1
|
Doğru EK, Sakallı T, Liu G, Sayers Z, Surmeli NB. Small angle X-ray scattering analysis of thermophilic cytochrome P450 CYP119 and the effects of the N-terminal histidine tag. Int J Biol Macromol 2024; 265:131026. [PMID: 38522710 DOI: 10.1016/j.ijbiomac.2024.131026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Combining size exclusion chromatography-small angle X-ray scattering (SEC-SAXS) and molecular dynamics (MD) analysis is a promising approach to investigate protein behavior in solution, particularly for understanding conformational changes due to substrate binding in cytochrome P450s (CYPs). This study investigates conformational changes in CYP119, a thermophilic CYP from Sulfolobus acidocaldarius that exhibits structural flexibility similar to mammalian CYPs. Although the crystal structure of ligand-free (open state) and ligand-bound (closed state) forms of CYP119 is known, the overall structure of the enzyme in solution has not been explored until now. It was found that theoretical scattering profiles from the crystal structures of CYP119 did not align with the SAXS data, but conformers from MD simulations, particularly starting from the open state (46 % of all frames), agreed well. Interestingly, a small percentage of closed-state conformers also fit the data (9 %), suggesting ligand-free CYP119 samples ligand-bound conformations. Ab initio SAXS models for N-His tagged CYP119 revealed a tail-like unfolded structure impacting protein flexibility, which was confirmed by in silico modeling. SEC-SAXS analysis of N-His CYP119 indicated pentameric structures in addition to monomers in solution, affecting the stability and activity of the enzyme. This study adds insights into the conformational dynamics of CYP119 in solution.
Collapse
Affiliation(s)
- Ekin Kestevur Doğru
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye
| | - Tuğçe Sakallı
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye
| | - Goksin Liu
- Sabancı University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla 34956, Istanbul, Türkiye
| | - Zehra Sayers
- Sabancı University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla 34956, Istanbul, Türkiye
| | - Nur Basak Surmeli
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye.
| |
Collapse
|
2
|
Tarabarova A, Lopukhov A, Fedorov AN, Yurkova MS. Novel His-tag Variants for Insertion Inside Polypeptide Chain. ACS OMEGA 2024; 9:858-865. [PMID: 38222536 PMCID: PMC10785306 DOI: 10.1021/acsomega.3c06682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
His-tags are protein affinity tags ubiquitously used due to their convenience and effectiveness. However, in some individual cases, the attachment of His-tags to a protein's N- or C-termini resulted in impairment of the protein's structure or function, which led to attempts to include His-tags inside of polypeptide chains. In this work, we describe newly designed internal His-tags, where two triplets of histidine residues are separated by glycine residues to avoid steric hindrances and consequently minimize their impact on the protein structure. The applicability of these His-tags was tested with eGFP, a multifaceted reference protein, and GrAD207, a modified apical domain of GroEL chaperone, designed to stabilize in soluble form initially insoluble proteins. Both proteins are used as fusion partners for different purposes, and providing them with His-tags introduced into their polypeptide chains should conveniently broaden their functionality without involving the termini. We conclude that the insertable tags may be adjusted for the purification of proteins belonging to different structural classes.
