Omari Shekaftik S, Nasirzadeh N, Mohammadiyan M, Mohammadpour S. An analysis on control banding-based methods used for occupational risk assessment of nanomaterials.
Nanotoxicology 2023;
17:628-650. [PMID:
38164113 DOI:
10.1080/17435390.2023.2293141]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Despite all benefits of nanomaterials, their unique characteristics made them an emerging hazard in workplaces, which need to be assessed for their potential risks. So, the aim of this study was to review all the studies conducted on the risk assessment of activities involving nanomaterials with CB-based methods.This study is based on a literature review on databases including Web of science, Scopus, PubMed, and SID. After reviewing and screening studies according to PRISMA, the collected data were meta-analyzed by Comprehensive Meta-Analysis Software. Also, Newcastle-Ottawa checklist was used for quality assessment of the studies. To determine similarity of methods, Cohen's Kappa was used. Sensitivity analysis was used to determine the role of each factor in the risk assessment by using the Crystal Ball tool.There are eight validated methods for risk assessment. Also, some authors used a self-deigned tool based on CB approach. The results of meta-analysis showed that the odds ratio for the risk of activities involved with nanomaterials was 0.654 (high risk). Results of simulation for Nanotool showed that the mean risk level of activities involved with nanomaterials, with a certainty of 95.07%, is moderate (RL3). Moreover, sensitivity analysis showed that the risk was depended on "Hazard band" in all methods except ISO method.The obtained results can be useful in improving existing methods and suggesting new methods. Also, there is a need to design and propose specific methods for risk assessment of incidental and natural nanomaterials.
Collapse