1
|
Wang ZM, Wang S, Bai H, Zhu LL, Yan HB, Peng L, Wang YB, Li H, Song YD, Liu JZ. Characterization and application of Bacillus velezensis D6 co-producing α-amylase and protease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9617-9629. [PMID: 39087633 DOI: 10.1002/jsfa.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Research on the co-production of multiple enzymes by Bacillus velezensis as a novel species is still a topic that needs to be studied. This study aimed to investigate the fermentation characteristics of B. velezensis D6 co-producing α-amylase and protease and to explore their enzymatic properties and applications in fermentation. RESULTS The maximum co-production of α-amylase and protease reached 13.13 ± 0.72 and 2106.63 ± 64.42 U mL-1, respectively, under the optimal fermented conditions (nutrients: 20.0 g L-1 urea, 20.0 g L-1 glucose, 0.7 g L-1 MnCl2; incubation conditions: initial pH 7.0, temperature 41 °C, 8% inoculation size and 30% working volume). Moreover, the genetic co-expression of α-amylase and protease increased from 0 to 24 h and then decreased after 36 h at the transcriptional level, which coincided with the growth trend of B. velezensis D6. The optimal reaction temperature of α-amylase was 55-60 °C, while that of protease was 35-40 °C. The activities of α-amylase and protease were retained by over 80% after thermal treatment (90 °C, 1 h), which indicated that two enzymes co-produced by B. velezensis D6 demonstrated excellent thermal stability. Moreover, the two enzymes were stable over a wide pH range (pH 4.0-8.0 for α-amylase; pH 4.0-9.0 for protease). Finally, the degrees of hydrolysis of corn, rice, sorghum and soybeans by α-amylase from B. velezensis D6 reached 44.95 ± 2.95%, 57.16 ± 2.75%, 52.53 ± 4.01% and 20.53 ± 2.42%, respectively, suggesting an excellent hydrolysis effect on starchy raw materials. The hydrolysis degrees of mackerel heads and soybeans by protease were 43.93 ± 2.19% and 26.38 ± 1.72%, respectively, which suggested that the protease from B. velezensis D6 preferentially hydrolyzed animal-based protein. CONCLUSION This is a systematic study on the co-production of α-amylase and protease by B. velezensis D6, which is crucial in widening the understanding of this species co-producing multi-enzymes and in exploring its potential application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - He Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Heze, China
| | - Yue-Dong Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd, Liaocheng, China
| |
Collapse
|
2
|
Aktayeva S, Khassenov B. High keratinase and other types of hydrolase activity of the new strain of Bacillus paralicheniformis. PLoS One 2024; 19:e0312679. [PMID: 39453952 PMCID: PMC11508186 DOI: 10.1371/journal.pone.0312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024] Open
Abstract
Keratinases, a subclass of proteases, are used to degrade keratin thereby forming peptones and free amino acids. Bacillus paralicheniformis strain T7 was isolated from soil and exhibited high keratinase, protease, collagenase, amylase, xylanase, lipase, and phosphatase activities. Keratinases of the strain showed maximum activity at 70°C and pH 9.0 as well as high thermal stability. A mass-spectrometric analysis identified seven peptidases with molecular masses of 26.8-154.8 kDa in the secretory proteome. These peptidases are members of S8 and S41 serine peptidase families and of M14, M42, and M55 metallopeptidase families. Additionally, α-amylase (55.2 kDa), alkaline