1
|
Schaft N, Dörrie J. The Role of Non-coding RNAs in Tumorigenesis, Diagnosis/Prognosis, and Therapeutic Strategies for Cutaneous Melanoma. Methods Mol Biol 2025; 2883:79-107. [PMID: 39702705 DOI: 10.1007/978-1-0716-4290-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
RNA is a substance with various biological functions. It serves as blueprint for proteins and shuttles information from the genes to the protein factories of the cells. However, these factories-the ribosomes-are also composed mainly of RNA, whose purpose is not storing information but enzymatic action. In addition, there is a cornucopia of RNA molecules within our cells that form a complex regulatory network, connected with all aspects of cellular development and maintenance. These non-coding RNAs can be used for diagnostics and therapeutic strategies in cancer. In this chapter we give an overview of recent developments in non-coding RNA-based diagnostics and therapies for cutaneous melanoma. It is not meant to be comprehensive; however, it describes examples based on some of the most recent publications in this field.
Collapse
Affiliation(s)
- Niels Schaft
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Jan Dörrie
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| |
Collapse
|
2
|
Xu X, Yang A, Han Y, Li S, Hao G, Cui N. Pancancer analysis of the interactions between CTNNB1 and infiltrating immune cell populations. Medicine (Baltimore) 2024; 103:e40186. [PMID: 39495984 PMCID: PMC11537592 DOI: 10.1097/md.0000000000040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Recently, evidence has indicated that CTNNB1 is important in a variety of malignancies. However, how CTNNB1 interacts with immune cell infiltration remains to be further investigated. In this study, we focused on the correlations between CTNNB1 and tumorigenesis, tumor progression, mutation, phosphorylation, and prognosis via gene expression profiling interaction analysis; TIMER 2.0, cBioPortal, GTEx, CPTAC, and GEPIA2 database analyses; and R software. CTNNB1 mutations are most found in uterine endometrioid carcinoma and hepatocellular carcinoma. However, no CTNNB1 mutations were found to be associated with a poor prognosis. In addition, CTNNB1 DNA methylation levels were higher in normal tissues than in tumor tissues in cancer except for breast invasive carcinoma, which had higher methylation levels in tumor tissues. The phosphorylation level of the S675 and S191 sites of CTNNB1 was greater in the primary tumor tissues in the clear cell renal cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, pancreatic adenocarcinoma, and breast cancer datasets but not in the glioblastoma multiform dataset. As for, with respect to immune infiltration, CD8 + T-cell infiltration was negatively correlated with the expression of CTNNB1 in thymoma and uterine corpus endometrial carcinoma. The CTNNB1 level was found to be positively associated with the infiltration index of the corresponding fibroblasts in the TCGA tumors of colon adenocarcinoma, human papillomavirus-negative head and neck squamous cell carcinoma, mesothelioma, testicular germ cell tumor, and thymoma. We also identified the top CTNNB1-correlated genes in the TCGA projects and analyzed the expression correlation between CTNNB1 and selected target genes, including PPP4R2, RHOA, and SPRED1. Additionally, pathway enrichment suggested that NUMB is involved in the Wnt pathway. This study highlights the predictive role of CTNNB1 across cancers, suggesting that CTNNB1 might serve as a potential biomarker for the diagnosis and prognosis evaluation of various malignant tumors.
