISSUES The sensitivity of TRP channels to reactive species in vitro has been well characterized using molecular and pharmacological approaches. However, the precise activation mechanism(s) and in vivo function(s) of ROS/RNS-sensitive TRP channels remain elusive. FUTURE DIRECTIONS Redox sensitivity of TRP channels has been shown to mediate previously unexplained biological phenomena and is involved in various pathologies. Understanding the physiological significance and activation mechanisms of TRP channel regulation by reactive species may lead to TRP channels becoming viable pharmacological targets, and modulators of these channels may offer therapeutic options for previously untreatable diseases.
Collapse
Affiliation(s)
- Daisuke Kozai
- 1 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University , Kyoto, Japan
| | | | | |
Collapse
|
27
|
Role of 8-nitro-cGMP and its redox regulation in cardiovascular electrophilic signaling. J Mol Cell Cardiol 2014; 73:10-7. [PMID: 24530900 DOI: 10.1016/j.yjmcc.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
Abstract
Structural and morphological changes of the cardiovascular systems (cardiovascular remodeling) are a major clinical outcome of cardiovascular diseases. Many lines of evidences have implied that transfiguration of reduction/oxidation (redox) homeostasis due to excess production of reactive oxygen species (ROS) and/or ROS-derived electrophilic metabolites (electrophiles) is the main cause of cardiovascular remodeling. Gasotransmitters, such as nitric oxide (NO) and endogenous electrophiles, are considered major bioactive species and have been extensively studied in the context of physiological and pathological cardiovascular events. We have recently found that hydrogen sulfide-related reactive species function as potent nucleophiles to eliminate electrophilic modification of signaling proteins induced by NO-derived electrophilic byproducts (e.g., 8-nitroguanosine 3',5'-cyclic monophosphate and nitro-oleic acid). In this review, we discuss the current understanding of redox control of cardiovascular pathophysiology by electrophiles and nucleophiles. We propose that modulation of electrophile-mediated post-translational modification of protein cysteine thiols may be a new therapeutic strategy of cardiovascular diseases. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
|
28
|
Numata T, Ogawa N, Takahashi N, Mori Y. TRP channels as sensors of oxygen availability. Pflugers Arch 2013; 465:1075-85. [DOI: 10.1007/s00424-013-1237-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 11/28/2022]
|
29
|
Domínguez-Rodríguez A, Ruiz-Hurtado G, Benitah JP, Gómez AM. The other side of cardiac Ca(2+) signaling: transcriptional control. Front Physiol 2012; 3:452. [PMID: 23226134 PMCID: PMC3508405 DOI: 10.3389/fphys.2012.00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022] Open
Abstract
Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling), but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling). ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII) and phosphatase calcineurin, both of which are activated by the complex Ca2+/Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n) or cytoplasmic ([Ca2+]c), and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs) in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs) in [Ca2+]c, needed to activate calcineurin (Cn).
Collapse
|
30
|
Peters M, Trembovler V, Alexandrovich A, Parnas M, Birnbaumer L, Minke B, Shohami E. Carvacrol together with TRPC1 elimination improve functional recovery after traumatic brain injury in mice. J Neurotrauma 2012; 29:2831-4. [PMID: 22994850 DOI: 10.1089/neu.2012.2575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Death of Central Nervous System (CNS) neurons following traumatic brain injury (TBI) is a complex process arising from a combination of factors, many of which are still unknown. It has been found that inhibition of transient receptor potential (TRP) channels constitutes an effective strategy for preventing death of CNS neurons following TBI. TRP channels are classified into seven related subfamilies, most of which are Ca(2+) permeable and involved in many cellular functions, including neuronal cell death. We hypothesized that TRP channels of the TRPC subfamily may be involved in post-TBI pathophysiology and that the compound 5-isopropyl-2-methylphenol (carvacrol), by inhibition of TRP channels, may exert neuroprotective effect after TBI. To test these suppositions, carvacrol was given to mice after TBI and its effect on their functional recovery was followed for several weeks. Our results show that neurological recovery after TBI was significantly enhanced by application of carvacrol. To better define the type of the specific channel involved, the effect of carvacrol on the extent and speed of recovery after TBI was compared among mice lacking TRPC1, TRPC3, or TRPC5, relative to wild type controls. We found that neurological recovery after TBI was significantly enhanced by combining carvacrol with TRPC1 elimination, but not by the absence of TRPC3 or TRPC5, showing a synergistic effect between carvacrol application and TRPC1 elimination. We conclude that TRPC1-sensitive mechanisms are involved in TBI pathology, and that inhibition of this channel by carvacrol enhances recovery and should be considered for further studies in animal models and humans.
