1
|
Alyusuf RS, Wazir JF, Brahmi UP, Fakhro ARE, Toorani ZA, Rezk Y. The Pattern of Expression of Human Placental Lactogen Across Normal, Lactational, and Malignant Mammary Epithelium. Cureus 2023; 15:e35125. [PMID: 36945262 PMCID: PMC10025576 DOI: 10.7759/cureus.35125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 02/20/2023] Open
Abstract
The immunoexpression of human placental lactogen (hPL) in mammary epithelium is not well studied in the literature. Our overall objective was to delineate the distribution pattern of hPL across mammary epithelia of varying levels of differentiation. This is the first research to study the level of expression of hPL in human lactational change epithelium. Immunohistochemistry (IHC) for hPL was performed on archival formalin-fixed paraffin-embedded tissue blocks of 97 cases. These consisted of 53 invasive ductal carcinomas, 21 lactational change cases, and 23 cases of normal mammary tissue. The results of this study show underexpression of hPL in malignant epithelium compared to normal and lactational groups individually and combined as a non-malignant group. However, a higher expression of hPL was noted in mammary carcinoma of axillary lymph node (ALN)-positive patients compared to ALN-negative cases. There was no statistically significant difference between hPL expression and tumor grade, estrogen receptors (ER), progesterone receptors (PR), or human epidermal growth factor receptor 2 (HER2) status. The comparison of the immunoexpression of hPL in malignant epithelium versus lactational change epithelium may provide the basis for future studies on the possible role of hPL in the protective mechanism of lactation tissue from carcinogenesis. Our results could be explained by the proposed mechanism in the literature, which is that breast cancer cells have a potential inhibitory effect on the translation of human chorionic somatotropin hormone (CSH) mRNA into hPL protein. Our results support the literature findings of a poorer prognostic outcome for breast malignancies when hPL is expressed but require further studies using a more comprehensive range of clinical parameters.
Collapse
Affiliation(s)
- Raja S Alyusuf
- Pathology, Salmaniya Medical Complex, Manama, BHR
- Pathology, Royal College of Surgeons in Ireland - Bahrain, Muharraq, BHR
| | | | | | | | - Zainab A Toorani
- Pathology, Salmaniya Medical Complex, Manama, BHR
- Pathology, The Royal College of Surgeons in Ireland, Muharraq, BHR
| | - Yousef Rezk
- College of Medicine, Royal College of Surgeons in Ireland - Bahrain, Muharraq, BHR
| |
Collapse
|
2
|
Zhang Y, Gc S, Patel SB, Liu Y, Paterson AJ, Kappes JC, Jiang J, Frank SJ. Growth hormone (GH) receptor (GHR)-specific inhibition of GH-Induced signaling by soluble IGF-1 receptor (sol IGF-1R). Mol Cell Endocrinol 2019; 492:110445. [PMID: 31100495 PMCID: PMC6613819 DOI: 10.1016/j.mce.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
Human growth hormone (GH) binds and activates GH receptor (GHR) and prolactin (PRL) receptor (PRLR). LNCaP human prostate cancer cells express only GHR. A soluble fragment of IGF-1 receptor (IGF-1R) extracellular domain (sol IGF-1R) interacts with GHR and blocks GH signaling. We now explore sol IGF-1R's specificity for inhibiting GH signaling via GHR vs. PRLR and test GHR and PRLR extracellular domain inhibition determinants. Although T47D human breast cancer cells express GHR and PRLR, GH signaling is largely PRLR-mediated. In T47D, sol IGF-1R inhibited neither GH- nor PRL-induced STAT5 activation. However, sol IGF-1R inhibited GH-induced STAT5 activation in T47D-shPRLR cells, which harbor reduced PRLR. In MIN6 mouse β-cells, bovine GH (bGH) activates mouse GHR, not PRLR, while human GH activates mouse GHR and PRLR. In MIN6, sol IGF-1R inhibited bGH-induced STAT5 activation, but partially inhibited human GH-induced STAT5 activation. These findings suggest sol IGF-1R's inhibition is GHR-specific. Using a cellular reconstitution system, we compared effects of sol IGF-1R on signaling through GHR, PRLR, or chimeras in which extracellular subdomains 2 (S2) of the receptors were swapped. Sol IGF-1R inhibited GH-induced STAT5 activation in GHR-expressing, not PRLR-expressing cells, consistent with GHR specificity of sol IGF-1R. Interestingly, we found that GHR S2 (which harbors the GHR-GHR dimer interface) was required, but not sufficient for sol IGF-1R inhibition of GHR signaling. These results suggest sol IGF-1R specifically inhibits GH-induced GHR-mediated signaling, possibly through interaction with GHR S1 and S2 domains. Our findings have implications for GH antagonist development.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sajina Gc
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sweta B Patel
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ying Liu
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Andrew J Paterson
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John C Kappes
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jing Jiang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
3
|
