1
|
Zhang J, Wang M, Alam M, Zheng YP, Ye F, Hu X. Effects of non-invasive cervical spinal cord neuromodulation by trans-spinal electrical stimulation on cortico-muscular descending patterns in upper extremity of chronic stroke. Front Bioeng Biotechnol 2024; 12:1372158. [PMID: 38576448 PMCID: PMC10991759 DOI: 10.3389/fbioe.2024.1372158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Trans-spinal electrical stimulation (tsES) to the intact spinal cord poststroke may modulate the cortico-muscular control in stroke survivors with diverse lesions in the brain. This work aimed to investigate the immediate effects of tsES on the cortico-muscular descending patterns during voluntary upper extremity (UE) muscle contractions by analyzing cortico-muscular coherence (CMCoh) and electromyography (EMG) in people with chronic stroke. Methods: Twelve chronic stroke participants were recruited to perform wrist-hand extension and flexion tasks at submaximal levels of voluntary contraction for the corresponding agonist flexors and extensors. During the tasks, the tsES was delivered to the cervical spinal cord with rectangular biphasic pulses. Electroencephalography (EEG) data were collected from the sensorimotor cortex, and the EMG data were recorded from both distal and proximal UE muscles. The CMCoh, laterality index (LI) of the peak CMCoh, and EMG activation level parameters under both non-tsES and tsES conditions were compared to evaluate the immediate effects of tsES on the cortico-muscular descending pathway. Results: The CMCoh and LI of peak CMCoh in the agonist distal muscles showed significant increases (p < 0.05) during the wrist-hand extension and flexion tasks with the application of tsES. The EMG activation levels of the antagonist distal muscle during wrist-hand extension were significantly decreased (p < 0.05) with tsES. Additionally, the proximal UE muscles exhibited significant decreases (p < 0.05) in peak CMCoh and EMG activation levels by applying tsES. There was a significant increase (p < 0.05) in LI of peak CMCoh of proximal UE muscles during tsES. Conclusion: The cervical spinal cord neuromodulation via tsES enhanced the residual descending excitatory control, activated the local inhibitory circuits within the spinal cord, and reduced the cortical and proximal muscular compensatory effects. These results suggested the potential of tsES as a supplementary input for improving UE motor functions in stroke rehabilitation.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Maner Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Fuqiang Ye
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
- Research Institute for Smart Ageing (RISA), Hong Kong SAR, China
- Research Centre of Data Science and Artificial Intelligence (RC-DSAI), Hong Kong SAR, China
- Joint Research Centre for Biosensing and Precision Theranostics, Hong Kong SAR, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
2
|
Gao Z, Lv S, Ran X, Wang Y, Xia M, Wang J, Qiu M, Wei Y, Shao Z, Zhao Z, Zhang Y, Zhou X, Yu Y. Influencing factors of corticomuscular coherence in stroke patients. Front Hum Neurosci 2024; 18:1354332. [PMID: 38562230 PMCID: PMC10982423 DOI: 10.3389/fnhum.2024.1354332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Stroke, also known as cerebrovascular accident, is an acute cerebrovascular disease with a high incidence, disability rate, and mortality. It can disrupt the interaction between the cerebral cortex and external muscles. Corticomuscular coherence (CMC) is a common and useful method for studying how the cerebral cortex controls muscle activity. CMC can expose functional connections between the cortex and muscle, reflecting the information flow in the motor system. Afferent feedback related to CMC can reveal these functional connections. This paper aims to investigate the factors influencing CMC in stroke patients and provide a comprehensive summary and analysis of the current research in this area. This paper begins by discussing the impact of stroke and the significance of CMC in stroke patients. It then proceeds to elaborate on the mechanism of CMC and its defining formula. Next, the impacts of various factors on CMC in stroke patients were discussed individually. Lastly, this paper addresses current challenges and future prospects for CMC.
Collapse
Affiliation(s)
- Zhixian Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Shiyang Lv
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yuxi Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengsheng Xia
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Junming Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengyue Qiu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yinping Wei
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zhenpeng Shao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yehong Zhang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xuezhi Zhou
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| |
Collapse
|
3
|
Zhou L, Xu Y, Song F, Li W, Gao F, Zhu Q, Qian Z. The effect of TENS on sleep: A pilot study. Sleep Med 2023; 107:126-136. [PMID: 37167876 DOI: 10.1016/j.sleep.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Insomnia is the second most common neuropsychiatric disorder, but the current treatments are not very effective. There is therefore an urgent need to develop better treatments. Transcutaneous electrical nerve stimulation (TENS) may be a promising means of treating insomnia. OBJECTIVE This work aims to explore whether and how TENS modulate sleep and the effect of stimulation waveforms on sleep. METHODS Forty-five healthy subjects participated in this study. Electroencephalography (EEG) data were recorded before and after four mode low-frequency (1 Hz) TENS with different waveforms, which were formed by superimposing sine waves of different high frequencies (60-210 Hz) and low frequencies (1-6 Hz). The four waveform modes are formed by combining sine waves of varying frequencies. Mode 1 (M1) consists of a combination of high frequencies (60-110 Hz) and low frequencies (1-6 Hz). Mode 2 (M2) is made up of high frequencies (60-210 Hz) and low frequencies (1-6 Hz). Mode 3 (M3) consists of high frequencies (110-160 Hz) and low frequencies (1-6 Hz), while mode 4 (M4) is composed of high frequencies (160-210 Hz) and low frequencies (1-6 Hz). For M1, M3 and M4, the high frequency portions of the stimulus waveforms account for 50%, while for M2, the high frequency portion of the waveform accounts for 65%. For each mode, the current intensities ranged from 4 mA to 7 mA, with values for each participant adjusted according to individual tolerance. During stimulation, the subjects were stimulated at the greater occipital nerve by the four mode TENS. RESULTS M1, M3, and M4 slowed down the frequency of neural activity, broadened the distribution of theta waves, and caused a decrease in activity in wakefulness-related regions and an increase in activity in sleep-related regions. However, M2 has the opposite modulation effect. CONCLUSION These results indicated that low-frequency TENS (1 Hz) may facilitate sleep in a waveform-specific manner. Our findings provide new insights into the mechanisms of sleep modulation by TENS and the design of effective insomnia treatments.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Yixuan Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Fanlei Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| |