phosphatase (59.8 kDa), and esterase (26.8 kDa) were detected. The strong keratinolytic properties of the strain were confirmed by degradation of chicken and goose feathers, which got completely hydrolyzed within 4 days. Submerged fermentation by strain B. paralicheniformis T7 was carried out in a pilot bioreactor, where the highest keratinase production was noted after 19 h of cultivation. After the fermentation, in the culture fluid, the keratinase activity toward keratin azure was 63.6 ± 5.8 U/mL. The protease activity against azocasein was 715.7 ± 40.2 U/mL. The possibility of obtaining enzyme preparations in liquid and powder form was demonstrated, and their comparative characteristics are given. In the concentrate, the keratinase, protease, α-amylase, phosphatase, and esterase/lipase activities were 2,656.7 ± 170.4, 29,886.7 ± 642.9, 176.1 ± 16.3, 23.9 ± 1.8, and 510.9 ± 12.2 U/mL, respectively. In the lyophilizate, these activities were 57,733.3 ± 8,911.4, 567,066.7 ± 4,822.2, 2,823.0 ± 266.8, 364.2 ± 74.8, and 17,618.0 ± 610.3 U/g, respectively. In the preparation obtained by air flow drying at 55°C, these activities were 53,466.7 ± 757.2, 585,333.3 ± 4,277.1, 2,395.8 ± 893.7, 416.7 ± 52.4, and 15,328.1 ± 528.6 U/g, respectively. The results show high potential of B. paralicheniformis strain T7 as a producer of keratinases and other enzymes for applications in agricultural raw materials and technologies for processing of keratin-containing animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, Astana, Kazakhstan
| | - Bekbolat Khassenov
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
3
|
Aktayeva S, Khassenov B. New Bacillus paralicheniformis strain with high proteolytic and keratinolytic activity. Sci Rep 2024; 14:22621. [PMID: 39349615 PMCID: PMC11444040 DOI: 10.1038/s41598-024-73468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Bacillus paralicheniformis T7, which exhibits high proteolytic and keratinolytic activities, was isolated from soil in Kazakhstan. Its secreted proteases were thermostable and alkaline, demonstrating maximum activity at 70 °C and pH 9.0. The proteases and keratinases of this strain were sensitive to Ni2+, Co2+, Mn2+, and Cd2+, with Cu2+, Co2+ and Cd2+ negatively affecting keratinolytic activity, and Fe3+ ions have a strong inhibitory effect on proteolytic and keratinolytic activity. Seven proteases were identified in the enzymatic extract of B. paralicheniformis T7: four from the serine peptidase family and three from the metallopeptidase family. The proteases hydrolyzed 1 mg of casein, hemoglobin, gelatin, ovalbumin, bovine serum albumin, or keratin within 15 s to 30 min. The high keratinolytic activity of this strain was confirmed through the degradation of chicken feathers, horns, hooves, wool, and cattle hide. Chicken feathers were hydrolyzed in 4 days, and the degrees of hydrolysis for cattle hide, wool, hoof, and horn after 7 days of cultivation were 97.2, 34.5, 29.6, and 3.6%, respectively. During submerged fermentation with feather medium in a laboratory bioreactor, the strain secreted enzymes with 249.20 ± 7.88 U/mL protease activity after 24 h. Thus, B. paralicheniformis T7 can be used to produce proteolytic and keratinolytic enzymes for application in processing proteinaceous raw materials and keratinous animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, 010000, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, 010008, Astana, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, 010000, Astana, Kazakhstan.