Collapse
Affiliation(s)
- Maximilian Peters
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Madsen CP, Klausen TK, Fabian A, Hansen BJ, Pedersen SF, Hoffmann EK. On the role of TRPC1 in control of Ca2+ influx, cell volume, and cell cycle. Am J Physiol Cell Physiol 2012; 303:C625-34. [PMID: 22744003 DOI: 10.1152/ajpcell.00287.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) signaling plays a crucial role in control of cell cycle progression, but the understanding of the dynamics of Ca(2+) influx and release of Ca(2+) from intracellular stores during the cell cycle is far from complete. The aim of the present study was to investigate the role of the free extracellular Ca(2+) concentration ([Ca(2+)](o)) in cell proliferation, the pattern of changes in the free intracellular Ca(2+) concentration ([Ca(2+)](i)) during cell cycle progression, and the role of the transient receptor potential (TRP)C1 in these changes as well as in cell cycle progression and cell volume regulation. In Ehrlich Lettré Ascites (ELA) cells, [Ca(2+)](i) decreased significantly, and the thapsigargin-releasable Ca(2+) pool in the intracellular stores increased in G(1) as compared with G(0). Store-depletion-operated Ca(2+) entry (SOCE) and TRPC1 protein expression level were both higher in G(1) than in G(0) and S phase, in parallel with a more effective volume regulation after swelling [regulatory volume decrease (RVD)] in G(1) as compared with S phase. Furthermore, reduction of [Ca(2+)](o), as well as two unspecific SOCE inhibitors, 2-APB (2-aminoethyldiphenyl borinate) and SKF96365 (1-(β-[3-(4-methoxy-phenyl)propoxyl-4-methoxyphenethyl)1H-imidazole-hydrochloride), inhibited ELA cell proliferation. Finally, Madin-Darby canine kidney cells in which TRPC1 was stably silenced [TRPC1 knockdown (TRPC1-KD) MDCK] exhibited reduced SOCE, slower RVD, and reduced cell proliferation compared with mock controls. In conclusion, in ELA cells, SOCE and TRPC1 both seem to be upregulated in G(1) as compared with S phase, concomitant with an increased rate of RVD. Furthermore, TRPC1-KD MDCK cells exhibit decreased SOCE, decreased RVD, and decreased proliferation, suggesting that, at least in certain cell types, TRPC1 is regulated during cell cycle progression and is involved in SOCE, RVD, and cell proliferation.
Collapse
Affiliation(s)
- C P Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Nishioka K, Nishida M, Ariyoshi M, Jian Z, Saiki S, Hirano M, Nakaya M, Sato Y, Kita S, Iwamoto T, Hirano K, Inoue R, Kurose H. Cilostazol suppresses angiotensin II-induced vasoconstriction via protein kinase A-mediated phosphorylation of the transient receptor potential canonical 6 channel. Arterioscler Thromb Vasc Biol 2011; 31:2278-86. [PMID: 21799177 DOI: 10.1161/atvbaha.110.221010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The goal of this study was to determine whether inhibition of transient receptor potential canonical (TRPC) channels underlies attenuation of angiotensin II (Ang II)-induced vasoconstriction by phosphodiesterase (PDE) 3 inhibition. METHODS AND RESULTS Pretreatment of rat thoracic aorta with cilostazol, a selective PDE3 inhibitor, suppressed vasoconstriction induced by Ang II but not that induced by KCl. The Ang II-induced contraction was largely dependent on Ca(2+) influx via receptor-operated cation channels. Cilostazol specifically suppressed diacylglycerol-activated TRPC channels (TRPC3/TRPC6/TRPC7) through protein kinase A (PKA)-dependent phosphorylation of TRPC channels in HEK293 cells. In contrast, we found that phosphorylation of TRPC6 at Thr69 was essential for the suppression of Ang II-induced Ca(2+) influx by PDE3 inhibition in rat aortic smooth muscle cells (RAoSMCs). Cilostazol specifically induced phosphorylation of endogenous TRPC6 at Thr69. The endogenous TRPC6, but not TRPC3, formed a ternary complex with PDE3 and PKA in RAoSMCs, suggesting the specificity of TRPC6 phosphorylation by PDE3 inhibition. Furthermore, inhibition of PDE3 suppressed the Ang II-induced contraction of reconstituted ring with RAoSMCs, which were abolished by the expression of a phosphorylation-deficient mutant of TRPC6. CONCLUSIONS PKA-mediated phosphorylation of TRPC6 at Thr69 is essential for the vasorelaxant effects of PDE3 inhibition against the vasoconstrictive actions of Ang II.