Collapse
|
4
|
Huo C, Xu G, Sun A, Xie H, Hu X, Li W, Li Z, Fan Y. Cortical response induced by task-oriented training of the upper limb in subacute stroke patients as assessed by functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200228. [PMID: 36222197 DOI: 10.1002/jbio.202200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Despite the popularity of task-oriented training for stroke, the cortical reorganization associated with this type of therapy remains to be fully elucidated due to the lack of dynamic assessment tools. A good tolerance for motion artifacts makes functional near-infrared spectroscopy (fNIRS) suitable for investigating task-induced cortical responses in stroke patients. Here, patients were randomly assigned to receive task oriented (n = 25) or cyclic rotary training (n = 25) with simultaneous cortical activation and effective connectivity network analysis between prefrontal and motor cortices (PFC/MC). Compared with cyclic rotary training, task-oriented training induced significantly increased activation in both hemispheres and enhanced influence of PFC on MC. In addition, significantly decreased activation lateralization and increased betweenness centrality of the contralesional MC suggested widespread involvement of the contralesional hemisphere during task-oriented training. This study verifies the feasibility of fNIRS combined with motor paradigms for assessing neural responses associated with stroke rehabilitation in real time.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Aiping Sun
- Department of Neurological Rehabilitation, National Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hui Xie
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Wenhao Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
5
|
Immediate effects of transcutaneous electrical nerve stimulation on gait patterns in chronic stroke survivors: A single group, pretest-posttest clinical trial. Hum Mov Sci 2022; 83:102948. [DOI: 10.1016/j.humov.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
|
6
|
Zarei AA, Jensen W, Faghani Jadidi A, Lontis R, Atashzar SF. Gamma-band Enhancement of Functional Brain Connectivity Following Transcutaneous Electrical Nerve Stimulation. J Neural Eng 2022; 19. [PMID: 35234662 DOI: 10.1088/1741-2552/ac59a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Transcutaneous electrical nerve stimulation (TENS) has been suggested as a possible non-invasive pain treatment. However, the underlying mechanism of the analgesic effect of TENS and how brain network functional connectivity is affected following the use of TENS is not yet fully understood. The purpose of this study was to investigate the effect of high-frequency TENS on the alternation of functional brain network connectivity and the corresponding topographical changes, besides perceived sensations. APPROACH Forty healthy subjects participated in this study. EEG data and sensory profiles were recorded before and up to an hour following high-frequency TENS (100 Hz) in sham and intervention groups. Brain source activity from EEG data was estimated using the LORETA algorithm. In order to generate the brain connectivity network, the Phase lag index was calculated for all pair-wise connections of eight selected brain areas over six different frequency bands (i.e., δ, θ, α, β, γ, and 0.5-90 Hz). MAIN RESULTS The results suggested that the functional connectivity between the primary somatosensory cortex (SI) and the anterior cingulate cortex (ACC), in addition to functional connectivity between S1 and the medial prefrontal cortex (mPFC), were significantly increased in the gamma-band, following the TENS intervention. Additionally, using graph theory, several significant changes were observed in global and local characteristics of functional brain connectivity in gamma-band. SIGNIFICANCE Our observations in this paper open a neuropsychological window of understanding the underlying mechanism of TENS and the corresponding changes in functional brain connectivity, simultaneously with alternation in sensory perception.
Collapse
Affiliation(s)
- Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - Winnie Jensen
- Center for Sensory-Motor Interaction Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Aalborg, 9220, DENMARK
| | - Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - S Farokh Atashzar
- Departments of Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University, 5 MetroTech Center #266D Brooklyn, NY 11201, New York, New York, NY 11201, UNITED STATES
| |
Collapse
|
7
|
Guo Z, Zhou S, Ji K, Zhuang Y, Song J, Nam C, Hu X, Zheng Y. Corticomuscular integrated representation of voluntary motor effort in robotic control for wrist-hand rehabilitation after stroke. J Neural Eng 2022; 19. [PMID: 35193124 DOI: 10.1088/1741-2552/ac5757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The central-to-peripheral voluntary motor effort (VME) in physical practice of the paretic limb is a dominant force for driving functional neuroplasticity on motor restoration post-stroke. However, current rehabilitation robots isolated the central and peripheral involvements in the control design, resulting in limited rehabilitation effectiveness. The purpose of this study was to design a corticomuscular coherence (CMC) and electromyography (EMG)-driven (CMC-EMG-driven) system with central-and-peripheral integrated representation of VME for wrist-hand rehabilitation after stroke. APPROACH The CMC-EMG-driven control was developed in a neuromuscular electrical stimulation (NMES)-robot system, i.e., CMC-EMG-driven NMES-robot system, to instruct and assist the wrist-hand extension and flexion in persons after stroke. A pilot single-group trial of 20 training sessions was conducted with the developed system to assess the feasibility for wrist-hand practice on the chronic strokes (n=16). The rehabilitation effectiveness was evaluated through clinical assessments, CMC, and EMG activation levels. MAIN RESULTS The trigger success rate and laterality index (LI) of CMC were significantly increased in wrist-hand extension across training sessions (p<0.05). After the training, significant improvements in the target wrist-hand joints and suppressed compensation from the proximal shoulder-elbow joints were observed through the clinical scores and EMG activation levels (p<0.05). The central-to-peripheral VME distribution across upper extremity (UE) muscles was also significantly improved, as revealed by the CMC values (p<0.05). SIGNIFICANCE Precise wrist-hand rehabilitation was achieved by the developed system, presenting suppressed cortical and muscular compensation from the contralesional hemisphere and the proximal UE, and improved distribution of the central-and-peripheral VME on UE muscles.
