1
|
Gonzalez-Rothi EJ, Allen LL, Seven YB, Ciesla MC, Holland AE, Santiago JV, Mitchell GS. Prolonged intermittent hypoxia differentially regulates phrenic motor neuron serotonin receptor expression in rats following chronic cervical spinal cord injury. Exp Neurol 2024; 378:114808. [PMID: 38750949 DOI: 10.1016/j.expneurol.2024.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Low-dose (< 2 h/day), acute intermittent hypoxia (AIH) elicits multiple forms of serotonin-dependent phrenic motor plasticity and is emerging as a promising therapeutic strategy to restore respiratory and non-respiratory motor function after spinal cord injury (SCI). In contrast, high-dose (> 8 h/day), chronic intermittent hypoxia (CIH) undermines some forms of serotonin-dependent phrenic motor plasticity and elicits pathology. CIH is a hallmark of sleep disordered breathing, which is highly prevalent in individuals with cervical SCI. Interestingly, AIH and CIH preconditioning differentially impact phrenic motor plasticity. Although mechanisms of AIH-induced plasticity in the phrenic motor system are well-described in naïve rats, we know little concerning how these mechanisms are affected by chronic SCI or intermittent hypoxia preconditioning. Thus, in a rat model of chronic, incomplete cervical SCI (lateral spinal hemisection at C2 (C2Hx), we assessed serotonin type 2A, 2B and 7 receptor expression in and near phrenic motor neurons and compared: 1) intact vs. chronically injured rats; and 2) the impact of preconditioning with varied "doses" of intermittent hypoxia (IH). While there were no effects of chronic injury or intermittent hypoxia alone, CIH affected multiple receptors in rats with chronic C2Hx. Specifically, CIH preconditioning (8 h/day; 28 days) increased serotonin 2A and 7 receptor expression exclusively in rats with chronic C2Hx. Understanding the complex, context-specific interactions between chronic SCI and CIH and how this ultimately impacts phrenic motor plasticity is important as we leverage AIH-induced motor plasticity to restore breathing and other non-respiratory motor functions in people with chronic SCI.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Shih YV, Kingsley D, Newman H, Hoque J, Gupta A, Lascelles BDX, Varghese S. Multi-Functional Small Molecule Alleviates Fracture Pain and Promotes Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303567. [PMID: 37939302 PMCID: PMC10754086 DOI: 10.1002/advs.202303567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Bone injuries such as fractures are one major cause of morbidities worldwide. A considerable number of fractures suffer from delayed healing, and the unresolved acute pain may transition to chronic and maladaptive pain. Current management of pain involves treatment with NSAIDs and opioids with substantial adverse effects. Herein, we tested the hypothesis that the purine molecule, adenosine, can simultaneously alleviate pain and promote healing in a mouse model of tibial fracture by targeting distinctive adenosine receptor subtypes in different cell populations. To achieve this, a biomaterial-assisted delivery of adenosine is utilized to localize and prolong its therapeutic effect at the injury site. The results demonstrate that local delivery of adenosine inhibited the nociceptive activity of peripheral neurons through activation of adenosine A1 receptor (ADORA1) and mitigated pain as demonstrated by weight bearing and open field movement tests. Concurrently, local delivery of adenosine at the fracture site promoted osteogenic differentiation of mesenchymal stromal cells through adenosine A2B receptor (ADORA2B) resulting in improved bone healing as shown by histological analyses and microCT imaging. This study demonstrates the dual role of adenosine and its material-assisted local delivery as a feasible therapeutic approach to treat bone trauma and associated pain.
Collapse
Affiliation(s)
- Yu‐Ru V. Shih
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - David Kingsley
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Hunter Newman
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27710USA
| | - Jiaul Hoque
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Ankita Gupta
- Translational Research in Pain ProgramDepartment of Clinical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
| | - B. Duncan X. Lascelles
- Translational Research in Pain ProgramDepartment of Clinical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
- Thurston Arthritis CenterUniversity of North Carolina School of MedicineChapel HillNC27599USA
- Center for Translational Pain MedicineDepartment of AnesthesiologyDuke University School of MedicineDurhamNC27710USA
- Comparative Pain Research and Education CenterCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
| | - Shyni Varghese
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27710USA
- Department of Biomedical EngineeringDuke UniversityDurhamNC27710USA
| |
Collapse
|
3
|
Seven YB, Allen LL, Ciesla MC, Smith KN, Zwick A, Simon AK, Holland AE, Santiago JV, Stefan K, Ross A, Gonzalez-Rothi EJ, Mitchell GS. Intermittent Hypoxia Differentially Regulates Adenosine Receptors in Phrenic Motor Neurons with Spinal Cord Injury. Neuroscience 2022; 506:38-50. [PMID: 36273657 DOI: 10.1016/j.neuroscience.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Cervical spinal cord injury (cSCI) impairs neural drive to the respiratory muscles, causing life- threatening complications such as respiratory insufficiency and diminished airway protection. Repetitive "low dose" acute intermittent hypoxia (AIH) is a promising strategy to restore motor function in people with chronic SCI. Conversely, "high dose" chronic intermittent hypoxia (CIH; ∼8 h/night), such as experienced during sleep apnea, causes pathology. Sleep apnea, spinal ischemia, hypoxia and neuroinflammation associated with cSCI increase extracellular adenosine concentrations and activate spinal adenosine receptors which in turn constrains the functional benefits of therapeutic AIH. Adenosine 1 and 2A receptors (A1, A2A) compete to determine net cAMP signaling and likely the tAIH efficacy with chronic cSCI. Since cSCI and intermittent hypoxia may regulate adenosine receptor expression in phrenic motor neurons, we tested the hypotheses that: 1) daily AIH (28 days) downregulates A2A and upregulates A1 receptor expression; 2) CIH (28 days) upregulates A2A and downregulates A1 receptor expression; and 3) cSCI alters the impact of CIH on adenosine receptor expression. Daily AIH had no effect on either adenosine receptor in intact or injured rats. However, CIH exerted complex effects depending on injury status. Whereas CIH increased A1 receptor expression in intact (not injured) rats, it increased A2A receptor expression in spinally injured (not intact) rats. The differential impact of CIH reinforces the concept that the injured spinal cord behaves in distinct ways from intact spinal cords, and that these differences should be considered in the design of experiments and/or new treatments for chronic cSCI.
