1
|
Pais R, Conde T, Neves BB, Pinho M, Coelho M, Pereira H, Rodrigues AMC, Domingues P, Gomes AM, Urbatzka R, Domingues R, Melo T. Bioactive Lipids in Dunaliella salina: Implications for Functional Foods and Health. Foods 2024; 13:3321. [PMID: 39456383 PMCID: PMC11507028 DOI: 10.3390/foods13203321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Dunaliella salina is a green microalga extensively explored for β-carotene production, while knowledge of its lipid composition is still limited and poorly investigated. Among lipids, polar lipids have been highlighted as bioactive phytochemicals with health-promoting properties. This research aimed to provide an in-depth lipidome profiling of D. salina using liquid and gas chromatography coupled with mass spectrometry. The lipid content was 6.8%, including phospholipids, glycolipids, betaine lipids, sphingolipids, triglycerides, diglycerides, and pigments. Among the total esterified fatty acids, 13.6% were 18:3 omega-3 and 14.7% were 18:1 omega-9. The lipid extract of D. salina showed anti-inflammatory activity by inhibiting cyclooxygenase-2 activity at 100 µg/mL, dose-dependent antioxidant scavenging activity, and antidiabetic activity by inhibiting α-glucosidase activity at 25 and 125 µg/mL. In conclusion, the lipid extract of D. salina has the potential to be used as a functional food ingredient or in the nutraceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Rita Pais
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Tiago Conde
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Bruna B. Neves
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Marisa Pinho
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
| | - Marta Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (A.M.G.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | | | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Ana Maria Gomes
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (A.M.G.)
| | - Ralph Urbatzka
- Biodiscovery for Health Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
| | - Rosário Domingues
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Tânia Melo
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| |
Collapse
|
2
|
Tekin N, Ertuğrul Karatay S, Dönmez G. Third generation biobutanol production by Clostridium beijerinckii in a medium containing mixotrophically cultivated Dunaliella salina biomass. Prep Biochem Biotechnol 2024; 54:483-493. [PMID: 37610720 DOI: 10.1080/10826068.2023.2248298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
This study aims the third generation biobutanol production in P2 medium supplemented D. salina biomass mixotrophically cultivated with marble waste (MW). The wastes derived from the marble industry contain approximately 90% of carbon-rich compounds. Microalgal growth in mixotrophic conditions was optimized in the 0.4-2 g/L of MW concentration range. The highest microalgal concentration was obtained as 0.481 g/L in the presence of 1 g/L MW. Furthermore, some important parameters for the production of biobutanol, such as microalgal cultivation conditions, initial mixotrophic microalgal biomass loading (50-300 g/L), and fermentation time (24-96 h) were optimized. The highest biobutanol, total ABE, biobutanol yield and productivity were determined as 11.88 g/L, 13.89 g/L, 0.331 g/g and 0.165 g/L/h at the end of 72 h in P2 medium including 60 g/L glucose and 200 g/L microalgal biomass cultivated in 1 g/L MW, respectively. The results show that D. salina is a suitable raw material for supporting Clostridium beijerinckii DSMZ 6422 cells on biobutanol production. To the best of our knowledge, this is the first study on the use of MW which is a promising feedstock on the mixotrophic cultivation of D. salina for biobutanol production.