Collapse
Affiliation(s)
- Ziqi Guo
- The Hong Kong Polytechnic University, Rm S107a, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Kowloon, Nil, HONG KONG
| | - Sa Zhou
- The Hong Kong Polytechnic University, Rm S107a, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Hong Kong, Kowloon, HONG KONG
| | - Kailai Ji
- The Hong Kong Polytechnic University, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Kowloon, Hong Kong, HONG KONG
| | - Yongqi Zhuang
- Biomedical Engineering, Hong Kong Polytechnic University, BME PolyU, Kowloon, HONG KONG
| | - Jie Song
- The Hong Kong Polytechnic University, Rm S107a, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Hong Kong, Kowloon, Nil, HONG KONG
| | - Chingyi Nam
- The Hong Kong Polytechnic University, Rm S107a, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Hong Kong, Kowloon, Nil, HONG KONG
| | - Xiaoling Hu
- Biomedical Engineering, Hong Kong Polytechnic University, Rm ST420, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Hong Kong, Kowloon, HONG KONG
| | - Yongping Zheng
- Biomedical Engineering, The Hong Kong Polytechnic University, BME PolyU, Hong Kong, Nil, CHINA
| |
Collapse
|
8
|
Chen P, Liu TW, Kwong PWH, Lai CKY, Chung RCK, Tsoh J, Ng SSM. Bilateral Transcutaneous Electrical Nerve Stimulation Improves Upper Limb Motor Recovery in Stroke: A Randomized Controlled Trial. Stroke 2021; 53:1134-1140. [PMID: 34852645 DOI: 10.1161/strokeaha.121.036895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Recent evidence has shown bilateral transcutaneous electrical nerve stimulation (Bi-TENS) combined with task-oriented training (TOT) to be superior to unilateral transcutaneous electrical nerve stimulation (Uni-TENS)+TOT in improving lower limb motor functioning following stroke. However, no research explored the effect of Bi-TENS+TOT in improving upper limb motor recovery. This study aimed to compare Bi-TENS+TOT with Uni-TENS+TOT, Placebo transcutaneous electrical nerve stimulation (Placebo-TENS)+TOT, and no treatment (Control) groups in upper limb motor recovery. METHODS This is a 4-group parallel design. One hundred and twenty subjects were given either Bi-TENS+TOT, Uni-TENS+TOT, Placebo-TENS+TOT, or Control without treatment in this randomized controlled trial. Twenty 60-minute sessions were administered 3× per week for 7 weeks. The outcome measure was the Fugl-Meyer Assessment of Upper Extremity, which was assessed at baseline, after 10 sessions (mid-intervention) and 20 sessions (post-intervention) of intervention, and at 1- and 3-month follow-up. RESULTS Patients in the Bi-TENS+TOT group showed greater improvement in the Fugl-Meyer Assessment of Upper Extremity scores than Uni-TENS+TOT (mean difference, 2.13; P=0.004), Placebo-TENS+TOT (mean difference, 2.63; P<0.001), and Control groups (mean difference, 3.11; P<0.001) at post-intervention. Both Bi-TENS+TOT (mean difference, 3.39; P<0.001) and Uni-TENS+TOT (mean difference, 1.26; P=0.018) showed significant within-group improvement in the Fugl-Meyer Assessment of Upper Extremity scores. Patients in the Bi-TENS+TOT group showed earlier within-group improvement in the Fugl-Meyer Assessment of Upper Extremity scores at mid-intervention than Uni-TENS+TOT. These improvements were maintained at the 3-month follow-up assessment. CONCLUSIONS Bi-TENS combined with TOT is an effective therapy for improving upper limb motor recovery following stroke. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03112473.
Collapse
Affiliation(s)
- Peiming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, China. (P.C., P.W.H.K., R.C.K.C., S.S.M.N.)
| | - Tai-Wa Liu
- School of Nursing & Health Studies, Hong Kong Metropolitan University, Ho Man Tin, China (T.-W.L.)
| | - Patrick W H Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, China. (P.C., P.W.H.K., R.C.K.C., S.S.M.N.)
| | - Claudia K Y Lai
- School of Nursing, The Hong Kong Polytechnic University, China. (C.K.Y.L.)
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, China. (P.C., P.W.H.K., R.C.K.C., S.S.M.N.)
| | - Joshua Tsoh
- Department of Psychiatry, Prince of Wales Hospital and Shatin Hospital, Hong Kong SAR, China (J.T.)
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, China. (P.C., P.W.H.K., R.C.K.C., S.S.M.N.)
| |
Collapse
|
9
|
Brambilla C, Pirovano I, Mira RM, Rizzo G, Scano A, Mastropietro A. Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:7014. [PMID: 34770320 PMCID: PMC8588321 DOI: 10.3390/s21217014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Electroencephalography (EEG) and electromyography (EMG) are widespread and well-known quantitative techniques used for gathering biological signals at cortical and muscular levels, respectively. Indeed, they provide relevant insights for increasing knowledge in different domains, such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far, EEG and EMG techniques have been independently exploited to guide or assess the outcome of the rehabilitation, preferring one technique over the other according to the aim of the investigation. More recently, the combination of EEG and EMG started to be considered as a potential breakthrough approach to improve rehabilitation effectiveness. However, since it is a relatively recent research field, we observed that no comprehensive reviews available nor standard procedures and setups for simultaneous acquisitions and processing have been identified. Consequently, this paper presents a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were analyzed in detail in this review. Most of the applications are focused on the study of stroke patients, and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological approaches used to acquire and process data, our results show that a simultaneous EEG and EMG acquisition is quite common in the field, but it is mostly performed with EMG as a support technique for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and EMG, for example targeting a wider range of pathologies and implementing more structured clinical trials to confirm the results of the current pilot studies.
Collapse
Affiliation(s)
- Cristina Brambilla
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Ileana Pirovano
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Robert Mihai Mira
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Alessandro Scano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| |
Collapse
|
10
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Koseki T, Kudo D, Katagiri N, Nanba S, Nito M, Tanabe S, Yamaguchi T. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults. BMC Neurosci 2021; 22:61. [PMID: 34645385 PMCID: PMC8513252 DOI: 10.1186/s12868-021-00665-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background Sensory input via neuromuscular electrical stimulation (NMES) may contribute to synchronization between motor cortex and spinal motor neurons and motor performance improvement in healthy adults and stroke patients. However, the optimal NMES parameters used to enhance physiological activity and motor performance remain unclear. In this study, we focused on sensory feedback induced by a beta-band frequency NMES (β-NMES) based on corticomuscular coherence (CMC) and investigated the effects of β-NMES on CMC and steady-state of isometric ankle dorsiflexion in healthy volunteers. Twenty-four participants received β-NMES at the peak beta-band CMC or fixed NMES (f-NMES) at 100 Hz on different days. NMES was applied to the right part of the common peroneal nerve for 20 min. The stimulation intensity was 95% of the motor threshold with a pulse width of 1 ms. The beta-band CMC and the coefficient of variation of force (Force CV) were assessed during isometric ankle dorsiflexion for 2 min. In the complementary experiment, we applied β-NMES to 14 participants and assessed beta-band CMC and motor evoked potentials (MEPs) with transcranial magnetic stimulation. Results No significant changes in the means of beta-band CMC, Force CV, and MEPs were observed before and after NMES conditions. Changes in beta-band CMC were correlated to (a) changes in Force CV immediately, at 10 min, and at 20 min after β-NMES (all cases, p < 0.05) and (b) changes in MEPs immediately after β-NMES (p = 0.01). No correlations were found after f-NMES. Conclusions Our results suggest that the sensory input via NMES was inadequate to change the beta-band CMC, corticospinal excitability, and voluntary motor output. Whereas, the β-NMES affects the relationship between changes in beta-band CMC, Force CV, and MEPs. These findings may provide the information to develop NMES parameters for neurorehabilitation in patients with motor dysfunction.