Collapse
Affiliation(s)
- Xiaoyuan Xu
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aimin Yang
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Han
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siran Li
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimin Hao
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Cui
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Yang J, Li X, Zhang Y, Che P, Qin W, Wu X, Liu Y, Hu B. Circ_0090231 knockdown protects vascular smooth muscle cells from ox-LDL-induced proliferation, migration and invasion via miR-942-5p/PPM1B axis during atherosclerosis. Mol Cell Biochem 2024; 479:2035-2045. [PMID: 37515673 DOI: 10.1007/s11010-023-04811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Atherosclerosis (AS) is a dominant pathological basis of cardiovascular disease. Circular RNAs (circRNAs) have been proposed to have crucial functions in regulating pathological progressions of AS. Hence, the aim of this study was to investigate the potential function of circ_0090231 in AS progression. Oxidized low densitylipoprotein (ox-LDL)-challenged vascular smooth muscle cells (VSMCs) were used for in vitro functional analysis. Levels of genes and proteins were measured by qRT-PCR and Western blot. The proliferation, migration and invasion were assessed using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell assays. The interaction between miR-942-5p and circ_0090231 or PPM1B (Protein Phosphatase, Mg2+/Mn2+ Dependent 1B) was evaluated by dual-luciferase reporter and pull-down assays. Circ_0090231 is a stable circRNA, and was increased in the serum of AS patients and ox-LDL-challenged VSMCs. Functionally, silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs. Mechanistically, circ_0090231 directly targeted miR-942-5p, and PPM1B was a target of miR-942-5p. Besides, circ_0090231 sequestered miR-942-5p to release PPM1B expression, suggesting the circ_0090231/miR-942-5p/PPM1B axis. Further rescue experiments showed that miR-942-5p inhibition or ectopic overexpression of PPM1B dramatically attenuated the suppressing influences of circ_0090231 knockdown on VSMC proliferative, migratory and invasive abilities under ox-LDL treatment. Silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs via miR-942-5p/PPM1B axis, providing a theoretical basis for elucidating the mechanism of AS process.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Xiangyan Li
- Department of Interventional Catheter Lab, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, China
| | - Yuming Zhang
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Pengfei Che
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Wei Qin
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Xuecui Wu
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Yue Liu
- Department of Radiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, China
| | - Bing Hu
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China.
| |
Collapse
|
4
|
Tran F, Scharmacher A, Baran N, Mishra N, Wozny M, Chavez SP, Bhardwaj A, Hinz S, Juzenas S, Bernardes JP, Sievers LK, Lessing M, Aden K, Lassen A, Bergfeld A, Weber HJ, Neas L, Vetrano S, Schreiber S, Rosenstiel P. Dynamic changes in extracellular vesicle-associated miRNAs elicited by ultrasound in inflammatory bowel disease patients. Sci Rep 2024; 14:10925. [PMID: 38740826 DOI: 10.1038/s41598-024-61532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood. 26 patients with IBD were included in the prospective clinical study. Serum samples were collected before and 30 min after diagnostic transabdominal ultrasound. Differential miRNA expression was analyzed by sequencing. Candidate inducible EV-miRNAs were functionally assessed in vitro by transfection of miRNA mimics and qPCR of predicted target genes. Serum EV-miRNA concentration at baseline correlated with disease severity, as determined by clinical activity scores and sonographic findings. Three miRNAs (miR-942-5p, mir-5588, mir-3195) were significantly induced by sonography. Among the significantly regulated EV-miRNAs, miR-942-5p was strongly induced in higher grade intestinal inflammation and correlated with clinical activity in Crohn's disease. Prediction of target regulation and transfection of miRNA mimics inferred a role of this EV-miRNA in regulating barrier function in inflammation. Induction of mir-5588 and mir-3195 did not correlate with inflammation grade. This proof-of-concept trial highlights the principle of induced molecular shifts in EVs from inflamed tissue through transabdominal ultrasound. These inducible EVs and their molecular cargo like miRNA could become novel biomarkers for intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Florian Tran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany.
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany.
| | - Alena Scharmacher
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Nathan Baran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Samuel Pineda Chavez
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Archana Bhardwaj
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Sophia Hinz
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Matthias Lessing
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Arne Lassen
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Arne Bergfeld
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Hauke Jann Weber
- Department of Gastroenterology, Asklepios Westklinikum, 22559, Hamburg, Germany
- Institute of Infection Medicine, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, 24105, Kiel, Germany
| | - Lennart Neas
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| |
Collapse
|
5
|
Roccuzzo G, Bongiovanni E, Tonella L, Pala V, Marchisio S, Ricci A, Senetta R, Bertero L, Ribero S, Berrino E, Marchiò C, Sapino A, Quaglino P, Cassoni P. Emerging prognostic biomarkers in advanced cutaneous melanoma: a literature update. Expert Rev Mol Diagn 2024; 24:49-66. [PMID: 38334382 DOI: 10.1080/14737159.2024.2314574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Over the past two years, the scientific community has witnessed an exponential growth in research focused on identifying prognostic biomarkers for melanoma, both in pre-clinical and clinical settings. This surge in studies reflects the need of developing effective prognostic indicators in the field of melanoma. AREAS COVERED The aim of this work is to review the scientific literature on the most recent findings on the development or validation of prognostic biomarkers in melanoma, in the attempt of providing both clinicians and researchers with an updated broad synopsis of prognostic biomarkers in cutaneous melanoma. EXPERT OPINION While the field of prognostic biomarkers in melanoma appears promising, there are several complexities and limitations to address. The interdependence of clinical, histological, and molecular features requires accurate classification of different biomarker families. Correlation does not imply causation, and adjustments for confounding factors are often overlooked. In this scenario, large-scale studies based on high-quality clinical trial data can provide more reliable evidence. It is essential to avoid oversimplification by focusing on a single biomarker, as the interactions among multiple factors contribute to define the disease course and patient's outcome. Furthermore, implementing well-supported evidence in real-life settings can help advance prognostic biomarker research in melanoma.