Collapse
Affiliation(s)
- Anastasiia
G. Tarabarova
- A
N Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| | - Anton Lopukhov
- Chemistry
Department, Lomonosov Moscow State University, GSP-1, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Alexey N. Fedorov
- FSI
Federal Research Centre Fundamentals of Biotechnology of the Russian
Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| | - Maria S. Yurkova
- A
N Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| |
Collapse
|
3
|
Leonhardt F, Gennari A, Paludo GB, Schmitz C, da Silveira FX, Moura DCDA, Renard G, Volpato G, Volken de Souza CF. A systematic review about affinity tags for one-step purification and immobilization of recombinant proteins: integrated bioprocesses aiming both economic and environmental sustainability. 3 Biotech 2023; 13:186. [PMID: 37193330 PMCID: PMC10182917 DOI: 10.1007/s13205-023-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
The present study reviewed and discussed the promising affinity tags for one-step purification and immobilization of recombinant proteins. The approach used to structure this systematic review was The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) methodology. The Scopus and Web of Science databases were used to perform the bibliographic survey by which 267 articles were selected. After the inclusion/exclusion criteria and the screening process, from 25 chosen documents, we identified 7 types of tags used in the last 10 years, carbohydrate-binding module tag (CBM), polyhistidine (His-tag), elastin-like polypeptides (ELPs), silaffin-3-derived pentalysine cluster (Sil3k tag), N-acetylmuramidase (AcmA tag), modified haloalkane dehalogenase (HaloTag®), and aldehyde from a lipase polypeptide (Aldehyde tag). The most used bacterial host for expressing the targeted protein was Escherichia coli and the most used expression vector was pET-28a. The results demonstrated two main immobilization and purification methods: the use of supports and the use of self-aggregating tags without the need of support, depending on the tag used. Besides, the chosen terminal for cloning the tag proved to be very important once it could alter enzyme activity. In conclusion, the best tag for protein one-step purification and immobilization was CBM tag, due to the eco-friendly supports that can be provided from industry wastes, the fast immobilization with high specificity, and the reduced cost of the process.
Collapse
Affiliation(s)
- Fernanda Leonhardt
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Adriano Gennari
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Graziela Barbosa Paludo
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Caroline Schmitz
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Filipe Xerxeneski da Silveira
- Federal Institute of Education, Science, and Technology of Rio Grande do Sul, IFRS, Porto Alegre Campus, Porto Alegre, RS Brazil
| | | | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS Brazil
| | - Giandra Volpato
- Federal Institute of Education, Science, and Technology of Rio Grande do Sul, IFRS, Porto Alegre Campus, Porto Alegre, RS Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| |
Collapse
|
4
|
Tülek A, Günay E, Servili B, Eşsiz Ş, Binay B, Yildirim D. Sustainable production of formic acid from CO2 by a novel immobilized mutant formate dehydrogenase. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Tietze L, Lale R. Importance of the 5' regulatory region to bacterial synthetic biology applications. Microb Biotechnol 2021; 14:2291-2315. [PMID: 34171170 PMCID: PMC8601185 DOI: 10.1111/1751-7915.13868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
The field of synthetic biology is evolving at a fast pace. It is advancing beyond single-gene alterations in single hosts to the logical design of complex circuits and the development of integrated synthetic genomes. Recent breakthroughs in deep learning, which is increasingly used in de novo assembly of DNA components with predictable effects, are also aiding the discipline. Despite advances in computing, the field is still reliant on the availability of pre-characterized DNA parts, whether natural or synthetic, to regulate gene expression in bacteria and make valuable compounds. In this review, we discuss the different bacterial synthetic biology methodologies employed in the creation of 5' regulatory regions - promoters, untranslated regions and 5'-end of coding sequences. We summarize methodologies and discuss their significance for each of the functional DNA components, and highlight the key advances made in bacterial engineering by concentrating on their flaws and strengths. We end the review by outlining the issues that the discipline may face in the near future.
Collapse
Affiliation(s)
- Lisa Tietze
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Rahmi Lale
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| |
Collapse
|
6
|
Abstract
The accumulation of carbon dioxide in the atmosphere as a result of human activities has caused a number of adverse circumstances in the world. For this reason, the proposed solutions lie within the aim of reducing carbon dioxide emissions have been quite valuable. However, as the human activity continues to increase on this planet, the possibility of reducing carbon dioxide emissions decreases with the use of conventional methods. The emergence of compounds than can be used in different fields by converting the released carbon dioxide into different chemicals will construct a fundamental solution to the problem. Although electro-catalysis or photolithography methods have emerged for this purpose, they have not been able to achieve successful results. Alternatively, another proposed solution are enzyme based systems. Among the enzyme-based systems, pyruvate decarboxylase, carbonic anhydrase and dehydrogenases have been the most studied enzymes. Pyruvate dehydrogenase and carbonic anhydrase have either been an expensive method or were incapable of producing the desired result due to the reaction cascade they catalyze. However, the studies reporting the production of industrial chemicals from carbon dioxide using dehydrogenases and in particular, the formate dehydrogenase enzyme, have been remarkable. Moreover, reported studies have shown the existence of more active and stable enzymes, especially the dehydrogenase family that can be identified from the biome. In addition to this, their redesign through protein engineering can have an immense contribution to the increased use of enzyme-based methods in CO2 reduction, resulting in an enormous expansion of the industrial capacity.