Collapse
Affiliation(s)
- Tadaki Koseki
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Daisuke Kudo
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Natsuki Katagiri
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Shigehiro Nanba
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan. .,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
12
|
Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021; 11:1316. [PMID: 34572529 PMCID: PMC8468342 DOI: 10.3390/biom11091316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA;
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA;
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | | | - Alex Shear
- University of Florida, 205 Fletcher Drive, Gainesville, FL 32611, USA;
| | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA;
| | | | - Blake Parsons
- Washington and Lee University, 204 W Washington St, Lexington, VA 24450, USA;
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Cortico-muscular interaction to monitor the effects of neuromuscular electrical stimulation pedaling training in chronic stroke. Comput Biol Med 2021; 137:104801. [PMID: 34481180 DOI: 10.1016/j.compbiomed.2021.104801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Neuromuscular electrical stimulation (NMES) has been widely utilized in post-stroke motor restoration. However, its impact on the closed-loop sensorimotor control process remains largely unclear. This is the first study to investigate the directional changes in cortico-muscular interactions after repetitive rehabilitation training by measuring the noninvasive electroencephalogram (EEG) and electromyography (EMG) signals. In this study, 10 subjects with chronic stroke received 20 sessions of NMES-pedaling interventions, and each training session included three 10-min NMES-driven pedaling trials. In addition, pre- and post-intervention assessments of lower limb isometric contraction were conducted before and after the whole NMES-pedaling interventions. The EEG (128 channels) and EMG (3 bilateral lower limb sensors) signals were collected during the isometric contraction tasks for the paretic and non-paretic lower limbs. Both the cortico-muscular coherence (CMC) and generalized partial directed coherence (GPDC) values were analyzed between eight selected EEG channels in the central primary motor cortex and EMG channels. The results revealed significant clinical improvements. Additionally, rehabilitation training facilitated cortico-muscular interaction of the ipsilesional brain and paretic lower limbs (p = 0.004). Moreover, both the descending and ascending cortico-muscular pathways were altered after NMES-training (p = 0.001, p < 0.001). Therefore, the results implied potential applications of EEG-EMG in understanding neuromuscular changes during the post-stroke motor rehabilitation process.
Collapse
|
14
|
Xi X, Wu X, Zhao YB, Wang J, Kong W, Luo Z. Cortico-muscular functional network: an exploration of cortico-muscular coupling in hand movements. J Neural Eng 2021; 18. [PMID: 34038874 DOI: 10.1088/1741-2552/ac0586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/26/2021] [Indexed: 11/12/2022]
Abstract
Objective. The main objective of this research was to study cortico-muscular, intra-cortical, and inter-muscular coupling. Herein, we established a cortico-muscular functional network (CMFN) to assess the network differences associated with making a fist, opening the hand, and wrist flexion.Approach. We used transfer entropy (TE) to calculate the causality between electroencephalographic and electromyographic data and established the TE connection matrix. We then applied graph theory to analyze the clustering coefficient, global efficiency, and small-world attributes of the CMFN. We also used Relief-F to extract the features of the TE connection matrix of the beta2 band for the different hand movements and observed high accuracy when this feature was used for action recognition.Main results. We found that the CMFN of the three actions in the beta band had small-world attributes, among which the beta2 band's small-world was stronger. Moreover, we found that the extracted features were mainly concentrated in the left frontal area, left motor area, occipital lobe, and related muscles, suggesting that the CMFN could be used to assess the coupling differences between the cortex and the muscles that are associated with different hand movements. Overall, our results showed that the beta2 (21-35 Hz) wave is the main information carrier between the cortex and the muscles, and the CMFN can be used in the beta2 band to assess cortico-muscular coupling.Significance. Our study preliminarily explored the CMFN associated with hand movements, providing additional insights regarding the transmission of information between the cortex and the muscles, thereby laying a foundation for future rehabilitation therapy targeting pathological cortical areas in stroke patients.
Collapse
Affiliation(s)
- Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Xiangxiang Wu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Yun-Bo Zhao
- Department of Automation, University of Science and Technology of China, Hefei, People's Republic of China
| | - Junhong Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China.,School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhizeng Luo
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| |
Collapse
|
15
|
Compression Sleeve Changes Corticomuscular Connectivity and Sensorimotor Function. J Med Biol Eng 2021. [DOI: 10.1007/s40846-021-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Huo CC, Zheng Y, Lu WW, Zhang TY, Wang DF, Xu DS, Li ZY. Prospects for intelligent rehabilitation techniques to treat motor dysfunction. Neural Regen Res 2021; 16:264-269. [PMID: 32859773 PMCID: PMC7896219 DOI: 10.4103/1673-5374.290884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/06/2019] [Accepted: 02/26/2020] [Indexed: 11/26/2022] Open
Abstract
More than half of stroke patients live with different levels of motor dysfunction after receiving routine rehabilitation treatments. Therefore, new rehabilitation technologies are urgently needed as auxiliary treatments for motor rehabilitation. Based on routine rehabilitation treatments, a new intelligent rehabilitation platform has been developed for accurate evaluation of function and rehabilitation training. The emerging intelligent rehabilitation techniques can promote the development of motor function rehabilitation in terms of informatization, standardization, and intelligence. Traditional assessment methods are mostly subjective, depending on the experience and expertise of clinicians, and lack standardization and precision. It is therefore difficult to track functional changes during the rehabilitation process. Emerging intelligent rehabilitation techniques provide objective and accurate functional assessment for stroke patients that can promote improvement of clinical guidance for treatment. Artificial intelligence and neural networks play a critical role in intelligent rehabilitation. Multiple novel techniques, such as brain-computer interfaces, virtual reality, neural circuit-magnetic stimulation, and robot-assisted therapy, have been widely used in the clinic. This review summarizes the emerging intelligent rehabilitation techniques for the evaluation and treatment of motor dysfunction caused by nervous system diseases.