Collapse
Affiliation(s)
- Nazlıhan Tekin
- Science Faculty, Biology Department, Ankara University, Beşevler, Turkey
| | | | - Gönül Dönmez
- Science Faculty, Biology Department, Ankara University, Beşevler, Turkey
| |
Collapse
|
3
|
Çelekli A, Özbal B, Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods 2024; 13:725. [PMID: 38472838 DOI: 10.3390/foods13050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Much attention has been given to the use of microalgae to produce functional foods that have valuable bioactive chemicals, including essential amino acids, polyunsaturated fatty acids, vitamins, carotenoids, fiber, and minerals. Microalgal biomasses are increasingly being used to improve the nutritional values of foods because of their unique nutrient compositions that are beneficial to human health. Their protein content and amino acid composition are the most important components. The microalgal biomass used in the therapeutic supplement industry is dominated by bio-compounds like astaxanthin, β-carotene, polyunsaturated fatty acids like eicosapentaenoic acid and docosahexaenoic acid, and polysaccharides such as β-glucan. The popularity of microalgal supplements is growing because of the health benefits of their bioactive substances. Moreover, some microalgae, such as Dunaliella, Arthrospira (Spirulina), Chlorella, and Haematococcus, are commonly used microalgal species in functional food production. The incorporation of microalgal biomass leads not only to enhanced nutritional value but also to improved sensory quality of food products without altering their cooking or textural characteristics. Microalgae, because of their eco-friendly potential, have emerged as one of the most promising and novel sources of new functional foods. This study reviews some recent and relevant works, as well as the current challenges for future research, using different methods of chemical modification in foods with the addition of a few commercial algae to allow their use in nutritional and sensory areas. It can be concluded that the production of functional foods through the use of microalgae in foods has become an important issue.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Buket Özbal
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Hüseyin Bozkurt
- Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
4
|
Tajik A, Samadlouie HR, Salek Farrokhi A, Ghasemi A. Optimization of chemical conditions for metabolites production by Ganoderma lucidum using response surface methodology and investigation of antimicrobial as well as anticancer activities. Front Microbiol 2024; 14:1280405. [PMID: 38318131 PMCID: PMC10839005 DOI: 10.3389/fmicb.2023.1280405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Ganoderma lucidum (G. lucidum) is a medicinal mushroom that is known for its ability to produce compounds with physiological effects on human health. This research was undertaken to amplify the production of bioactive components of G. lucidum under optimal cultivation conditions, obtained in a submerged state and utilized in solid state fermentation, with the purpose of enhancing antimicrobial and anticancer activities. The results indicated that titanium dioxide (TiO2 NPs), magnesium oxide nanoparticles (MgO2 NPs), and B6, along with glucose syrup and CLS syrups, were the most effective for producing GA, while wheat starch and whey protein, along with MgO2 NPs and B6 vitamin, stimulated polysaccharide production using the One Factor at a Time (OFAT) method. After screening, the response surface method (RSM) statistically indicated that the media containing 42.11 g/L wheat starch with 22 g/L whey protein and 50 g/L glucose syrup with 30 g/L CSL were found to be the best conditions for polysaccharide (21.47% of dry weight biomass) and GA (20.35 mg/g dry weight biomass) production, respectively. The moss of the fruit body of G. lucidum produced under optimal GA conditions had the highest diversity in flavonoids and phenolic acids and significant antimicrobial activity against Esherichia coli (E. coli) and Bacillus subtilis (B. subtilis). In addition, the IC50 levels of shell and stem of G. lucidum were 465.3 and 485.7 μg/mL, respectively, while the moss did not reach 50% inhibition. In the end, the statistical approaches utilized in this research to elevate the levels of bioactive components in the fruiting body of G. lucidum produced a promising natural source of antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Alireza Tajik
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Hamid Reza Samadlouie
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | | | - Amir Ghasemi
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
5
|
Kizilay HK, Küçükçetin A, Demir M. Optimization of carotenoid production by Umbelopsis ramanniana. Biotechnol Prog 2023; 39:e3369. [PMID: 37343233 DOI: 10.1002/btpr.3369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023]
Abstract
Umbelopsis ramanniana was investigated to increase carotenoid production. Nine different carbon sources and six different nitrogen sources were evaluated for the maximum carotenoid production. The most effective nitrogen and carbon sources were KNO3 and lactose, respectively. Then, the optimization of medium components for enhancement of carotenoid production by Umbelopsis ramanniana was achieved using Plackett-Burman design. Box-Behnken response surface methodology was applied to further optimize carotenoid and biomass production. Carbon to nitrogen ratio, lactose concentration, and shaking speed were studied as variables in Box-Behnken design. The optimum conditions for carotenoid and biomass production were determined as 32.42 g/L of lactose concentration, 20:1 of carbon to nitrogen ratio, and shaking speed of 130 rpm. The maximum carotenoid and biomass production under optimized conditions were 1141 μg/L (β-carotene-Eq) and 13.14 g/L, respectively. When compared to the control fermentation, carotenoid, and biomass production were increased by about 2 and 1.3 folds, respectively.
