1
|
Mönnich D, Humphrys LJ, Höring C, Hoare BL, Forster L, Pockes S. Activation of Multiple G Protein Pathways to Characterize the Five Dopamine Receptor Subtypes Using Bioluminescence Technology. ACS Pharmacol Transl Sci 2024; 7:834-854. [PMID: 38481695 PMCID: PMC10928903 DOI: 10.1021/acsptsci.3c00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 11/01/2024]
Abstract
G protein-coupled receptors show preference for G protein subtypes but can recruit multiple G proteins with various downstream signaling cascades. This functional selection can guide drug design. Dopamine receptors are both stimulatory (D1-like) and inhibitory (D2-like) with diffuse expression across the central nervous system. Functional selectivity of G protein subunits may help with dopamine receptor targeting and their downstream effects. Three bioluminescence-based assays were used to characterize G protein coupling and function with the five dopamine receptors. Most proximal to ligand binding was the miniG protein assay with split luciferase technology used to measure recruitment. For endogenous and selective ligands, the G-CASE bioluminescence resonance energy transfer (BRET) assay measured G protein activation and receptor selectivity. Downstream, the BRET-based CAMYEN assay quantified cyclic adenosine monophosphate (cAMP) changes. Several dopamine receptor agonists and antagonists were characterized for their G protein recruitment and cAMP effects. G protein selectivity with dopamine revealed potential Gq coupling at all five receptors, as well as the ability to activate subtypes with the "opposite" effects to canonical signaling. D1-like receptor agonist (+)-SKF-81297 and D2-like receptor agonist pramipexole showed selectivity at all receptors toward Gs or Gi/o/z activation, respectively. The five dopamine receptors show a wide range of potentials for G protein coupling and activation, reflected in their downstream cAMP signaling. Targeting these interactions can be achieved through drug design. This opens the door to pharmacological treatment with more selectivity options for inducing the correct physiological events.
Collapse
Affiliation(s)
- Denise Mönnich
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Carina Höring
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Bradley L. Hoare
- Florey
Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lisa Forster
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Baihui (DU20), Shenmen (HT7) and Sanyinjiao (SP6) target the cAMP/CREB/BDNF and PI3K/Akt pathways to reduce central nervous system apoptosis in rats with insomnia. Heliyon 2022; 8:e12574. [PMID: 36636219 PMCID: PMC9830165 DOI: 10.1016/j.heliyon.2022.e12574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Insomnia can cause damage to function and other medical and mental illnesses, and it is also a risk factor for increasing medical care costs. Although simple behavior intervention is feasible in primary medical institutions, the lack of corresponding technical training has obviously restricted its use, patients' autonomy dependence is generally poor, and early missions have some difficulties. Relatively speaking, acupuncture in traditional therapy is more likely to be accepted, but the mechanism is still unclear. In this study, a model of insomnia was constructed using chlorophenylalanine (PCPA) in 6-week-old male SD rats. Electroacupuncture was used to stimulate Baihui (DU20), Shenmen (HT7), and Sanyinjiao (SP6), and the behavior, histopathology, cAMP/CREB/BDNF, PI3K/Akt pathways and the expression of sleep-related factors were observed. Our study showed that IL-1β, PGD2, MT, IL-10, IL-6, TNF-α, IFN-γ and CORT in rats could be regulated after electroacupuncture stimulation. The expression of TrkB, PI3K, Akt, P-TrkB, p-Akt, cAMP, CREB, and BDNF can also be up- or downregulated. Apoptosis-related Bax, Bad and Caspase-3, as well as the monoamine neurotransmitters 5-HT, DA, NE and EPI, were also modulated by electroacupuncture. Taken together, these data illustrate the potential of DU20, HT7 and SP6 as a multitargeted therapy for insomnia in rats. The novelty of the study lies in the description of the Traditional Chinese Medicine stimulation methods different from Chinese Herbs: electroacupuncture stimulates acupoints of sleep factors, cAMP/CREB/BDNF, PI3K/Akt pathways and the multipath and multitarget body response regulation mechanism of apoptosis.
Collapse
|
3
|
Zarrabian S, Jamali S, Fazli-Tabaei S, Haghparast A. Dopaminergic and nitric oxide systems interact to regulate the electrical activity of neurons in the medial septal nucleus in rats. Exp Brain Res 2022; 240:2581-2594. [PMID: 35976391 DOI: 10.1007/s00221-022-06435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
Abstract
Research characterizing the neuronal substrate of anxiety has implicated different brain areas, including the medial septal nucleus (m-SEPT). Previous reports indicated a role of dopamine and nitric oxide (NO) in anxiety-related behaviors. In this study, the extracellular single-unit recording was performed from the m-SEPT in adult male albino Wistar rats. Baseline activity was recorded for 5 min, and the post-injection recording was performed for another 5 min after the microinjection of each drug. The results showed that (1) both D1- and D2-like receptor agonists (SKF-38393 and quinpirole) enhanced the firing rate of m-SEPT neurons; (2) both D1- and D2-like antagonists (SCH-23390 and sulpiride) attenuated the firing rate of m-SEPT neurons; (3) L-arginine (NO precursor) increased the firing rate of m-SEPT neurons, but a non-specific NOS inhibitor, L-NAME, elicited no significant alterations; (4) the non-specific NOS inhibitor reversed the enhanced firing rate produced by SKF-38393 and quinpirole; (5) neither of the dopaminergic antagonists changed the enhanced activity resulted from the application of the NO precursor. These results contribute to our understanding of the complex neurotransmitter interactions in the m-SEPT and showed that both dopaminergic and NO neurotransmission are involved in the modulation of the firing rate of neurons in the m-SEPT.