Collapse
Affiliation(s)
- Cong-Cong Huo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wei-Wei Lu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Teng-Yu Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Dai-Fa Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Dong-Sheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng-Yong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
17
|
Zarei AA, Jadidi AF, Lontis ER, Jensen W. Short-Term Suppression of Somatosensory Evoked Potentials and Perceived Sensations in Healthy Subjects Following TENS. IEEE Trans Biomed Eng 2021; 68:2261-2269. [PMID: 33439833 DOI: 10.1109/tbme.2021.3051307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) has been reported to alleviate pain in chronic pain patients. Currently, there is limited knowledge how TENS affects can cause cortical neuromodulation and lead to modulation of non-painful and painful sensations. Our aim was therefore to investigate the effect of conventional, high-frequency TENS on cortical activation and perceived sensations in healthy subjects. We recorded somatosensory evoked potentials (SEPs) and perceived sensations following high-frequency TENS (100 Hz) in 40 healthy subjects (sham and intervention group). The effect of TENS was examined up to an hour after the intervention phase, and results revealed significant cortical inhibition. We found that the magnitude of N100, P200 waves, and theta and alpha band power was significantly suppressed following the TENS intervention. These changes were associated with a simultaneous reduction in the perceived intensity and the size of the area where the sensation was felt. Although phantom limb pain relief previously has been associated with an inhibition of cortical activity, the efficacy of the present TENS intervention to induce such cortical inhibition and cause pain relief should be verified in a future clinical trial.
Collapse
|
18
|
Jadidi AF, Asghar Zarei A, Lontis R, Jensen W. Modulation of Corticospinal Excitability by Two Different Somatosensory Stimulation Patterns; A Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3573-3576. [PMID: 33018775 DOI: 10.1109/embc44109.2020.9175393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Following amputation, almost two-thirds of amputees experience unpleasant to painful sensations in the area of the missing limb. Whereas the mechanism of phantom limb pain (PLP) remains unknown, it has been shown that maladaptive cortical plasticity plays a major role in PLP. Transcutaneous electrical nerve stimulation (TENS) generating sensory input is believed to be beneficial for PLP relief. TENS effect may be caused by possible reversing reorganization at the cortical level that can be evaluated by changes in the excitability of the corticospinal (CS) pathway. Excitability changes are dependent on the chosen stimulation patterns and parameters. The aim of this study was to investigate the effect of two TENS patterns on the excitability of the CS tract among healthy subjects. We compared a non-modulated TENS as a conventional pattern with pulse width modulated TENS pattern. Motor evoked potentials (MEPs) from APB muscles of stimulated arm (TENS-APB) and contralateral arm (Control-APB) were recorded. We applied single TMS pulses on two subjects for each TENS pattern. The results showed that both patterns increase the CS excitability, while the effects of the conventional TENS is stronger. However, the amplitude of MEPs from control-APB after TENS delivery remained almost the same.Clinical Relevance- The primary results revealed changes in the activity of CS pathway for both patterns. A future study on a larger population is needed to provide strong evidence on the changes in CS excitability. The evaluation part with more factors such as changes in intracortical inhibition (ICI) may be beneficial to find an optimal modulated TENS pattern to enhance pain alleviation process in PLP.
Collapse
|
19
|
Zarei A, Lontis R, Jensen W. Modulation of Cortical Activity by Selective Steady-State Somatosensory Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:421-424. [PMID: 31945928 DOI: 10.1109/embc.2019.8856443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phantom limb pain (PLP) represents a major debilitating condition for amputees. No effective therapy has been reported. Non-painful surface electrical stimulation may induce temporary significant alleviation of PLP. Preliminary results of a study attempting to design a methodology for delivery and evaluation of possible quantifiable effects at the cortical level of steady-state surface stimulation are presented for two healthy subjects. Somatosensory evoked potentials (SEP) were evaluated before and after delivery of a steady-state stimulus applied at wrist along the median nerve. Characterization of evoked sensation induced in hand by the steady-state stimuli was performed. The sensory input artificially generated by the steady-state stimuli influenced cortical activation reflected in changes in N1 and P2 components of SEP. N1 suppression and changes in P2 amplitude after steady state stimulation between 1 to 7 minutes were observed. Analysis of changes in SEP components in a larger population may contribute to defining markers of temporary cortical plastic changes driven by steady-state stimuli possibly assessing the efficacy of these stimuli when attempting to reverse cortical plastic changes following amputation and relief of PLP upon specific delivery through surface electrical stimulation in the periphery.
Collapse
|
20
|
Bao SC, Khan A, Song R, Kai-yu Tong R. Rewiring the Lesioned Brain: Electrical Stimulation for Post-Stroke Motor Restoration. J Stroke 2020; 22:47-63. [PMID: 32027791 PMCID: PMC7005350 DOI: 10.5853/jos.2019.03027] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation has been extensively applied in post-stroke motor restoration, but its treatment mechanisms are not fully understood. Stimulation of neuromotor control system at multiple levels manipulates the corresponding neuronal circuits and results in neuroplasticity changes of stroke survivors. This rewires the lesioned brain and advances functional improvement. This review addresses the therapeutic mechanisms of different stimulation modalities, such as noninvasive brain stimulation, peripheral electrical stimulation, and other emerging techniques. The existing applications, the latest progress, and future directions are discussed. The use of electrical stimulation to facilitate post-stroke motor recovery presents great opportunities in terms of targeted intervention and easy applicability. Further technical improvements and clinical studies are required to reveal the neuromodulatory mechanisms and to enhance rehabilitation therapy efficiency in stroke survivors and people with other movement disorders.