Collapse
Affiliation(s)
- Kinue Nishioka
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang S, Zhang AP, Kurada L, Matsui T, Lei S. Cholecystokinin facilitates neuronal excitability in the entorhinal cortex via activation of TRPC-like channels. J Neurophysiol 2011; 106:1515-24. [PMID: 21753024 DOI: 10.1152/jn.00025.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain, where it interacts with two G protein-coupled receptors (CCK-1 and CCK-2). Activation of both CCK receptors increases the activity of PLC, resulting in increases in intracellular calcium ion (Ca(2+)) release and activation of PKC. Whereas high density of CCK receptors has been detected in the superficial layers of the entorhinal cortex (EC), the functions of CCK in this brain region have not been determined. Here, we studied the effects of CCK on neuronal excitability of layer III pyramidal neurons in the EC. Our results showed that CCK remarkably increased the firing frequency of action potentials (APs). The effects of CCK on neuronal excitability were mediated via activation of CCK-2 receptors and required the functions of G proteins and PLC. However, CCK-mediated facilitation of neuronal excitability was independent of inositol trisphosphate receptors and PKC. CCK facilitated neuronal excitability by activating a cationic channel to generate membrane depolarization. The effects of CCK were suppressed by the generic, nonselective cationic channel blockers, 2-aminoethyldiphenyl borate and flufenamic acid, but potentiated by gadolinium ion and lanthanum ion at 100 μM. Depletion of extracellular Ca(2+) also counteracted CCK-induced increases in AC firing frequency. Moreover, CCK-induced enhancement of neuronal excitability was inhibited significantly by intracellular application of the antibody to transient receptor potential channel 5 (TRPC5), suggesting the involvement of TRPC5 channels. Our results provide a cellular and molecular mechanism to help explain the functions of CCK in vivo.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
34
|
Kitajima N, Watanabe K, Morimoto S, Sato Y, Kiyonaka S, Hoshijima M, Ikeda Y, Nakaya M, Ide T, Mori Y, Kurose H, Nishida M. TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts. Biochem Biophys Res Commun 2011; 409:108-13. [DOI: 10.1016/j.bbrc.2011.04.124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
|
35
|
Abstract
Transient receptor potential (TRP) channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by changing membrane voltage and increasing cellular Ca(2+). This review outlines in detail the history of the founding member of the TRP family, the Drosophila TRP channel. The field began with a spontaneous mutation in the trp gene that led to a blind mutant during prolonged intense light. It was this mutant that allowed for the discovery of the first TRP channels. A combination of electrophysiological, biochemical, Ca(2+) measurements, and genetic studies in flies and in other invertebrates pointed to TRP as a novel phosphoinositide-regulated and Ca(2+)-permeable channel. The cloning and sequencing of the trp gene provided its molecular identity. These seminal findings led to the isolation of the first mammalian homologues of the Drosophila TRP channels. We now know that TRP channel proteins are conserved through evolution and are found in most organisms, tissues, and cell-types. The TRP channel superfamily is classified into seven related subfamilies: TRPC, TRPM, TRPV, TRPA, TRPP, TRPML, and TRPN. A great deal is known today about participation of TRP channels in many biological processes, including initiation of pain, thermoregulation, salivary fluid secretion, inflammation, cardiovascular regulation, smooth muscle tone, pressure regulation, Ca(2+) and Mg(2+) homeostasis, and lysosomal function. The native Drosophila photoreceptor cells, where the founding member of the TRP channels superfamily was found, is still a useful preparation to study basic features of this remarkable channel.