Collapse
Affiliation(s)
- Gabriele Roccuzzo
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Eleonora Bongiovanni
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Luca Tonella
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Valentina Pala
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Sara Marchisio
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rebecca Senetta
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Abd-Allah GM, Ismail A, El-Mahdy HA, Elsakka EG, El-Husseiny AA, Abdelmaksoud NM, Salman A, Elkhawaga SY, Doghish AS. miRNAs as potential game-changers in melanoma: A comprehensive review. Pathol Res Pract 2023; 244:154424. [PMID: 36989843 DOI: 10.1016/j.prp.2023.154424] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Melanoma is the sixth most frequent malignancy. It represents 1.7% of all cancer cases worldwide. Many risk factors are associated with melanoma including ultraviolet radiation skin phenotype, Pigmented Nevi, Pesticides, and genetic and epigenetic factors. Of the main epigenetic factors affecting melanoma are microribonucleic acids (miRNAs). They are short nucleic acid chains that have the potential to prevent the expression of a number of target genes. They could target a number of genes related to melanoma initiation, stemness, angiogenesis, apoptosis, proliferation, and potential resistance to treatment. Additionally, they can control several melanoma signaling pathways, including P53, WNT/-catenin, JAK/STAT, PI3K/AKT/mTOR axis, TGF- β, and EGFR. MiRNAs also play a role in the resistance of melanoma to essential treatment regimens. The stability and abundance of miRNAs might be important factors enhancing the use of miRNAs as markers of prognosis, diagnosis, stemness, survival, and metastasis in melanoma patients.
Collapse
|
7
|
MicroRNA as a Diagnostic Tool, Therapeutic Target and Potential Biomarker in Cutaneous Malignant Melanoma Detection—Narrative Review. Int J Mol Sci 2023; 24:ijms24065386. [PMID: 36982460 PMCID: PMC10048937 DOI: 10.3390/ijms24065386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most serious type of skin cancer, causing a large majority of deaths but accounting for only ~1% of all skin cancer cases. The worldwide incidence of malignant melanoma is increasing, causing a serious socio-economic problem. Melanoma is diagnosed mainly in young and middle-aged people, which distinguishes it from other solid tumors detected mainly in mature people. The early detection of cutaneous malignant melanoma (CMM) remains a priority and it is a key factor limiting mortality. Doctors and scientists around the world want to improve the quality of diagnosis and treatment, and are constantly looking for new, promising opportunities, including the use of microRNAs (miRNAs), to fight melanoma cancer. This article reviews miRNA as a potential biomarker and diagnostics tool as a therapeutic drugs in CMM treatment. We also present a review of the current clinical trials being carried out worldwide, in which miRNAs are a target for melanoma treatment.