| |
Collapse
|
4
|
Liu Y, Xiong M, Hu X, Li Y, Zhang W, He W, Luo S, Zang J, Yang W, Chen Y. Dietary Bacillus velezensis KNF-209 supplementation improves growth performance, enhances immunity, and promotes gut health in broilers. Poult Sci 2024; 103:103946. [PMID: 38954902 PMCID: PMC11267042 DOI: 10.1016/j.psj.2024.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
This study aimed to investigate the effects of dietary Bacillus velezensis KNF-209 (BV-KNF-209) on the growth performance, immunity, and gut health of broilers. A total of 540 one-day-old male Cobb-500 broilers were randomly divided into 5 groups of 6 replicates with 18 broilers per replicate. Dietary treatments were corn-soybean meal basal diets supplemented with 0, 50, 100, 200, and 400 mg/kg BV-KNF-209 (CON, BV 50, BV 100, BV 200, and BV 400 groups, respectively) for 42 d. Compared with the CON group, the average daily gains (ADG) at 0 to 42 d in the BV 100 and BV 200 groups were significantly increased (P < 0.01), and the feed-to-gain (F:G) ratios were significantly decreased at 0 to 21 d (P < 0.01) and 0 to 42 d (P < 0.05). The BV 200 and BV 400 groups had higher serum immunoglobulin M (IgM) levels at d 21 and 42 (P < 0.05). The serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were significantly decreased in the BV 50, BV 100, and BV 200 groups at d 21 (P < 0.05), and serum IL-1β and IL-6 levels were also reduced in the BV 100 and BV 200 groups at d 42 (P < 0.05). Meanwhile, increased interleukin-10 (IL-10) levels in the jejunal and ileal mucosa at d 42 were observed in the BV 100, BV 200, and BV 400 groups (P < 0.05), while the IL-1β and IL-6 levels (P < 0.01) were decreased. The BV 200 and BV 400 groups showed significantly higher activities of lipase and trypsin (P < 0.05) in jejunal digesta as well as higher activities of amylase and trypsin (P < 0.01) in ileal digesta at d 42. The cecal acetic acid and propionic acid levels in the BV groups and lactic acid levels in the BV 50, BV 100, and BV 200 groups (P < 0.05) were significantly higher compared to those in the CON group. Overall, dietary BV-KNF-209 supplementation significantly improved broiler growth performance, an effect that may have been achieved by heightening immunity, increasing digestive enzyme activity, and raising intestinal short-chain fatty acids and lactic acid levels.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengqin Xiong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiao Hu
- Wuhan Kernel Bio-tech Co., Ltd, Wuhan 430074, China
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wanjun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Cai Z, Wang Y, You Y, Yang N, Lu S, Xue J, Xing X, Sha S, Zhao L. Introduction of Cellulolytic Bacterium Bacillus velezensis Z2.6 and Its Cellulase Production Optimization. Microorganisms 2024; 12:979. [PMID: 38792808 PMCID: PMC11124521 DOI: 10.3390/microorganisms12050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Enzyme-production microorganisms typically occupy a dominant position in composting, where cellulolytic microorganisms actively engage in the breakdown of lignocellulose. Exploring strains with high yields of cellulose-degrading enzymes holds substantial significance for the industrial production of related enzymes and the advancement of clean bioenergy. This study was inclined to screen cellulolytic bacteria, conduct genome analysis, mine cellulase-related genes, and optimize cellulase production. The potential carboxymethylcellulose-hydrolyzing bacterial strain Z2.6 was isolated from the maturation phase of pig manure-based compost with algae residuals as the feedstock and identified as Bacillus velezensis. In the draft genome of strain Z2.6, 31 related cellulolytic genes were annotated by the CAZy database, and further validation by cloning documented the existence of an endo-1,4-β-D-glucanase (EC 3.2.1.4) belonging to the GH5 family and a β-glucosidase (EC 3.2.1.21) belonging to the GH1 family, which are predominant types of cellulases. Through the exploration of ten factors in fermentation medium with Plackett-Burman and Box-Behnken design methodologies, maximum cellulase activity was predicted to reach 2.98 U/mL theoretically. The optimal conditions achieving this response were determined as 1.09% CMC-Na, 2.30% salinity, and 1.23% tryptone. Validation under these specified conditions yielded a cellulose activity of 3.02 U/mL, demonstrating a 3.43-fold degree of optimization. In conclusion, this comprehensive study underscored the significant capabilities of strain Z2.6 in lignocellulolytic saccharification and its potentialities for future in-depth exploration in biomass conversion.