Collapse
Affiliation(s)
- Shahram Zarrabian
- Department of Anatomical Sciences and Cognitive Neuroscience, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shole Jamali
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Fazli-Tabaei
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
6
|
Preto AJ, Barreto CAV, Baptista SJ, Almeida JGD, Lemos A, Melo A, Cordeiro MNDS, Kurkcuoglu Z, Melo R, Moreira IS. Understanding the Binding Specificity of G-Protein Coupled Receptors toward G-Proteins and Arrestins: Application to the Dopamine Receptor Family. J Chem Inf Model 2020; 60:3969-3984. [PMID: 32692555 DOI: 10.1021/acs.jcim.0c00371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-Protein coupled receptors (GPCRs) are involved in a myriad of pathways key for human physiology through the formation of complexes with intracellular partners such as G-proteins and arrestins (Arrs). However, the structural and dynamical determinants of these complexes are still largely unknown. Herein, we developed a computational big-data pipeline that enables the structural characterization of GPCR complexes with no available structure. This pipeline was used to study a well-known group of catecholamine receptors, the human dopamine receptor (DXR) family and its complexes, producing novel insights into the physiological properties of these important drug targets. A detailed description of the protein interfaces of all members of the DXR family (D1R, D2R, D3R, D4R, and D5R) and the corresponding protein interfaces of their binding partners (Arrs: Arr2 and Arr3; G-proteins: Gi1, Gi2, Gi3, Go, Gob, Gq, Gslo, Gssh, Gt2, and Gz) was generated. To produce reliable structures of the DXR family in complex with either G-proteins or Arrs, we performed homology modeling using as templates the structures of the β2-adrenergic receptor (β2AR) bound to Gs, the rhodopsin bound to Gi, and the recently acquired neurotensin receptor-1 (NTSR1) and muscarinic 2 receptor (M2R) bound to arrestin (Arr). Among others, the work demonstrated that the three partner groups, Arrs and Gs- and Gi-proteins, are all structurally and dynamically distinct. Additionally, it was revealed the involvement of different structural motifs in G-protein selective coupling between D1- and D2-like receptors. Having constructed and analyzed 50 models involving DXR, this work represents an unprecedented large-scale analysis of GPCR-intracellular partner interface determinants. All data is available at www.moreiralab.com/resources/dxr.
Collapse
Affiliation(s)
- A J Preto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II
- Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Carlos A V Barreto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II
- Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Salete J Baptista
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139,7, 2695-066 Bobadela, Portugal
| | - José Guilherme de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,European Bioinformatics Institute EMBL-EBI, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Agostinho Lemos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, Bâtiment B30, Allée du 6 Août, 8, 4000 Liège, Belgium
| | - André Melo
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - M Nátalia D S Cordeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Zeynep Kurkcuoglu
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rita Melo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139,7, 2695-066 Bobadela, Portugal
| | - Irina S Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Colégio de S. Bento, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Muneta-Arrate I, Diez-Alarcia R, Horrillo I, Meana JJ. Pimavanserin exhibits serotonin 5-HT 2A receptor inverse agonism for G αi1- and neutral antagonism for G αq/11-proteins in human brain cortex. Eur Neuropsychopharmacol 2020; 36:83-89. [PMID: 32517960 DOI: 10.1016/j.euroneuro.2020.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/12/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Pimavanserin is claimed as the first antipsychotic drug that shows selectivity for serotonin 5-HT2 receptors (5-HT2Rs) and lacks of affinity for dopamine D2 receptors (D2Rs). Cell-based functional assays suggest that pimavanserin and antipsychotics with D2R/5-HT2R affinity could act as inverse agonists of 5-HT2ARs. However, there is not evidence of such pharmacological profile in native brain tissue. 5-HT2ARs are able to engage both canonical Gαq/11- and non-canonical Gαi1-proteins. In the present study, the response to pimavanserin of the 5-HT2AR coupling to Gαq/11- and Gαi1-proteins was measured in membranes of postmortem human prefrontal cortex by antibody-capture [35S]GTPγS binding scintillation proximity assays. Pimavanserin promoted a concentration-dependant inhibition of the 5-HT2AR coupling to Gαi1-proteins whereas the response of Gαq/11-proteins was unaltered, suggesting inverse agonism and neutral antagonism properties, respectively. The inhibition was abolished in the presence of the selective 5-HT2AR antagonist MDL-11,939 and was absent in brain cortex of 5-HT2AR knock-out mice when compared to respective 5-HT2AR wild-type animals. In conclusion, the results demonstrate the existence of constitutive 5-HT2AR activity in human brain for the signalling pathway mediated by Gαi1-proteins. Pimavanserin demonstrates 5-HT2AR functional selectivity and exhibits inverse agonist profile towards Gαi1-proteins, which is considered the effector pathway promoting hallucinogenic responses. In contrast, pimavanserin behaves as neutral antagonist on the 5-HT2AR coupling to the canonical Gαq/11-protein pathway. The results strengthen the relevance of inverse agonism as potential mechanism of antipsychotic activity. Moreover, the existence of functional selectivity of 5-HT2ARs for different Gα-proteins could contribute to better design of 5-HT2AR-related antipsychotic drugs.
Collapse
Affiliation(s)
- Itziar Muneta-Arrate
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Igor Horrillo
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|