Collapse
|
8
|
Ren J, Cai J. circ_0014736 induces GPR4 to regulate the biological behaviors of human placental trophoblast cells through miR-942-5p in preeclampsia. Open Med (Wars) 2023; 18:20230645. [PMID: 36874362 PMCID: PMC9979007 DOI: 10.1515/med-2023-0645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 01/02/2023] [Indexed: 03/05/2023] Open
Abstract
Previous studies have indicated that the development of preeclampsia (PE) involves the regulation of circular RNA (circRNA). However, the role of hsa_circ_0014736 (circ_0014736) in PE remains unknown. Thus, the study proposes to reveal the function of circ_0014736 in the pathogenesis of PE and the underlying mechanism. The results showed that circ_0014736 and GPR4 expression were significantly upregulated, while miR-942-5p expression was downregulated in PE placenta tissues when compared with normal placenta tissues. circ_0014736 knockdown promoted the proliferation, migration, and invasion of placenta trophoblast cells (HTR-8/SVneo) and inhibited apoptosis; however, circ_0014736 overexpression had the opposite effects. circ_0014736 functioned as a sponge for miR-942-5p and regulated HTR-8/SVneo cell processes by interacting with miR-942-5p. Additionally, GPR4, a target gene of miR-942-5p, was involved in miR-942-5p-mediated actions in HTR-8/SVneo cells. Moreover, circ_0014736 stimulated GPR4 production through miR-942-5p. Collectively, circ_0014736 inhibited HTR-8/SVneo cell proliferation, migration, and invasion and induced cell apoptosis through the miR-942-5p/GPR4 axis, providing a possible target for the treatment of PE.
Collapse
Affiliation(s)
- Jinlian Ren
- Department of Obstetrics, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China
| | - Jing Cai
- Department of Pathology, Shanghai Jiading District Anting Hospital, No. 1060 Hejing Road, Anting Town, Jiading District, Shanghai, China
| |
Collapse
|
9
|
Circ_0014736 induces GPR4 to regulate the biological behaviors of a human placental trophoblast cell line through miR-942-5p in preeclampsia. J Reprod Immunol 2023. [DOI: 10.1016/j.jri.2023.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Wang J, Tan L, Yu X, Cao X, Jia B, Chen R, Li J. lncRNA ZNRD1-AS1 promotes malignant lung cell proliferation, migration, and angiogenesis via the miR-942/TNS1 axis and is positively regulated by the m 6A reader YTHDC2. Mol Cancer 2022; 21:229. [PMID: 36581942 PMCID: PMC9801573 DOI: 10.1186/s12943-022-01705-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Lung cancer is the most prevalent form of cancer and has a high mortality rate, making it a global public health concern. The N6-methyladenosine (m6A) modification is a highly dynamic and reversible process that is involved in a variety of essential biological processes. Using in vitro, in vivo, and multi-omics bioinformatics, the present study aims to determine the function and regulatory mechanisms of the long non-coding (lnc)RNA zinc ribbon domain-containing 1-antisense 1 (ZNRD1-AS1). METHODS The RNAs that were bound to the m6A 'reader' were identified using YTH domain-containing 2 (YTHDC2) RNA immunoprecipitation (RIP)-sequencing. Utilizing methylated RIP PCR/quantitative PCR, pull-down, and RNA stability assays, m6A modification and ZNRD1-AS1 regulation were analyzed. Using bioinformatics, the expression levels and clinical significance of ZNRD1-AS1 in lung cancer were evaluated. Using fluorescent in situ hybridization and quantitative PCR assays, the subcellular location of ZNRD1-AS1 was determined. Using cell migration, proliferation, and angiogenesis assays, the biological function of ZNRD1-AS1 in lung cancer was determined. In addition, the tumor suppressor effect of ZNRD1-AS1 in vivo was validated using a xenograft animal model. Through bioinformatics analysis and in vitro assays, the downstream microRNAs (miRs) and competing endogenous RNAs were also predicted and validated. RESULTS This study provided evidence that m6A modification mediates YTHDC2-mediated downregulation of ZNRD1-AS1 in lung cancer and cigarette smoke-exposed cells. Low levels of ZNRD1-AS1 expression were linked to adverse clinicopathological characteristics, immune infiltration, and prognosis. ZNRD1-AS1 overexpression was shown to suppress lung cancer cell proliferation, migration, and angiogenesis in vitro and in vivo, and to reduce tumor growth in nude mice. ZNRD1-AS1 expression was shown to be controlled by treatment of cells with either the methylation inhibitor 3-Deazaadenosine or the demethylation inhibitor Meclofenamic. Furthermore, the miR-942/tensin 1 (TNS1) axis was demonstrated to be the downstream regulatory signaling pathway of ZNRD1-AS1. CONCLUSIONS ZNRD1-AS1 serves an important function and has clinical relevance in lung cancer. In addition, the findings suggested that m6A modification could mediate the regulation of the ZNRD1-AS1/miR-942/TNS1 axis via the m6A reader YTHDC2.