Collapse
Affiliation(s)
- Zhi Cai
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
- Marine College, Shandong University, Weihai 264209, China
| | - Yi Wang
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Yang You
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Nan Yang
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Shanshan Lu
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Jianheng Xue
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Xiang Xing
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
- Marine College, Shandong University, Weihai 264209, China
| | - Sha Sha
- Marine College, Shandong University, Weihai 264209, China
| | - Lihua Zhao
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
6
|
Han Z, Ye C, Dong X, Chen C, Zou D, Huang K, Wei X. Genetic identification and expression optimization of a novel protease HapR from Bacillus velezensis. Front Bioeng Biotechnol 2024; 12:1383083. [PMID: 38544979 PMCID: PMC10966715 DOI: 10.3389/fbioe.2024.1383083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 11/11/2024] Open
Abstract
Due to the broad application and substantial market demand for proteases, it was vital to explore the novel and efficient protease resources. The aim of this study was to identify the novel protease for tobacco protein degradation and optimize the expression levels. Firstly, the tobacco protein was used as the sole nitrogen resource for isolation of protease-producing strains, and a strain with high protease production ability was obtained, identified as Bacillus velezensis WH-7. Then, the whole genome sequencing was conducted on the strain B. velezensis WH-7, and 7 proteases genes were mined by gene annotation analysis. By further heterologous expression of the 7 protease genes, the key protease HapR was identified with the highest protease activity (144.19 U/mL). Moreover, the catalysis mechanism of HapR was explained by amino acid sequence analysis. The expression levels of protease HapR were further improved through optimization of promoter, signal peptide and host strain, and the maximum protease activity reaced 384.27 U/mL in WX-02/pHY-P43-SPyfkD-hapR, increased by 167% than that of initial recombinant strain HZ/pHY-P43-SPhapR-hapR. This study identified a novel protease HapR and the expression level was significantly improved, which provided an important enzyme resource for the development of enzyme preparations in tobacco protein degradation.
Collapse
Affiliation(s)
- Zhenying Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xinyu Dong
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenchen Chen
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuo Huang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
7
|
Revankar AG, Bagewadi ZK, Bochageri NP, Yunus Khan T, Mohamed Shamsudeen S. Response surface methodology based optimization of keratinase from Bacillus velezensis strain ZBE1 and nanoparticle synthesis, biological and molecular characterization. Saudi J Biol Sci 2023; 30:103787. [PMID: 37705700 PMCID: PMC10495650 DOI: 10.1016/j.sjbs.2023.103787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV-Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Archana G. Revankar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Neha P. Bochageri
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic dental science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
8
|
Production of a halotolerant endo-1,4-β-glucanase by a newly isolated Bacillus velezensis H1 on olive mill wastes without pretreatment: purification and characterization of the enzyme. Arch Microbiol 2022; 204:681. [DOI: 10.1007/s00203-022-03300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
|
9
|
Khalid A, Khalid F, Mahreen N, Hussain SM, Shahzad MM, Khan S, Wang Z. Effect of Spore-Forming Probiotics on the Poultry Production: A Review. Food Sci Anim Resour 2022; 42:968-980. [PMID: 36415574 PMCID: PMC9647184 DOI: 10.5851/kosfa.2022.e41] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 09/16/2023] Open
Abstract
Due to the bad aspects associated with the use of antibiotics, the pressure on poultry production prompted the efforts to find out suitable growth-promoting and disease-preventing alternatives. Although many cost-effective alternatives have been developed, currently, one of the most auspicious alternatives for poultry feed is spore-forming probiotics, which can exert more beneficial effects as compared to normal probiotics, because of their ability to withstand the harsh external and internal conditions which result in increased viability. Many studies have already used spore-forming probiotics to improve different parameters of poultry production. Our laboratory has recently isolated a spore-forming bacterial strain, which has the potential to be used as a probiotic. So, to provide a detailed understanding, the current review aimed to collect valuable references to describe the mechanism of action of spore-forming probiotics and their effect on all the key aspects of poultry production.