Collapse
Affiliation(s)
- Hatice Kübra Kizilay
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Ahmet Küçükçetin
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Muammer Demir
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
6
|
Abstract
(1) Background: Mixotrophic growth is commonly associated with higher biomass productivity and lower energy consumption. This paper evaluates the impact of using different carbon sources on growth, protein profile, and nutrient uptake for Dunaliella tertiolecta CCAP 19/30 to assess the potential for mixotrophic growth. (2) Methods: Two experimental sets were conducted. The first assessed the contribution of atmospheric carbon to D. tertiolecta growth and the microalgae capacity to grow heterotrophically with an organic carbon source to provide both carbon and energy. The second set evaluated the impact of using different carbon sources on its growth, protein yield and quality. (3) Results: D. tertiolecta could not grow heterotrophically. Cell and optical density, ash-free dry weight, and essential amino acids index were inferior for all treatments using organic carbon compared to NaHCO3. Neither cell nor optical density presented significant differences among the treatments containing organic carbon, demonstrating that organic carbon does not boost D. tertiolecta growth. All the treatments presented similar nitrogen, phosphorus, sulfur recovery, and relative carbohydrate content. (4) Conclusions: Based on the results of this paper, D. tertiolecta CCAP 19/30 is an obligated autotroph that cannot grow mixotrophically using organic carbon.
Collapse
|
7
|
Esfandiyari Mehni M, Samadlouie HR, Rajaei A. Enhancement of oil productivity of Mortierella alpine and investigation into the potential of Pickering oil-in-water emulsions to improve its oxidative stability. Food Sci Nutr 2022; 10:103-114. [PMID: 35035913 PMCID: PMC8751445 DOI: 10.1002/fsn3.2651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
Mortierella alpine is an oleaginous fungi known for its tendency to produce oil and polyunsaturated fatty acid. Initial experiment indicated that magnesium oxide nanoparticles (MgONPs) accelerated glucose consumption and, consequently, oil production. After enhancement of Mortierella alpine CBS 754.68' oil production, the oxidative stability of the oil rich in long-chain polyunsaturated fatty acids (arachidonic acid) encapsulated by modified chitosan (CS) was assayed. To confirm the modification of CS, Fourier transform infrared spectroscopy (FTIR) spectrum indicated that the connection between CS and capric acid (CA) as well as stearic acid (SA) was well formed, leading to a considerable improvement in nanoparticle formation, measured by the SEM photographs, and physical and oxidative stability of emulsions. The oxidative stability of Mortierella alpine' oil emulsion in a period of 20 days at ambient temperature was monitored. Of all treated media, CS-SA nanoparticles were of the most oxidative stability. The rheological tests showed that viscosity behaviors were dominated by elastic behaviors in the impregnating emulsion with unmodified CS at the applied frequencies, and the elastic behavior of the emulsion sample prepared with CS-SA was slightly higher than that of the emulsion prepared with CS-CA. The results of redispersibility indicated that the powdered emulsion stabilized by CS-SA had the lowest water absorption.
Collapse
Affiliation(s)
- Marjan Esfandiyari Mehni
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Hamid Reza Samadlouie
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Ahmad Rajaei
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| |
Collapse
|
8
|
Capa-Robles W, García-Mendoza E, Paniagua-Michel JDJ. Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light. Metabolites 2021; 11:metabo11120866. [PMID: 34940624 PMCID: PMC8708783 DOI: 10.3390/metabo11120866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Current mixotrophic culture systems for Dunaliella salina have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in D. salina. The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m−2 s−1 light intensity enabled significant assimilation of glycerol by D. salina and consequently enhanced growth (2.1 × 106 cell mL−1) and β-carotene accumulation (4.43 pg cell−1). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m−2 s−1) caused the β-carotene to reach values higher than 30 pg cell−1 and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of D. salina to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of D. salina.
Collapse
Affiliation(s)
- Willian Capa-Robles
- Department of Marine Biotechnology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), 22860 Ensenada, Baja California, Mexico;
| | - Ernesto García-Mendoza
- Department of Biological Oceanography, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), 22860 Ensenada, Baja California, Mexico;
| | - José de Jesús Paniagua-Michel
- Department of Marine Biotechnology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), 22860 Ensenada, Baja California, Mexico;
- Correspondence: ; Tel.: +52-646-1745050
| |
Collapse
|