Collapse
Affiliation(s)
- Jin Wang
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Lirong Tan
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Xueting Yu
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Xiyuan Cao
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Beibei Jia
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Rui Chen
- grid.452666.50000 0004 1762 8363Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215004 China
| | - Jianxiang Li
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| |
Collapse
|
11
|
Wei W, Tang M, Wang Q, Li X. Circ_HECW2 regulates ox-LDL-induced dysfunction of cardiovascular endothelial cells by miR-942-5p/TLR4 axis. Clin Hemorheol Microcirc 2022:CH221550. [PMID: 36213989 DOI: 10.3233/ch-221550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is a common coronary artery disease. The functional mechanism of circular RNA (circRNA) HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 (circ_HECW2, hsa_circ_0057583) in ox-LDL-treated human cardiac microvascular endothelial cells (hCMECs) is still unclear. METHODS Expression levels of circ_HECW2, microRNA (miR)-942-5p, and toll-like receptor 4 (TLR4) were analyzed by quantitative real-time PCR (qRT-PCR) and western blot assays. Cell proliferation and apoptosis were analyzed by 5-ethynyl-2'-deoxyuridine (EdU) assay, cell counting kit-8 (CCK8) assay, and flow cytometry, respectively. Tube formation assay was performed to analyze the angiogenesis of cells. Luciferase reporter and RNA pull-down assays were performed to analyze the target relationship among circ_HECW2, miR-942-5p and TLR4. RESULTS Circ_HECW2 and TLR4 expression levels were up-regulated and miR-942-5p expression was decreased in the serum of CAD patients and oxidized low-density lipoprotein (ox-LDL)-induced hCMECs. Knockdown of circ_HECW2 enhanced cell proliferation and inhibited cell apoptosis in ox-LDL-treated hCMECs. MiR-942-5p was the target of circ_HECW2 and directly targeted TLR4. Moreover, the effect of circ_HECW2 knockdown could be weakened by anti-miR-942-5p, and TLR4 could restore the function of miR-942-5p on cell damage of ox-LDL-induced hCMECs. CONCLUSION Circ_HECW2 could regulate ox-LDL-induced cardiovascular endothelial cell dysfunction through targeting miR-942-5p/TLR4 axis.
Collapse
Affiliation(s)
- Wenbo Wei
- Department of Cardiology, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Min Tang
- Department of Cardiology, Nanjing Tongren Hospital Affiliated to Southeast University School of Medicine, Nanjing City, Jiangsu, China
| | - Qi Wang
- Department of Cardiology, Nanjing Tongren Hospital Affiliated to Southeast University School of Medicine, Nanjing City, Jiangsu, China
| | - Xiaoming Li
- Emergency Department, Ben Q Hospital Affiliated to Nanjing Medical University, Nanjing City, Jiangsu, China
| |
Collapse
|
12
|
Shi X, Xu X, Shi N, Chen Y, Fu M. miR-767-3p suppresses melanoma progression by inhibiting ASF1B expression. Biochem Biophys Res Commun 2022; 627:60-67. [PMID: 36007337 DOI: 10.1016/j.bbrc.2022.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/14/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Melanoma, the type of skin cancer considered as most malignant, and known to be linked with a high incidence as well as high mortality rate. Although the dysregulation of ASF1B and miR-767-3p expression is involved in the progression of various cancers, their biological function in melanoma remains unclear. METHODS Real-time qPCR was the primary source for determining the levels of ASF1B and miR-767-3p in melanoma. For the validation of association among miR-767-3p and ASF1B, luciferase activity assay was used. Quantification of cell apoptosis, proliferation, migration and viability in melanoma cells were carried out by flow cytometry, BrdU, transwell assays, and CCK-8, respectively. Further evaluation of tumor growth was achieved by xenograft in vivo. RESULTS Results showed an increased expression of ASF1B while declined expression of miR-767-3p in melanoma. ASF1B knockdown repressed cell migration, viability, proliferation, and tumor growth whereas boosted apoptosis in A375 as well as in A875 melanoma cells. Moreover, miR-767-3p attenuated the migration and proliferation of melanoma cells and encouraged cell apoptosis by reducing ASF1B levels. CONCLUSION In this study, miR-767-3p was shown to inhibit ASF1B which will attenuate melanoma tumorigenesis, and by this it can be a potential new effective biomarker for the treatment of melanoma.