Collapse
|
7
|
Enhancing recombinant Chaetomium thermophilium Formate Dehydrogenase Expression with CRISPR Technology. Protein J 2021; 40:504-511. [PMID: 33999303 DOI: 10.1007/s10930-021-09997-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Genetic manipulation of Escherichia coli influences the regulation of bacterial metabolism, which could be useful for the production of different targeted products. The RpoZ gene encodes for the ω subunit of the RNA polymerase (RNAP) and is involved in the regulation of the relA gene pathway. RelA is responsible for the production of guanosine pentaphosphate (ppGpp), which is a major alarmone in the stringent response. Expression of relA is reduced in the early hours of growth of RpoZ mutant E. coli. In the absence of the ω subunit, ppGpp affinity to RNAP is decreased; thus, rpoZ gene deleted E. coli strains show a modified stringent response. We used the E. coli K-12 MG1655 strain that lacks rpoZ (JEN202) to investigate the effect of the modified stringent response on recombinant protein production. However, the absence of the ω subunit results in diminished stability of the RNA polymerase at the promoter site. To avoid this, we used a deactivated CRISPR system that targets the ω subunit to upstream of the promoter site in the expression plasmid. The expression plasmid encodes for Chaetomium thermophilum formate dehydrogenase (CtFDH), a valuable enzyme for cofactor regeneration and CO2 reduction. A higher amount of CtFDH from the soluble fraction was purified from the JEN202 strain compared to the traditional BL21(DE3) method, thus offering a new strategy for batch-based recombinant enzyme production.
Collapse
|
8
|
Pometun AA, Boyko KM, Yurchenko TS, Nikolaeva AY, Kargov IS, Atroshenko DL, Savin SS, Popov VO, Tishkov VI. Highly-Active Recombinant Formate Dehydrogenase from Pathogenic Bacterium Staphylococcus aureus: Preparation and Crystallization. BIOCHEMISTRY (MOSCOW) 2020; 85:689-696. [PMID: 32586232 DOI: 10.1134/s0006297920060061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
# These authors contributed equally to the work. NAD+-dependent formate dehydrogenase from Staphylococcus aureus (SauFDH) is one of the key enzymes responsible for the survival of this pathogen in the form of biofilms. 3D structure of the enzyme might be helpful in the search for highly specific SauFDH inhibitors that can be used as antibacterial agents exactly against S. aureus biofilms. Here, we prepared a recombinant SauFDH in Escherichia coli cells with a yield of 1 g target protein per liter medium. The developed procedure for the enzyme purification allowed to obtain 400 mg of homogenous enzyme with 61% yield. The specific activity of the purified recombinant SauFDH was 20 U per mg protein, which was 2 times higher than the previously reported activities of formate dehydrogenases. We also found crystallization conditions in the course of two rounds of optimization and obtained 200- and 40-µm crystals for the SauFDH apo- and holoenzymes, respectively. X-ray analysis using synchrotron X-ray sources produced diffraction data sufficient for solving the three-dimensional structures of the apo- and holoenzymes with the resolution of 2.2 and 2.7 Å, respectively. Crystals of the apo- and holoforms of SauFDH had different crystal space groups, which suggest coenzyme binding in the SauFDH holoenzyme.