Collapse
Affiliation(s)
- Shi-chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong Song
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Bao SC, Leung WC, K Cheung VC, Zhou P, Tong KY. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil 2019; 16:143. [PMID: 31744520 PMCID: PMC6862792 DOI: 10.1186/s12984-019-0614-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Neuromuscular electrical stimulation (NMES) is extensively used in stroke motor rehabilitation. How it promotes motor recovery remains only partially understood. NMES could change muscular properties, produce altered sensory inputs, and modulate fluctuations of cortical activities; but the potential contribution from cortico-muscular couplings during NMES synchronized with dynamic movement has rarely been discussed. Method We investigated cortico-muscular interactions during passive, active, and NMES rhythmic pedaling in healthy subjects and chronic stroke survivors. EEG (128 channels), EMG (4 unilateral lower limb muscles) and movement parameters were measured during 3 sessions of constant-speed pedaling. Sensory-level NMES (20 mA) was applied to the muscles, and cyclic stimulation patterns were synchronized with the EMG during pedaling cycles. Adaptive mixture independent component analysis was utilized to determine the movement-related electro-cortical sources and the source dipole clusters. A directed cortico-muscular coupling analysis was conducted between representative source clusters and the EMGs using generalized partial directed coherence (GPDC). The bidirectional GPDC was compared across muscles and pedaling sessions for post-stroke and healthy subjects. Results Directed cortico-muscular coupling of NMES cycling was more similar to that of active pedaling than to that of passive pedaling for the tested muscles. For healthy subjects, sensory-level NMES could modulate GPDC of both ascending and descending pathways. Whereas for stroke survivors, NMES could modulate GPDC of only the ascending pathways. Conclusions By clarifying how NMES influences neuromuscular control during pedaling in healthy and post-stroke subjects, our results indicate the potential limitation of sensory-level NMES in promoting sensorimotor recovery in chronic stroke survivors.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Cheong Leung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.,The KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA.,TIRR Memorial Hermann Research Center, Houston, 77030, TX, USA
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Huo C, Li X, Jing J, Ma Y, Li W, Wang Y, Liu W, Fan Y, Yue S, Wang Y, Li Z. Median Nerve Electrical Stimulation-Induced Changes in Effective Connectivity in Patients With Stroke as Assessed With Functional Near-Infrared Spectroscopy. Neurorehabil Neural Repair 2019; 33:1008-1017. [PMID: 31550986 DOI: 10.1177/1545968319875952] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background. The cortical plastic changes in response to median nerve electrical stimulation (MNES) in stroke patients have not been entirely illustrated. Objective. This study aimed to investigate MNES-related changes in effective connectivity (EC) within a cortical network after stroke by using functional near-infrared spectroscopy (fNIRS). Methods. The cerebral oxygenation signals in the bilateral prefrontal cortex (LPFC/RPFC), motor cortex (LMC/RMC), and occipital lobe (LOL/ROL) of 20 stroke patients with right hemiplegia were measured by fNIRS in 2 conditions: (1) resting state and (2) MNES applied to the right wrist. Coupling function together with dynamical Bayesian inference was used to assess MNES-related changes in EC among the cerebral low-frequency fluctuations. Results. Compared with the resting state, EC from LPFC and RPFC to LOL was significantly increased during the MNES state in stroke patients. Additionally, MNES triggered significantly higher coupling strengths from LMC and LOL to RPFC. The interregional main coupling direction was observed from LPFC to bilateral motor and occipital areas in responding to MNES, suggesting that MNES could promote the regulation function of ipsilesional prefrontal areas in the functional network. MNES can induce muscle twitch of the stroke-affected hand involving a decreased neural coupling of the contralesional motor area on the ipsilesional MC. Conclusions. MNES can trigger sensorimotor stimulations of the affected hand that sequentially involved functional reorganization of distant cortical areas after stroke. Investigating MNES-related changes in EC after stroke may help further our understanding of the neural mechanisms underlying MNES.
Collapse
Affiliation(s)
- Congcong Huo
- Qilu Hospital, Shandong University, Jinan, China.,National Research Center for Rehabilitation Technical Aids, Beijing, China.,Beihang University, Beijing, China
| | - Xinglou Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Jing Jing
- Qilu Hospital, Shandong University, Jinan, China
| | - Yanping Ma
- Qilu Hospital, Shandong University, Jinan, China
| | | | - Yanqin Wang
- Qilu Hospital, Shandong University, Jinan, China
| | - Wanlin Liu
- Qilu Hospital, Shandong University, Jinan, China
| | - Yubo Fan
- National Research Center for Rehabilitation Technical Aids, Beijing, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| | - Shouwei Yue
- Qilu Hospital, Shandong University, Jinan, China
| | - Yonghui Wang
- Qilu Hospital, Shandong University, Jinan, China
| | - Zengyong Li
- National Research Center for Rehabilitation Technical Aids, Beijing, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
23
|
Guggisberg AG, Koch PJ, Hummel FC, Buetefisch CM. Brain networks and their relevance for stroke rehabilitation. Clin Neurophysiol 2019; 130:1098-1124. [PMID: 31082786 DOI: 10.1016/j.clinph.2019.04.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Stroke has long been regarded as focal disease with circumscribed damage leading to neurological deficits. However, advances in methods for assessing the human brain and in statistics have enabled new tools for the examination of the consequences of stroke on brain structure and function. Thereby, it has become evident that stroke has impact on the entire brain and its network properties and can therefore be considered as a network disease. The present review first gives an overview of current methodological opportunities and pitfalls for assessing stroke-induced changes and reorganization in the human brain. We then summarize principles of plasticity after stroke that have emerged from the assessment of networks. Thereby, it is shown that neurological deficits do not only arise from focal tissue damage but also from local and remote changes in white-matter tracts and in neural interactions among wide-spread networks. Similarly, plasticity and clinical improvements are associated with specific compensatory structural and functional patterns of neural network interactions. Innovative treatment approaches have started to target such network patterns to enhance recovery. Network assessments to predict treatment response and to individualize rehabilitation is a promising way to enhance specific treatment effects and overall outcome after stroke.