Collapse
Affiliation(s)
- Baruch Minke
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada, The Edmond and Lily Safra Center for Brain Sciences and the Kühne Minerva Center for Studies of Visual Transduction, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel.
| |
Collapse
|
36
|
Salomonsson M, Braunstein TH, Holstein-Rathlou NH, Jensen LJ. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline: possible role of TRPC channels. Acta Physiol (Oxf) 2010; 200:265-78. [PMID: 20426773 DOI: 10.1111/j.1748-1716.2010.02141.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM In rat afferent arterioles we investigated the role of Na(+) entry in noradrenaline (NA)-induced depolarization and voltage-dependent Ca(2+) entry together with the importance of the transient receptor potential channel (TRPC) subfamily for non-voltage-dependent Ca(2+) entry. METHODS R (340/380) Fura-2 fluorescence was used as an index for intracellular free Ca(2+) concentration ([Ca(2+)](i)). Immunofluorescence detected the expression of TRPC channels. RESULTS TRPC 1, 3 and 6 were expressed in afferent arteriolar vascular smooth muscle cells. Under extracellular Na(+)-free (0 Na) conditions, the plateau response to NA was 115% of the baseline R(340/380) (control response 123%). However, as the R(340/380) baseline increased (7%) after 0 Na the plateau reached the same level as during control conditions. Similar responses were obtained after blockade of the Na(+)/Ca(2+) exchanger. The L-type blocker nifedipine reduced the plateau response to NA both under control (from 134% to 116% of baseline) and 0 Na conditions (from 112% to 103% of baseline). In the presence of nifedipine, the putative TRPC channel blockers SKF 96365 (30 μm) and Gd(3+) (100 μm) further reduced the plateau Ca(2+) responses to NA (from 117% to 102% and from 117% to 110% respectively). CONCLUSION We found that Na(+) is not crucial for the NA-induced depolarization that mediates Ca(2+) entry via L-type channels. In addition, the results are consistent with the idea that TRPC1/3/6 Ca(2+) -permeable cation channels expressed in afferent arteriolar smooth muscle cells mediate Ca(2+) entry during NA stimulation.
Collapse
Affiliation(s)
- M Salomonsson
- Division of Renal and Vascular Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
37
|
Dadon D, Minke B. Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 2010; 42:1430-45. [PMID: 20399884 DOI: 10.1016/j.biocel.2010.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 11/26/2022]
Abstract
Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca(2+). In this review we focus on the roles of these channels in: (i) cell death (ii) proliferation and differentiation and (iii) transmitter release. Cell death: Ca(2+) influx participates in apoptotic and necrotic cell death. The Ca(2+) permeability and high sensitivity of part of these channels to oxidative/metabolic stress make them important participants in cell death. Several examples are given. Transient Receptor Potential Melastatin 2 is activated by H(2)O(2), inducing cell death through an increase in cellular Ca(2+) and activation of Poly ADP-Ribose Polymerase. Exposure of cultured cortical neurons to oxygen-glucose deprivation, in vitro, causes cell death via cation influx, mediated by Transient Receptor Potential Melastatin 7. Metabolic stress constitutively activates the Ca(2+) permeable Transient Receptor Potential channels of Drosophila photoreceptor in the dark, potentially leading to retinal degeneration. Similar sensitivity to metabolic stress characterizes several mammalian Transient Receptor Potential Canonical channels. Proliferation and differentiation: The rise in cytosolic Ca(2+) induces cell growth, differentiation and proliferation via activation of several transcription factors. Activating a variety of store operated and Transient Receptor Potential channels cause a rise in cytosolic Ca(2+), making these channels components involved in proliferation and differentiation. Transmitter release: Transient Receptor Potential Melastatin 7 channels reside in synaptic vesicles and regulate neurotransmitter release by a mechanism that is not entirely clear. All the above features of Transient Receptor Potential channels make them crucial components in important, sometimes conflicting, cellular processes that still need to be explored.
Collapse
Affiliation(s)
- Daniela Dadon
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada and the Kühne Minerva Center, for Studies of Visual Transduction, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | |
Collapse
|
38
|
Numaga T, Nishida M, Kiyonaka S, Kato K, Katano M, Mori E, Kurosaki T, Inoue R, Hikida M, Putney JW, Mori Y. Ca2+ influx and protein scaffolding via TRPC3 sustain PKCbeta and ERK activation in B cells. J Cell Sci 2010; 123:927-38. [PMID: 20179100 DOI: 10.1242/jcs.061051] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ca(2+) signaling mediated by phospholipase C that produces inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] and diacylglycerol (DAG) controls lymphocyte activation. In contrast to store-operated Ca(2+) entry activated by Ins(1,4,5)P(3)-induced Ca(2+) release from endoplasmic reticulum, the importance of DAG-activated Ca(2+) entry remains elusive. Here, we describe the physiological role of DAG-activated Ca(2+) entry channels in B-cell receptor (BCR) signaling. In avian DT40 B cells, deficiency of transient receptor potential TRPC3 at the plasma membrane (PM) impaired DAG-activated cation currents and, upon BCR stimulation, the sustained translocation to the PM of protein kinase Cbeta (PKCbeta) that activated extracellular signal-regulated kinase (ERK). Notably, TRPC3 showed direct association with PKCbeta that maintained localization of PKCbeta at the PM. Thus, TRPC3 functions as both a Ca(2+)-permeable channel and a protein scaffold at the PM for downstream PKCbeta activation in B cells.