Collapse
Affiliation(s)
- Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Kristin N Smith
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Amanda Zwick
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Alec K Simon
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Kelsey Stefan
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley Ross
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Allen LL, Nichols NL, Asa ZA, Emery AT, Ciesla MC, Santiago JV, Holland AE, Mitchell GS, Gonzalez-Rothi EJ. Phrenic motor neuron survival below cervical spinal cord hemisection. Exp Neurol 2021; 346:113832. [PMID: 34363808 PMCID: PMC9065093 DOI: 10.1016/j.expneurol.2021.113832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023]
Abstract
Cervical spinal cord injury (cSCI) severs bulbospinal projections to respiratory motor neurons, paralyzing respiratory muscles below the injury. C2 spinal hemisection (C2Hx) is a model of cSCI often used to study spontaneous and induced plasticity and breathing recovery post-injury. One key assumption is that C2Hx dennervates motor neurons below the injury, but does not affect their survival. However, a recent study reported substantial bilateral motor neuron death caudal to C2Hx. Since phrenic motor neuron (PMN) death following C2Hx would have profound implications for therapeutic strategies designed to target spared neural circuits, we tested the hypothesis that C2Hx minimally impacts PMN survival. Using improved retrograde tracing methods, we observed no loss of PMNs at 2- or 8-weeks post-C2Hx. We also observed no injury-related differences in ChAT or NeuN immunolabeling within labelled PMNs. Although we found no evidence of PMN loss following C2Hx, we cannot rule out neuronal loss in other motor pools. These findings address an essential prerequisite for studies that utilize C2Hx as a model to explore strategies for inducing plasticity and/or regeneration within the phrenic motor system, as they provide important insights into the viability of phrenic motor neurons as therapeutic targets after high cervical injury.
Collapse
Affiliation(s)
- Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Zachary A Asa
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Transporter Protein-Coupled DPCPX Nanoconjugates Induce Diaphragmatic Recovery after SCI by Blocking Adenosine A1 Receptors. J Neurosci 2016; 36:3441-52. [PMID: 27013674 DOI: 10.1523/jneurosci.2577-15.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Respiratory complications in patients with spinal cord injury (SCI) are common and have a negative impact on the quality of patients' lives. Systemic administration of drugs that improve respiratory function often cause deleterious side effects. The present study examines the applicability of a novel nanotechnology-based drug delivery system, which induces recovery of diaphragm function after SCI in the adult rat model. We developed a protein-coupled nanoconjugate to selectively deliver by transsynaptic transport small therapeutic amounts of an A1 adenosine receptor antagonist to the respiratory centers. A single administration of the nanoconjugate restored 75% of the respiratory drive at 0.1% of the systemic therapeutic drug dose. The reduction of the systemic dose may obviate the side effects. The recovery lasted for 4 weeks (the longest period studied). These findings have translational implications for patients with respiratory dysfunction after SCI. SIGNIFICANCE STATEMENT The leading causes of death in humans following SCI are respiratory complications secondary to paralysis of respiratory muscles. Systemic administration of methylxantines improves respiratory function but also leads to the development of deleterious side effects due to actions of the drug on nonrespiratory sites. The importance of the present study lies in the novel drug delivery approach that uses nanotechnology to selectively deliver recovery-inducing drugs to the respiratory centers exclusively. This strategy allows for a reduction in the therapeutic drug dose, which may reduce harmful side effects and markedly improve the quality of life for SCI patients.