Collapse
Affiliation(s)
- Adrian G Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital Geneva, Switzerland.
| | - Philipp J Koch
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Department of Clinical Neuroscience, University Hospital Geneva, 1202 Geneva, Switzerland
| | - Cathrin M Buetefisch
- Depts of Neurology, Rehabilitation Medicine, Radiology, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Li J, Pu J, Cui H, Xie X, Xu S, Li T, Hu Y. An Online P300 Brain–Computer Interface Based on Tactile Selective Attention of Somatosensory Electrical Stimulation. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0459-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Xu R, Wang Y, Wang K, Zhang S, He C, Ming D. Increased Corticomuscular Coherence and Brain Activation Immediately After Short-Term Neuromuscular Electrical Stimulation. Front Neurol 2018; 9:886. [PMID: 30405518 PMCID: PMC6206169 DOI: 10.3389/fneur.2018.00886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular Electrical Stimulation (NMES) is commonly used in motor rehabilitation for stroke patients. It has been verified that NMES can improve muscle strength and activate the brain, but the studies on how NMES affects the corticomuscular connection are limited. Some studies found an increased corticomuscular coherence (CMC) after a long-term NMES. However, it is still unknown about CMC during NMES, as relatively pure EMG is very difficult to obtain with the contamination of NMES current pulses. In order to approach the condition during NMES, we designed an experiment with short-term NMES and immediately captured data within 100 s. The repetition of wrist flexion was used to realize static muscle contractions for CMC calculation and dynamic contractions for event-related desynchronization (ERD). The result of 13 healthy participants showed that maximal values (p = 0.0020) and areas (p = 0.0098) of CMC and beta ERD were significantly increased immediately after NMES. It was concluded that a short-term NMES can still reinforce corticomuscular functional connection and brain activation related to motor task. This study verified the immediate strengthen of corticomuscular changes after NMES, which was expected to be the basis of long-term neural plasticity induced by NMES.
Collapse
Affiliation(s)
- Rui Xu
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yaoyao Wang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Kun Wang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shufeng Zhang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chuan He
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. Neuroimage 2018; 174:380-392. [DOI: 10.1016/j.neuroimage.2018.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
|
27
|
Pan LLH, Yang WW, Kao CL, Tsai MW, Wei SH, Fregni F, Chen VCF, Chou LW. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke. Sci Rep 2018; 8:9217. [PMID: 29907780 PMCID: PMC6003966 DOI: 10.1038/s41598-018-27553-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
The peripheral sensory system is critical to regulating motor plasticity and motor recovery. Peripheral electrical stimulation (ES) can generate constant and adequate sensory input to influence the excitability of the motor cortex. The aim of this proof of concept study was to assess whether ES prior to each hand function training session for eight weeks can better improve neuromuscular control and hand function in chronic stroke individuals and change electroencephalography-electromyography (EEG-EMG) coherence, as compared to the control (sham ES). We recruited twelve subjects and randomly assigned them into ES and control groups. Both groups received 20-minute hand function training twice a week, and the ES group received 40-minute ES on the median nerve of the affected side before each training session. The control group received sham ES. EEG, EMG and Fugl-Meyer Assessment (FMA) were collected at four different time points. The corticomuscular coherence (CMC) in the ES group at fourth weeks was significantly higher (p = 0.004) as compared to the control group. The notable increment of FMA at eight weeks and follow-up was found only in the ES group. The eight-week rehabilitation program that implemented peripheral ES sessions prior to function training has a potential to improve neuromuscular control and hand function in chronic stroke individuals.
Collapse
Affiliation(s)
- Li-Ling Hope Pan
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.,Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wen-Wen Yang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine & Rehabilitation, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division chief of General Rehabilitation, Department of Physical Medicine & Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mei-Wun Tsai
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Shun-Hwa Wei
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
28
|
Carvalho S, French M, Thibaut A, Lima W, Simis M, Leite J, Fregni F. Median nerve stimulation induced motor learning in healthy adults: A study of timing of stimulation and type of learning. Eur J Neurosci 2018; 48:1667-1679. [PMID: 29885268 DOI: 10.1111/ejn.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Abstract
Median nerve stimulation (MNS) has been shown to change brain metaplasticity over the somatosensory networks, based on a bottom-up mechanism and may improve motor learning. This exploratory study aimed to test the effects of MNS on implicit and explicit motor learning as measured by the serial reaction time task (SRTT) using a double-blind, sham-controlled, randomized trial, in which participants were allocated to one of three groups: (a) online active MNS during acquisition, (b) offline active MNS during early consolidation and (c) sham MNS. SRTT was performed at baseline, during the training phase (acquisition period), and 30 min after training. We assessed the effects of MNS on explicit and implicit motor learning at the end of the training/acquisition period and at retest. The group receiving online MNS (during acquisition) showed a significantly higher learning index for the explicit sequences compared to the offline group (MNS during early consolidation) and the sham group. The offline group also showed a higher learning index as compared to sham. Additionally, participants receiving online MNS recalled the explicit sentence significantly more than the offline MNS and sham groups. MNS effects on motor learning have a specific effect on type of learning (explicit vs. implicit) and are dependent on timing of stimulation (during acquisition vs. early consolidation). More research is needed to understand and optimize the effects of peripheral electrical stimulation on motor learning. Taken together, our results show that MNS, especially when applied during the acquisition phase, is a promising tool to modulate motor leaning.
Collapse
Affiliation(s)
- Sandra Carvalho
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Neurotherapeutics and Experimental Psychopatology Group, Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Melanie French
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aurore Thibaut
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Coma Science Group, GIGA-Consciousness, University and University Hospital of Liege, Liege, Belgium
| | - Wilrama Lima
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcel Simis
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Jorge Leite
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Neurotherapeutics and Experimental Psychopatology Group, Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
- Univ Portucalense, Portucalense Institute for Human Development - INPP, Oporto, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Kwong PWH, Ng GYF, Chung RCK, Ng SSM. Bilateral Transcutaneous Electrical Nerve Stimulation Improves Lower-Limb Motor Function in Subjects With Chronic Stroke: A Randomized Controlled Trial. J Am Heart Assoc 2018; 7:e007341. [PMID: 29437598 PMCID: PMC5850185 DOI: 10.1161/jaha.117.007341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Transcutaneous electrical nerve stimulation (TENS) has been used to augment the efficacy of task-oriented training (TOT) after stroke. Bilateral intervention approaches have also been shown to be effective in augmenting motor function after stroke. The purpose of this study was to compare the efficacy of bilateral TENS combined with TOT versus unilateral TENS combined with TOT in improving lower-limb motor function in subjects with chronic stroke. METHODS AND RESULTS Eighty subjects were randomly assigned to bilateral TENS+TOT or to unilateral TENS+TOT and underwent 20 sessions of training over a 10-week period. The outcome measures included the maximal strength of the lower-limb muscles and the results of the Lower Extremity Motor Coordination Test, Berg Balance Scale, Step Test, and Timed Up and Go test. Each participant was assessed at baseline, after 10 and 20 sessions of training and 3 months after the cessation of training. The subjects in the bilateral TENS+TOT group showed greater improvement in paretic ankle dorsiflexion strength (β=1.32; P=0.032) and in the completion time for the Timed Up and Go test (β=-1.54; P=0.004) than those in the unilateral TENS+TOT group. However, there were no significant between-group differences for other outcome measures. CONCLUSIONS The application of bilateral TENS over the common peroneal nerve combined with TOT was superior to the application of unilateral TENS combined with TOT in improving paretic ankle dorsiflexion strength after 10 sessions of training and in improving the completion time for the Timed Up and Go test after 20 sessions of training. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02152813.