Collapse
Affiliation(s)
- Anam Khalid
- College of Life Science, Anhui
Agricultural University, Hefei 230036, China
| | - Fatima Khalid
- College of Life Science, Anhui
Agricultural University, Hefei 230036, China
| | - Nida Mahreen
- Department of Horticulture, Ayub Research
Institute, Faisalabad 38850, Pakistan
| | | | - Muhammad Mudassar Shahzad
- Department of Zoology, Division of Science
and Technology, University of Education, Lahore 54770,
Pakistan
| | - Salman Khan
- College of Life Science, Anhui
Agricultural University, Hefei 230036, China
| | - Zaigui Wang
- College of Life Science, Anhui
Agricultural University, Hefei 230036, China
| |
Collapse
|
10
|
Wasunan P, Maneewong C, Daengprok W, Thirabunyanon M. Bioactive Earthworm Peptides Produced by Novel Protease-Producing Bacillus velezensis PM 35 and Its Bioactivities on Liver Cancer Cell Death via Apoptosis, Antioxidant Activity, Protection Against Oxidative Stress, and Immune Cell Activation. Front Microbiol 2022; 13:892945. [PMID: 36033863 PMCID: PMC9399677 DOI: 10.3389/fmicb.2022.892945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Earthworms have long been used as traditional medicine. The purposes of this research were to create bioactive peptides from the unique Amynthas arenulus earthworm (PAAEs) and test their potentials on liver cancer bioprophylactic activity, antioxidant, oxidative stress protection, and immune cell activation. This earthworm had a high protein content ratio, at 55.39%. Besides, PM 35 is one out of 58 bacteria isolated from the earthworm carcasses that exhibited the highest protease and yield protein production which was chosen as the protease-producing bacteria to hydrolyze the protein. The genera were identified by 16S rRNA and 16S–23S rRNA comparison and confirmed as Bacillus velezensis PM 35. The response surface methodology was applied to optimize these hydrolysis parameters, i.e., the enzyme/substrate (E/S) concentration ratio [1%–3% (v/v)] and time (1–3 h) of the hydrolyzing earthworm’s proteins. The optimal hydrolyzing conditions were 3% (v/v) of E/S concentration ratio and 3 h of hydrolysis time, which found protein-hydrolysate yield (24.62%) and degree of hydrolysis (85.45%) as the highest. After being challenged in the gastrointestinal tract-resistant model, these PAAEs (MW <3 and 3–5 kDa) induced liver cancer cell (HepG2) death via apoptotic action modes (cell morphological change and DNA fragmentation). The PAAEs (MW <3 kDa) exhibited significant antioxidant activity via DPPH, ABTS, and FRAP with IC50 values of 0.94, 0.44, and 6.34 mg/ml, respectively. The PAAEs (MW < 3 kDa) were non-cytotoxic and protected the mouse fibroblast cells (L929) against oxidative stress. These PAAEs (MW < 3 kDa, 0.2 mg/ml) stimulated the B lymphocytes (122.3%), and T lymphocytes (126.7%) proliferation. This research suggests that PAAEs can be used in a variety of applications, especially in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Pimphan Wasunan
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Chutamas Maneewong
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Wichittra Daengprok
- Program in Food Science and Technology, Faculty of Engineering and Agroindustry, Maejo University, Chiang Mai, Thailand
| | - Mongkol Thirabunyanon
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
- *Correspondence: Mongkol Thirabunyanon,
| |
Collapse
|
11
|
Dai Y, Wang YH, Li M, Zhu ML, Wen TY, Wu XQ. Medium optimization to analyze the protein composition of Bacillus pumilus HR10 antagonizing Sphaeropsis sapinea. AMB Express 2022; 12:61. [PMID: 35606553 PMCID: PMC9127024 DOI: 10.1186/s13568-022-01401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
A previous study found that a biocontrol bacterium, Bacillus pumilus HR10, inhibited the Sphaeropsis shoot blight disease of pine, and the fermentation broth of HR10 strain contained protein antifungal substances. The optimal formulation of the fermentation medium for the antagonistic substance of B. pumilus HR10 was finally obtained by single-factor test, Packett-Burman test, steepest ascent test and Box-Behnken Design (BBD) response surface test, and the best formulation of the fermentation medium for the antagonistic substance of B. pumilus HR10 was 12 g/L corn meal, 15 g/L beef extract and 13 g/L magnesium sulfate, with a predicted bacterial inhibition rate of 89%. The fermentation filtrate of B. pumilus HR10 cultured with the optimized medium formulation was verified to have an inhibition rate of (87.04 ± 3.2) % on the growth of Sphaeropsis sapinea by three replicate tests. The antagonistic crude protein of B. pumilus HR10 were further isolated and identified using HiTrap Capto Q strong Ion-Exchange Chromatography and LC-MS-MS, and it was speculated that glycoside hydrolase (Ghy), beta-glucanase (Beta), arabinogalactan endonuclease β-1,4-galactanase (Arab), and immunosuppressant A (ImA) are proteins with antagonistic activity against S. sapinea in the B. pumilus HR10.