Collapse
|
6
|
Potenza RL, Armida M, Ferrante A, Pèzzola A, Matteucci A, Puopolo M, Popoli P. Effects of chronic caffeine intake in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 2013; 91:585-92. [PMID: 23361938 DOI: 10.1002/jnr.23185] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/26/2023]
Abstract
Caffeine is a nonselective adenosine receptor antagonist; chronic consumption has proved protective toward neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. The present study was designed to determine whether caffeine intake affected survival and/or motor performance in a transgenic model of amyotrophic lateral sclerosis (ALS). SOD1(G93A) mice received caffeine through drinking water from 70 days of age until death. Body weight, motor performance and survival were evaluated. Furthermore, the expression of adenosine A(2A) receptors (A(2A) Rs), glial glutamate transporter (GLT1), and glial fibrillar acidic protein (GFAP) were evaluated by Western blotting. The results showed that caffeine intake significantly shortened the survival of SOD1(G93A) mice (log rank test, P = 0.01) and induced a nonsignificant advancing of disease onset. The expression of A(2A) R, GLT1, and GFAP was altered in the spinal cords of ALS mice, but caffeine did not influence their expression in either wild-type or SOD1(G93) mice. These data indicate that adenosine receptors may play an important role in ALS.
Collapse
Affiliation(s)
- Rosa Luisa Potenza
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
A₁ adenosine receptor modulation of chemically and electrically evoked lumbar locomotor network activity in isolated newborn rat spinal cords. Neuroscience 2012; 222:191-204. [PMID: 22824428 DOI: 10.1016/j.neuroscience.2012.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/15/2012] [Accepted: 07/12/2012] [Indexed: 01/24/2023]
Abstract
It is not well-studied how the ubiquitous neuromodulator adenosine (ADO) affects mammalian locomotor network activities. We analyzed this here with focus on roles of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)-sensitive A(1)-type ADO receptors. For this, we recorded field potentials from ventral lumbar nerve roots and electrically stimulated dorsal roots in isolated newborn rat spinal cords. At ≥ 25μM, bath-applied ADO slowed synchronous bursting upon blockade of anion-channel-mediated synaptic inhibition by bicuculline (20 μM) plus strychnine (1 μM) and this depression was countered by DPCPX (1 μM) as tested at 100 μM ADO. ADO abolished this disinhibited rhythm at ≥ 500 μM. Contrary, the single electrical pulse-evoked dorsal root reflex, which was enhanced in bicuculline/strychnine-containing solution, persisted at all ADO doses (5 μM-2 mM). In control solution, ≥ 500 μM ADO depressed this reflex and pulse train-evoked bouts of alternating fictive locomotion; this inhibition was reversed by 1 μM DPCPX. ADO (5 μM-2 mM) did not depress, but stabilize alternating fictive locomotion evoked by serotonin (10 μM) plus N-methyl-d-aspartate (4-5 μM). Addition of DPCPX (1μM) to control solution did not change either the dorsal root reflex or rhythmic activities indicating lack of endogenous A(1) receptor activity. Our findings show A(1) receptor involvement in ADO depression of the dorsal root reflex, electrically evoked fictive locomotion and spontaneous disinhibited lumbar motor bursting. Contrary, chemically evoked fictive locomotion and the enhanced dorsal root reflex in disinhibited lumbar locomotor networks are resistant to ADO. Because ADO effects in standard solution occurred at doses that are notably higher than those occurring in vivo, we hypothesize that newborn rat locomotor networks are rather insensitive to this neuromodulator.
Collapse
|
8
|
Nantwi KD. Recovery of respiratory activity after C2 hemisection (C2HS): involvement of adenosinergic mechanisms. Respir Physiol Neurobiol 2009; 169:102-14. [PMID: 19651244 DOI: 10.1016/j.resp.2009.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/14/2009] [Accepted: 07/14/2009] [Indexed: 11/18/2022]
Abstract
Consequences of spinal cord injury (SCI) depend on the level and extent of injury. Cervical SCI often results in a compromised respiratory system. Primary treatment of SCI patients with respiratory insufficiency continues to be with mechanical ventilatory support. In an animal model of SCI, an upper cervical spinal cord hemisection paralyzes the hemidiaphragm ipsilateral to the side of injury. However, a latent respiratory motor pathway can be activated to restore respiratory function after injury. In this review, restoration of respiratory activity following systemic administration of theophylline, a respiratory stimulant will be discussed. Pharmacologically, theophylline is a non-specific adenosine receptor antagonist, a phosphodiesterase inhibitor and a bronchodilator. It has been used in the treatment of asthma and other respiratory-related diseases such as chronic obstructive pulmonary disease (COPD) and in treatment of apnea in premature infants. However, the clinical use of theophylline to improve respiration in SCI patients with respiratory deficits is a more recent approach. This review will focus on the use of theophylline to restore respiratory activity in an animal model of SCI. In this model, a C2 hemisection (C2HS) interrupts the major descending respiratory pathways and paralyzes the ipsilateral hemidiaphragm. The review also highlights involvement of central and peripheral adenosine receptors in functional restitution. Biochemical binding assays that highlight changes in adenosine receptors after chronic theophylline administration are discussed as they pertain to understanding adenosine receptor-mediation in functional recovery. Finally, the clinical application of theophylline in SCI patients with respiratory deficits in particular is discussed.
Collapse
Affiliation(s)
- Kwaku D Nantwi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA.
| |
Collapse
|