Liu Y, Zhang Y, Jiang J, Lobie PE, Paulmurugan R, Langenheim JF, Chen WY, Zinn KR, Frank SJ. GHR/PRLR Heteromultimer Is Composed of GHR Homodimers and PRLR Homodimers. Mol Endocrinol 2016; 30:504-17. [PMID: 27003442 DOI: 10.1210/me.2015-1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GH receptor (GHR) and prolactin (PRL) receptor (PRLR) are homologous transmembrane cytokine receptors. Each prehomodimerizes and ligand binding activates Janus Kinase 2 (JAK2)-signal transducer and activator of transcription (STAT) signaling pathways by inducing conformational changes within receptor homodimers. In humans, GHR is activated by GH, whereas PRLR is activated by both GH and PRL. We previously devised a split luciferase complementation assay, in which 1 receptor is fused to an N-terminal luciferase (Nluc) fragment, and the other receptor is fused to a C-terminal luciferase (Cluc) fragment. When receptors approximate, luciferase activity (complementation) results. Using this assay, we reported ligand-independent GHR-GHR complementation and GH-induced complementation changes characterized by acute augmentation above basal signal, consistent with induction of conformational changes that bring GHR cytoplasmic tails closer. We also demonstrated association between GHR and PRLR in T47D human breast cancer cells by coimmunoprecipitation, suggesting that, in addition to forming homodimers, these receptors form hetero-assemblages with functional consequences. We now extend these analyses to examine basal and ligand-induced complementation of coexpressed PRLR-Nluc and PRLR-Cluc chimeras and coexpressed GHR-Nluc and PRLR-Cluc chimeras. We find that PRLR-PRLR and GHR-PRLR form specifically interacting ligand-independent assemblages and that either GH or PRL augments PRLR-PRLR complementation, much like the GH-induced changes in GHR-GHR dimers. However, in contrast to the complementation patterns for GHR-GHR or PRLR-PRLR homomers, both GH and PRL caused decline in luciferase activity for GHR-PRLR heteromers. These and other data suggest that GHR and PRLR associate in complexes comprised of GHR-GHR/PRLR-PRLR heteromers consisting of GHR homodimers and PRLR homodimers, rather than GHR-PRLR heterodimers.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Yue Zhang
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Jing Jiang
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Peter E Lobie
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Ramasamy Paulmurugan
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - John F Langenheim
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Wen Y Chen
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Kurt R Zinn
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Stuart J Frank
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| |
Collapse
|
4
|
Xu J, Sun D, Jiang J, Deng L, Zhang Y, Yu H, Bahl D, Langenheim JF, Chen WY, Fuchs SY, Frank SJ. The role of prolactin receptor in GH signaling in breast cancer cells. Mol Endocrinol 2012. [PMID: 23192981 DOI: 10.1210/me.2012-1297] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH and prolactin (PRL) are structurally related hormones that exert important effects in disparate target tissues. Their receptors (GHR and PRLR) reside in the cytokine receptor superfamily and share signaling pathways. In humans, GH binds both GHR and PRLR, whereas PRL binds only PRLR. Both hormones and their receptors may be relevant in certain human and rodent cancers, including breast cancer. GH and PRL promote signaling in human T47D breast cancer cells that express both GHR and PRLR. Furthermore, GHR and PRLR associate in a fashion augmented acutely by GH, even though GH primarily activates PRLR, rather than GHR, in these cells. To better understand PRLR's impact, we examined the effects of PRLR knockdown on GHR availability and GH sensitivity in T47D cells. T47D-ShPRLR cells, in which PRLR expression was reduced by stable short hairpin RNA (shRNA) expression, were compared with T47D-SCR control cells. PRLR knockdown decreased the rate of GHR proteolytic turnover, yielding GHR protein increase and ensuing sensitization of these cells to GHR signaling events including phosphorylation of GHR, Janus kinase 2, and signal transducer and activator of transcription 5 (STAT5). Unlike in T47D-SCR cells, acute GH signaling in T47D-ShPRLR cells was not blocked by the PRLR antagonist G129R but was inhibited by the GHR-specific antagonist, anti-GHR(ext-mAb). Thus, GH's use of GHR rather than PRLR was manifested when PRLR was reduced. In contrast to acute effects, GH incubation for 2 h or longer yielded diminished STAT5 phosphorylation in T47D-ShPRLR cells compared with T47D-SCR, a finding perhaps explained by markedly greater GH-induced GHR down-regulation in cells with diminished PRLR. However, when stimulated with repeated 1-h pulses of GH separated by 3-h washout periods to more faithfully mimic physiological GH pulsatility, T47D-ShPRLR cells exhibited greater transactivation of a STAT5-responsive luciferase reporter than did T47D-SCR cells. Our data suggest that PRLR's presence meaningfully affects GHR use in breast cancer cells.
Collapse
Affiliation(s)
- Jie Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|