Collapse
Affiliation(s)
- Xian Shi
- Department of Dermatology, Huangshi Central Hospital, Huangshi, 435000, Hubei, China
| | - Xidan Xu
- Department of Dermatology, Huangshi Central Hospital, Huangshi, 435000, Hubei, China
| | - Nian Shi
- Department of Dermatology, Huangshi Central Hospital, Huangshi, 435000, Hubei, China
| | - Yongjun Chen
- Department of Dermatology, Huangshi Central Hospital, Huangshi, 435000, Hubei, China
| | - Manni Fu
- Department of Dermatology, Huangshi Central Hospital, Huangshi, 435000, Hubei, China.
| |
Collapse
|
13
|
Zhang K, Fang T, Zhao D, Cen F, Yan X, Jin X. Circular RNA Circ_0008043 promotes the proliferation and metastasis of hepatocellular carcinoma cells by regulating the microRNA (miR)-326/RAB21 axis. Bioengineered 2022; 13:6600-6614. [PMID: 35220907 PMCID: PMC8973620 DOI: 10.1080/21655979.2022.2044260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalently closed structures that modulate the progression of hepatocellular carcinoma (HCC). Here, we explored whether circ_0008043 regulated the biological function of HCC cells. Quantitative real-time polymerase chain reaction (qPCR) was used to detect circ_0008043, microRNA (miR)-326, and RAB21 levels. Expression of E-cadherin, N-cadherin, and vimentin was assessed using qPCR. Cell proliferation, migration, and invasion were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation, and transwell assays. Xenograft tumors were used to evaluate cell growth in vivo. The interaction between miR-326 and circ_0008043 or RAB21 was assessed using dual-luciferase reporter analysis and RNA pull-down analysis. The data illustrated that circ_0008043 and RAB21 were highly expressed, while miR-326 was expressed at less levels in HCC tissues and cells. Interfering with circ_0008043 suppressed cellular proliferation, migration, invasion, and cell growth. Circ_0008043 was confirmed to be an miR-326 sponge that targets RAB21. Rescue experiments showed that inhibiting miR-326 abrogated the effect induced by knockdown of circ_0008043, and overexpressed RAB21 abolished the effect induced by miR-326 overexpression. In summary, silencing of circ_0008043 impeded HCC progression by regulating the miR-326/RAB21 axis. These data suggest that circ_0008043 may have clinical value in the treatment of HCC.
Collapse
Affiliation(s)
- Kangjun Zhang
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Taishi Fang
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Dong Zhao
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Fulan Cen
- Department of Intensive Care Unit, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Xu Yan
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Xin Jin
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| |
Collapse
|
14
|
Fan D, Yang Y, Zhang W. A novel circ_MACF1/miR-942-5p/TGFBR2 axis regulates the functional behaviors and drug sensitivity in gefitinib-resistant non-small cell lung cancer cells. BMC Pulm Med 2022; 22:27. [PMID: 34996416 PMCID: PMC8742390 DOI: 10.1186/s12890-021-01731-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Resistance to gefitinib remains a major obstacle for the successful treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. In this paper, we studied the precise actions of circular RNA (circRNA) microtubule actin crosslinking factor 1 (circ_MACF1) in gefitinib resistance. METHODS We established gefitinib-resistant NSCLC cells (PC9/GR and A549/GR). The levels of circ_MACF1, microRNA (miR)-942-5p, and transforming growth factor beta receptor 2 (TGFBR2) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Subcellular fractionation and Ribonuclease R (RNase R) assays were done to characterize circ_MACF1. Cell survival, proliferation, colony formation, apoptosis, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-2'-Deoxyuridine (EdU), colony formation, flow cytometry, and transwell assays, respectively. Dual-luciferase reporter assays were used to verify the direct relationship between miR-942-5p and circ_MACF1 or TGFBR2. The xenograft assays were used to assess the role of circ_MACF1 in vivo. RESULTS Circ_MACF1 was down-regulated in A549/GR and PC9/GR cells. Overexpression of circ_MACF1 repressed proliferation, migration, invasion, and promoted apoptosis and gefitinib sensitivity of A549/GR and PC9/GR cells in vitro, as well as inhibited tumor growth under gefitinib in vivo. Circ_MACF1 directly targeted miR-942-5p, and miR-942-5p mediated the regulatory effects of circ_MACF1. TGFBR2 was identified as a direct and functional target of miR-942-5p. Circ_MACF1 modulated TGFBR2 expression through miR-942-5p. CONCLUSION Our findings demonstrated that circ_MACF1 regulated cell functional behaviors and gefitinib sensitivity of A549/GR and PC9/GR cells at least partially by targeting miR-942-5p to induce TGFBR2 expression.