Collapse
|
12
|
Ren Z, Xie L, Okyere SK, Wen J, Ran Y, Nong X, Hu Y. Antibacterial Activity of Two Metabolites Isolated From Endophytic Bacteria Bacillus velezensis Ea73 in Ageratina adenophora. Front Microbiol 2022; 13:860009. [PMID: 35602058 PMCID: PMC9121010 DOI: 10.3389/fmicb.2022.860009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
Ageratina adenophora, as an invasive and poisonous weed, seriously affects the ecological diversity and development of animal husbandry. Weed management practitioners have reported that it is very difficult to control A. adenophora invasion. In recent years, many researchers have focused on harnessing the endophytes of the plant as a useful resource for the development of pharmacological products for human and animal use. This study was performed to identify endophytes with antibacterial properties from A. adenophora. Agar well diffusion method and 16S rRNA gene sequencing technique were used to screen and identify endophytes with antibacterial activity. The response surface methodology and prep- high-performance liquid chromatography were used to determine the optimizing fermentation conditions and isolate secondary metabolites, respectively. UV-visible spectroscopy, infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectrum were used to determine the structures of the isolated metabolites. From the experiment, we isolated a strain of Bacillus velezensis Ea73 (GenBank no. MZ540895) with broad-spectrum antibacterial activity. We also observed that the zone of inhibition of B. velezensis Ea73 against Staphylococcus aureus was the largest when fermentation broth contained 6.55 g/L yeast extract, 6.61 g/L peptone, 20.00 g/L NaCl at broth conditions of 7.95 pH, 51.04 h harvest time, and a temperature of 27.97°C. Two antibacterial peptides, Cyclo (L-Pro-L-Val) and Cyclo (L-Leu-L-Pro), were successfully extracted from B. velezensis Ea73. These two peptides exhibited mild inhibition against S. aureus and Escherichia coli. Therefore, we isolated B. velezensis Ea73 with antibacterial activity from A. adenophora. Hence, its metabolites, Cyclo (L-Pro-L-Val) and Cyclo (L-Leu-L-Pro), could further be developed as a substitute for human and animal antibiotics.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Yinan Ran
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Xiang Nong
- College of Life Science, Leshan Normal University, Leshan, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
- *Correspondence: Yanchun Hu
| |
Collapse
|
13
|
Na HE, Heo S, Kim YS, Kim T, Lee G, Lee JH, Jeong DW. The safety and technological properties of Bacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 2021; 59:627-633. [PMID: 34212287 DOI: 10.1007/s12275-021-1161-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Bacillus velezensis is a plant growth-promoting bacterium that can also inhibit plant pathogens. However, based on its properties, it is emerging as a probiotic in animal feed. This review focuses on the potential characteristics of B. velezensis for use as a probiotic in the animal feed industry. The review was conducted by collecting recently published articles from peer-reviewed journals. Google Scholar and PubMed were used as search engines to access published literature. Based on the information obtained, the data were divided into three groups to discuss the (i) probiotic characteristics of B. velezensis, (ii) probiotic potential for fish, and (iii) the future potential of this species to be developed as a probiotic for the animal feed industry. Different strains of B. velezensis isolated from different sources were found to have the ability to produce antimicrobial compounds and have a beneficial effect on the gut microbiota, with the potential to be a candidate probiotic in the animal feed industry. This review provides valuable information about the characteristics of B. velezensis, which can provide researchers with a better understanding of the use of this species in the animal feed industry.
Collapse
|