Collapse
Affiliation(s)
- A A Pometun
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.,Innovations and High Technologies MSU Ltd., Moscow, 109559, Russia
| | - K M Boyko
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - T S Yurchenko
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - A Yu Nikolaeva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.,Kurchatov Institute National Research Center, Moscow, 123182, Russia
| | - I S Kargov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.,Innovations and High Technologies MSU Ltd., Moscow, 109559, Russia
| | - D L Atroshenko
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.,Innovations and High Technologies MSU Ltd., Moscow, 109559, Russia
| | - S S Savin
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.,Innovations and High Technologies MSU Ltd., Moscow, 109559, Russia
| | - V O Popov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.,Kurchatov Institute National Research Center, Moscow, 123182, Russia
| | - V I Tishkov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.,Innovations and High Technologies MSU Ltd., Moscow, 109559, Russia
| |
Collapse
|
9
|
Parshin PD, Pometun AA, Martysuk UA, Kleymenov SY, Atroshenko DL, Pometun EV, Savin SS, Tishkov VI. Effect of His 6-tag Position on the Expression and Properties of Phenylacetone Monooxygenase from Thermobifida fusca. BIOCHEMISTRY (MOSCOW) 2020; 85:575-582. [PMID: 32571187 DOI: 10.1134/s0006297920050065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenylacetone monooxygenase (EC 1.14.13.92, PAMО) catalyzes oxidation of ketones with molecular oxygen and NADPH with the formation of esters. PAMО is a promising enzyme for biotechnological processes. In this work, we generated genetic constructs coding for PAMO from Thermobifida fusca, containing N- or C-terminal His6-tags (PAMO N and PAMO C, respectively), as well as PAMO L with the His6-tag attached to the enzyme C-terminus via a 19-a.a. spacer. All PAMO variants were expressed as catalytically active proteins in Escherichia coli BL21(DE3) cells; however, the expression level of PAMO N was 3 to 5 times higher than for the other two enzymes. The catalytic constants (kcat) of PAMO C and PAMO L were similar to that published for PAMO L produced in a different expression system; the catalytic constant for PAMO N was slightly lower (by 15%). The values of Michaelis constants with NADPH for all PAMО variants were in agreement within the published data for PAMO L (within the experimental error); however, the KM for benzylacetone was several times higher. Thermal inactivation studies and differential scanning calorimetry demonstrated that the thermal stability of PAMO N was 3 to 4 times higher compared to that of the enzymes with the C-terminal His6-tag.
Collapse
Affiliation(s)
- P D Parshin
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119234, Russia.,Innovations and High Technologies MSU Ltd., Moscow, 109451, Russia
| | - A A Pometun
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119234, Russia. .,Innovations and High Technologies MSU Ltd., Moscow, 109451, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - U A Martysuk
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - S Yu Kleymenov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.,Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334, Russia
| | - D L Atroshenko
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119234, Russia.,Innovations and High Technologies MSU Ltd., Moscow, 109451, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - E V Pometun
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - S S Savin
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119234, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - V I Tishkov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119234, Russia. .,Innovations and High Technologies MSU Ltd., Moscow, 109451, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
10
|
Duman ZE, Duraksoy BB, Aktaş F, Woodley JM, Binay B. High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme Microb Technol 2020; 137:109552. [PMID: 32423672 DOI: 10.1016/j.enzmictec.2020.109552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, the use of formate dehydrogenase (FDH, EC 1.17.1.9) is well established as a means of NADH regeneration from NAD+ via the coupled conversion of formate into carbon dioxide. Recent studies have been reported that specifically Chaetomium thermophilum FDH (CtFDH) is the most efficient FDH catalyzing this reaction in reverse (i.e. using CO2 as a substrate to produce formate, and thereby regenerating NAD+). However, to date the production of active CtFDH at high protein expression levels has received relatively little attention. In this study, we have tested the effect of batch and high cell density fermentation (HCDF) strategies in a small stirred fermenter, as well as the effect of supplementing the medium with casamino acids, on the expressed level of secreted CtFDH using P. pastoris. We have established that the amount of expressed CtFDH was indeed enhanced via a HCDF strategy and that extracellular protease activity was eliminated via the addition of casamino acids into the fermentation medium. On this basis, secreted CtFDH in an active form can be easily separated from the fermentation and can be used for subsequent biotechnological applications.
Collapse
Affiliation(s)
- Zeynep Efsun Duman
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey; Enzyme Consultancy and Identification Center (ETDAM), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Bedri Burak Duraksoy
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey; Enzyme Consultancy and Identification Center (ETDAM), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Fatih Aktaş
- Department of Environmental Engineering, Düzce University, 81620, Düzce, Turkey
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey; Enzyme Consultancy and Identification Center (ETDAM), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|