Collapse
Affiliation(s)
- Daping Fan
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Yue Yang
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Wei Zhang
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
15
|
Rafat M, Yadegar N, Dadashi Z, Shams K, Mohammadi M, Abyar M. The prominent role of miR-942 in carcinogenesis of tumors. Adv Biomed Res 2022; 11:63. [PMID: 36133499 PMCID: PMC9483553 DOI: 10.4103/abr.abr_226_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
As a family of short noncoding RNAs, MicroRNAs have been identified as possible biomarkers for cancer discovery and assist in therapy control due to their epigenetic involvement in gene expression and other cellular biological processes. In the present review, the evidence for reaching the clinical effect and the molecular mechanism of miR-942 in various kinds of cancer is amassed. Dysregulation of miR-942 amounts in different kinds of malignancies, as bladder cancer, esophageal squamous cell carcinoma, breast cancer, cervical cancer, gastric cancer, colorectal cancer, Kaposi's sarcoma, melanoma, Hepatocellular carcinoma, nonsmall-cell lung cancer, oral squamous cell carcinoma, osteosarcoma, ovarian cancer, pancreatic ductal adenocarcinoma, renal cell carcinoma, and prostate cancer has stated a considerable increase or decrease in its level indicating its function as oncogene or tumor suppressor. MiR-942 is included in cell proliferation, migration, and invasion through cell cycle pathways, including pathways of transforming growth factor-beta signaling pathways, Wnt pathway, JAK/STAT pathway, PI3K/AKT pathway, apoptosis pathway, hippo signaling pathway, lectin pathway, interferon-gamma signaling, signaling by G-protein coupled receptor, developmental genes, nuclear factor-kappa B pathway, Mesodermal commitment pathway, and T-cell receptor signaling in cancer. An important biomarker, MiR-942 is a potential candidate for prediction in several cancers. The present investigation introduced miR-942 as a prognostic marker for early discovery of tumor progression, metastasis, and development.
Collapse
|
16
|
MicroRNA Isoforms Contribution to Melanoma Pathogenesis. Noncoding RNA 2021; 7:ncrna7040063. [PMID: 34698264 PMCID: PMC8544706 DOI: 10.3390/ncrna7040063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cutaneous melanoma (CM) is the most lethal tumor among skin cancers, and its incidence is constantly increasing. A deeper understanding of the molecular processes guiding melanoma pathogenesis could improve diagnosis, treatment and prognosis. MicroRNAs play a key role in melanoma biology. Recently, next generation sequencing (NGS) experiments, designed to assess small-RNA expression, revealed the existence of microRNA variants with different length and sequence. These microRNA isoforms are known as isomiRs and provide an additional layer to the complex non-coding RNA world. Here, we collected data from NGS experiments to provide a comprehensive characterization of miRNA and isomiR dysregulation in benign nevi (BN) and early-stage melanomas. We observed that melanoma and BN express different and specific isomiRs and have a different isomiR abundance distribution. Moreover, isomiRs from the same microRNA can have opposite expression trends between groups. Using The Cancer Genome Atlas (TCGA) dataset of skin cancers, we analyzed isomiR expression in primary melanoma and melanoma metastasis and tested their association with NF1, BRAF and NRAS mutations. IsomiRs differentially expressed were identified and catalogued with reference to the canonical form. The reported non-random dysregulation of specific isomiRs contributes to the understanding of the complex melanoma pathogenesis and serves as the basis for further functional studies.