Collapse
Affiliation(s)
- Patrick W H Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Gabriel Y F Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
30
|
Kwong PW, Ng GY, Chung RC, Ng SS. Transcutaneous electrical nerve stimulation improves walking capacity and reduces spasticity in stroke survivors: a systematic review and meta-analysis. Clin Rehabil 2017; 32:1203-1219. [PMID: 29232981 DOI: 10.1177/0269215517745349] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To evaluate (1) the effectiveness of transcutaneous electrical nerve stimulation (TENS) at improving lower extremity motor recovery in stroke survivors and (2) the optimal stimulation parameters for TENS. REVIEW METHODS A systematic search was conducted for studies published up to October 2017 using eight electronic databases (CINAHL, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, PEDro, PubMed and Web of Science). Randomized controlled trials that evaluated the effectiveness of the application of TENS at improving lower extremity motor recovery in stroke survivors were assessed for inclusion. Outcomes of interest included plantar flexor spasticity, muscle strength, walking capacity and balance. RESULTS In all, 11 studies met the inclusion criteria which involved 439 stroke survivors. The meta-analysis showed that TENS improved walking capacity, as measured by either gait speed or the Timed Up and Go Test (Hedges' g = 0.392; 95% confidence interval (CI) = 0.178 to 0.606) compared to the placebo or no-treatment control groups. TENS also reduced paretic plantar flexor spasticity, as measured using the Modified Ashworth Scale and Composite Spasticity Scale (Hedges' g = -0.884; 95% CI = -1.140 to -0.625). The effect of TENS on walking capacity in studies involving 60 minutes per sessions was significant (Hedges' g = 0.468; 95% CI = 0.201-0.734) but not in study with shorter sessions (20 or 30 minutes) (Hedges' g = 0.254; 95% CI = -0.106-0.614). CONCLUSION The results support the use of repeated applications of TENS as an adjunct therapy for improving walking capacity and reducing spasticity in stroke survivors.
Collapse
Affiliation(s)
- Patrick Wh Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Gabriel Yf Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Raymond Ck Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
31
|
Corticomuscular coherence in the acute and subacute phase after stroke. Clin Neurophysiol 2017; 128:2217-2226. [PMID: 28987993 DOI: 10.1016/j.clinph.2017.08.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Stroke is one of the leading causes of physical disability due to damage of the motor cortex or the corticospinal tract. In the present study we set out to investigate the role of adaptations in the corticospinal pathway for motor recovery during the subacute phase after stroke. METHODS We examined 19 patients with clinically diagnosed stroke and 18 controls. The patients had unilateral mild to moderate weakness of the hand. Each patient attended two sessions at approximately 3days (acute) and 38days post stroke (subacute). Task-related changes in the communication between motor cortex and muscles were evaluated from coupling in the frequency domain between EEG and EMG during movement of the paretic hand. RESULTS Corticomuscular coherence (CMC) and intermuscular coherence (IMC) were reduced in patients as compared to controls. Paretic hand motor performance improved within 4-6weeks after stroke, but no change was observed in CMC or IMC. CONCLUSIONS CMC and IMC were reduced in patients in the early phase after stroke. However, changes in coherence do not appear to be an efficient marker for early recovery of hand function following stroke. SIGNIFICANCE This is the first study to demonstrate sustained reduced coherence in acute and subacute stroke.
Collapse
|
32
|
Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions. Exp Brain Res 2017; 235:3023-3031. [DOI: 10.1007/s00221-017-5035-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
|
33
|
Osuagwu BCA, Wallace L, Fraser M, Vuckovic A. Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study. J Neural Eng 2016; 13:065002. [PMID: 27739405 DOI: 10.1088/1741-2560/13/6/065002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To compare neurological and functional outcomes between two groups of hospitalised patients with subacute tetraplegia. APPROACH Seven patients received 20 sessions of brain computer interface (BCI) controlled functional electrical stimulation (FES) while five patients received the same number of sessions of passive FES for both hands. The neurological assessment measures were event related desynchronization (ERD) during movement attempt, Somatosensory evoked potential (SSEP) of the ulnar and median nerve; assessment of hand function involved the range of motion (ROM) of wrist and manual muscle test. MAIN RESULTS Patients in both groups initially had intense ERD during movement attempt that was not restricted to the sensory-motor cortex. Following the treatment, ERD cortical activity restored towards the activity in able-bodied people in BCI-FES group only, remaining wide-spread in FES group. Likewise, SSEP returned in 3 patients in BCI-FES group, having no changes in FES group. The ROM of the wrist improved in both groups. Muscle strength significantly improved for both hands in BCI-FES group. For FES group, a significant improvement was noticed for right hand flexor muscles only. SIGNIFICANCE Combined BCI-FES therapy results in better neurological recovery and better improvement of muscle strength than FES alone. For spinal cord injured patients, BCI-FES should be considered as a therapeutic tool rather than solely a long-term assistive device for the restoration of a lost function.
Collapse
Affiliation(s)
- Bethel C A Osuagwu
- School of Engineering, College of Engineering and Science, James Watt Building (south)University of Glasgow, Glasgow, G12 8QQ UK. Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury, UK
| | | | | | | |
Collapse
|