Collapse
Affiliation(s)
- Takuro Numaga
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Koitabashi N, Aiba T, Hesketh GG, Rowell J, Zhang M, Takimoto E, Tomaselli GF, Kass DA. Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol 2009; 48:713-24. [PMID: 19961855 DOI: 10.1016/j.yjmcc.2009.11.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/28/2009] [Accepted: 11/19/2009] [Indexed: 12/15/2022]
Abstract
Increased cyclic GMP from enhanced synthesis or suppressed catabolism (e.g. PDE5 inhibition by sildenafil, SIL) activates protein kinase G (PKG) and blunts cardiac pathological hypertrophy. Suppressed calcineurin (Cn)-NFAT (nuclear factor of activated T-cells) signaling appears to be involved, though it remains unclear how this is achieved. One potential mechanism involves activation of Cn/NFAT by calcium entering via transient receptor potential canonical (TRPC) channels (notably TRPC6). Here, we tested the hypothesis that PKG blocks Cn/NFAT activation by modifying and thus inhibiting TRPC6 current to break the positive feedback loop involving NFAT and NFAT-dependent TRPC6 upregulation. TRPC6 expression rose with pressure-overload in vivo, and angiotensin (ATII) or endothelin (ET1) stimulation in neonatal and adult cardiomyocytes in vitro. 8Br-cGMP and SIL reduced ET1-stimulated TRPC6 expression and NFAT dephosphorylation (activity). TRPC6 upregulation was absent if its promoter was mutated with non-functional NFAT binding sites, whereas constitutively active NFAT triggered TRPC6 expression that was not inhibited by SIL. PKG phosphorylated TRPC6, and both T70 and S322 were targeted. Both sites were functionally relevant, as 8Br-cGMP strongly suppressed current in wild-type TRPC6 channels, but not in those with phospho-silencing mutations (T70A, S322A or S322Q). NFAT activation and increased protein synthesis stimulated by ATII or ET1 was blocked by 8Br-cGMP or SIL. However, transfection with T70A or S322Q TRPC6 mutants blocked this inhibitory effect, whereas phospho-mimetic mutants (T70E, S322E, and both combined) suppressed NFAT activation. Thus PDE5-inhibition blocks TRPC6 channel activation and associated Cn/NFAT activation signaling by PKG-dependent channel phosphorylation.
Collapse
Affiliation(s)
- Norimichi Koitabashi
- Division of Cardiology, Ross 858, Department of Medicine, Johns Hopkins University Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nishida M, Sato Y, Nakaya M, Kurose H. [Regulation of cardiac hypertrophy by the formation of G protein-coupled receptor--TRPC channel protein complex]. Nihon Yakurigaku Zasshi 2009; 134:131-136. [PMID: 19749484 DOI: 10.1254/fpj.134.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
41
|
Roles of TRP channels in the development of cardiac hypertrophy. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:395-406. [DOI: 10.1007/s00210-008-0321-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
|
42
|
Yamamoto S, Wajima T, Hara Y, Nishida M, Mori Y. Transient receptor potential channels in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2007; 1772:958-67. [PMID: 17490865 DOI: 10.1016/j.bbadis.2007.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 01/20/2023]
Abstract
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and neuronal death in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta can render neurons vulnerable to excitotoxicity and apoptosis by disruption of cellular Ca(2+) homeostasis and neurotoxic factors including reactive oxygen species (ROS), nitric oxide (NO), and cytokines. Many lines of evidence have suggested that transient receptor potential (TRP) channels consisting of six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) are involved in Ca(2+) homeostasis disruption. Thus, emerging evidence of the pathophysiological role of TRP channels has yielded promising candidates for molecular entities mediating Ca(2+) homeostasis disruption in AD. In this review, we focus on the TRP channels in AD and highlight some TRP "suspects" for which a role in AD can be anticipated. An understanding of the involvement of TRP channels in AD may lead to the development of new target therapies.
Collapse
Affiliation(s)
- Shinichiro Yamamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|