Collapse
|
17
|
Yuan DD, Jia CD, Yan MY, Wang J. Circular RNA hsa_circ_0000730 restrains cell proliferation, migration, and invasion in cervical cancer through miR-942-5p/PTEN axis. Kaohsiung J Med Sci 2021; 37:964-972. [PMID: 34562344 DOI: 10.1002/kjm2.12443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) play prominent roles in regulating the progression of cancers. This study is aimed to decipher the role of hsa_circ_0000730 in cervical cancer (CC).The differentially expressed circRNAs of CC were screened out from the Gene Expression Omnibus database. qRT-PCR was used to detect circ_0000730 expression in CC tissues and cell lines, and the Kaplan-Meier curve was adopted to figure out the relationship between circ_000730 expression and the overall survival time of CC patients. BrdU assay and Tanswell assay were utilized to examine the proliferation, migration, and invasion of CC cells. Western blot was adopted to detect PTEN protein expression. Bioinformatics analysis and dual-luciferase reporter assay were used to examine the target relationship between miR-942-5p and circ_0000730 or PTEN, respectively.Circ_0000730 was among the differentially expressed circRNAs in CC. Circ_0000730 was significantly down-regulated in the cancer tissues of 50 CC patients and CC cell lines. Additionally, underexpression of circ_0000730 was associated with the shorter survival time of CC patients. Gain- and loss-of-function assays highlighted that circ_0000730 significantly inhibited the proliferation, migration, and invasion of CC cells. Mechanistically, miR-942-5p was identified as a downstream target of circ_0000730, and circ_0000730 could positively regulate PTEN expression via repressing miR-942-5p in CC cells.Circ_0000730 inhibits the proliferation, migration, and invasion of CC cells via regulating miR-942-5p/PTEN axis. Circ_0000730 probably acts as a tumor suppressor in CC, and it may be a candidate target for the treatment of CC.
Collapse
Affiliation(s)
- Dan-Dan Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| | - Cun-De Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| | - Ming-Yu Yan
- Department of Respiratory, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, PR China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| |
Collapse
|
18
|
Du Z, Wang L, Xia Y. Circ_0015756 promotes the progression of ovarian cancer by regulating miR-942-5p/CUL4B pathway. Cancer Cell Int 2020; 20:572. [PMID: 33292255 PMCID: PMC7694308 DOI: 10.1186/s12935-020-01666-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the gynecologic cancer with the highest mortality. Circular RNAs (circRNAs) play a vital role in the development and progression of cancer. This study aimed to explore the potential role of circ_0015756 in OC and its molecular mechanism. METHODS The levels of circ_0015756, microRNA-942-5p (miR-942-5p) and Cullin 4B (CUL4B) were determined by quantitative real-time PCR (qRT-PCR) or Western blot assay. Cell proliferation, apoptosis, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry and transwell assay. The levels of proliferation-related and metastasis-related proteins were measured by Western blot assay. The relationship between miR-942-5p and circ_0015756 or CUL4B was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft assay was used to analyze tumor growth in vivo. RESULTS Circ_0015756 and CUL4B levels were increased, while miR-942-5p level was decreased in OC tissues and cells. Depletion of circ_0015756 suppressed proliferation, migration and invasion and promoted apoptosis in OC cells. Down-regulation of circ_0015756 hindered OC cell progression via modulating miR-942-5p. Also, up-regulation of miR-942-5p impeded OC cell development by targeting CUL4B. Mechanistically, circ_0015756 up-regulated CUL4B via sponging miR-942-5p. Moreover, circ_0015756 silencing inhibited tumor growth in vivo. CONCLUSION Knockdown of circ_0015756 suppressed OC progression via regulating miR-942-5p/CUL4B axis, suggesting that circ_0015756 might be a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Zhenhua Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang City, 110021, Liaoning Province, China.
| | - Lei Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang City, 110021, Liaoning Province, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang City, 110021, Liaoning Province, China
| |
Collapse
|