1
|
Comparison of TLC, HPLC, and direct-infusion ESI-MS methods for the identification and quantification of diacylglycerol molecular species. Methods Enzymol 2022; 683:191-224. [PMID: 37087188 DOI: 10.1016/bs.mie.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diacylglycerols (DAGs) are anabolic precursors to membrane lipid and storage triacylglycerol biosynthesis, metabolic intermediates of lipid catabolism, and potent cellular signaling molecules. The different DAG molecular species that accumulate over development or in different tissues reflect the changing aspects of cellular lipid metabolism. Consequently, an accurate determination of DAG molecular species in biological samples is essential to understand various metabolic processes and their diagnostic relevance. However, quantification of DAG molecular species in various biological samples represents a challenging task because of their low abundance, hydrophobicity, and instability. This chapter describes the most common chromatographic (TLC and HPLC) and mass spectrometry (MS) methods used to analyze DAG molecular species. In addition, we directly compared the three methods using DAG obtained by phospholipase C hydrolysis of phosphatidylcholine purified from a Nicotiana benthamiana leaf extract. We conclude that each method identified similar major molecular species, however, the exact levels of those varied mainly due to sensitivity of the technique, differences in sample preparation, and processing. This chapter provides three different methods to analyze DAG molecular species, and the discussion of the benefits and challenges of each technique will aid in choosing the right method for your analysis.
Collapse
|
2
|
Homayoonfar M, Roosta Azad R, Sardari S. Analytical methods in fatty acid analysis for microbial applications: the recent trends. Prep Biochem Biotechnol 2021; 51:937-952. [PMID: 34506247 DOI: 10.1080/10826068.2021.1881910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fatty acids are among the most important components of many biological systems and have been highlighted in many research fields in recent decades. In the food industry, it is important to check the amount and types of fatty acids in edible oils, beverages and other foods products, and checking the fatty acids parameters are among the quality control parameters for those products. In medical applications, investigation of fatty acids in biological samples and comparing imbalances in them can help to diagnose some diseases. On the other hand, the development of cell factories for the production of biofuels and other valuable chemicals requires the accurate analysis of fatty acids, which serve as precursors in development of those products. As a result, given all these different applications of fatty acids, rapid and accurate methods for characterization and quantification of fatty acids are essential. In recent years, various methods for the analysis of fatty acids have been proposed, which according to the specific purpose of the analysis, some of them can be used with consideration of speed, accuracy and cost. In this article, the available methods for the analysis of fatty acids are reviewed with a special emphasis on the analysis of microbial samples to pave the way for more widespread metabolic engineering research.
Collapse
Affiliation(s)
- Mohammad Homayoonfar
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tahran, Iran.,Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Roosta Azad
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tahran, Iran
| | - Soroush Sardari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods 2021; 10:foods10020428. [PMID: 33669180 PMCID: PMC7919678 DOI: 10.3390/foods10020428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Normal-phase high-performance liquid chromatography (HPLC) is widely used in combination with evaporative light scattering detection (ELSD) for separating and detecting lipids in various food samples. ELSD responses of different lipids were evaluated to elucidate the possibilities and challenges associated with quantification by means of HPLC-ELSD. Not only the number and type of polar functional groups but also the chain length and degree of unsaturation of (free or esterified) fatty acids (FAs) had a significant effect on ELSD responses. Tripalmitin and trilinolein yielded notably different ELSD responses, even if their constituting free FAs produced identical responses. How FA structure impacts ELSD responses of free FAs is thus not predictive for those of triacylglycerols and presumably other lipids containing esterified FAs. Because ELSD responses of lipids depend on the identity of the (esterified) FA(s) which they contain, fully accurate lipid quantification with HPLC-ELSD is challenging and time-consuming. Nonetheless, HPLC-ELSD is a good and fast technique to semi-quantitatively compare the levels of different lipid classes between samples of comparable FA composition. In this way, lipid profiles of different flours from near-isogenic wheat lines could be compared.
Collapse
|
4
|
Kotapati HK, Bates PD. 14C-Tracing of Lipid Metabolism. Methods Mol Biol 2021; 2295:59-80. [PMID: 34047972 DOI: 10.1007/978-1-0716-1362-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipids are produced through a dynamic metabolic network involving branch points, cycles, reversible reactions, parallel reactions in different subcellular compartments, and distinct pools of the same lipid class involved in different parts of the network. For example, diacylglycerol (DAG) is a biosynthetic and catabolic intermediate of many different lipid classes. Triacylglycerol can be synthesized from DAG assembled de novo, or from DAG produced by catabolism of membrane lipids, most commonly phosphatidylcholine. Quantification of lipids provides a snapshot of the lipid abundance at the time they were extracted from the given tissue. However, quantification alone does not provide information on the path of carbon flux through the metabolic network to synthesize each lipid. Understanding lipid metabolic flux requires tracing lipid metabolism with isotopically labeled substrates over time in living tissue. [14C]acetate and [14C]glycerol are commonly utilized substrates to measure the flux of nascent fatty acids and glycerol backbones through the lipid metabolic network in vivo. When combined with mutant or transgenic plants, tracing of lipid metabolism can provide information on the molecular control of lipid metabolic flux. This chapter provides a method for tracing in vivo lipid metabolism in developing Arabidopsis thaliana seeds, including analysis of 14C labeled lipid classes and fatty acid regiochemistry through both thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) approaches.
Collapse
Affiliation(s)
- Hari Kiran Kotapati
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| |
Collapse
|
5
|
Hanumanth Rao NR, Yap R, Whittaker M, Stuetz RM, Jefferson B, Peirson WL, Granville AM, Henderson RK. The role of algal organic matter in the separation of algae and cyanobacteria using the novel "Posi" - Dissolved air flotation process. WATER RESEARCH 2018; 130:20-30. [PMID: 29190513 DOI: 10.1016/j.watres.2017.11.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Algae and cyanobacteria frequently require separation from liquid media in both water treatment and algae culturing for biotechnology applications. The effectiveness of cell separation using a novel dissolved air flotation process that incorporates positively charged bubbles (PosiDAF) has recently been of interest but has been shown to be dependent on the algae or cyanobacteria species tested. Previously, it was hypothesised that algal organic matter (AOM) could be impacting the separation efficiency. Hence, this study investigates the influence of AOM on cell separation using PosiDAF, in which bubbles are modified using a commercially available cationic polyelectrolyte poly(N, N-diallyl-N,N-dimethylammonium chloride) (PDADMAC). The separation of Chlorella vulgaris CS-42/7, Mychonastes homosphaera CS-556/01 and two strains of Microcystis aeruginosa (CS-564/01 and CS-555/1), all of which have similar cell morphology but different AOM character, was investigated. By testing the cell separation in the presence and absence of AOM, it was determined that AOM enhanced cell separation for all the strains but to different extents depending on the quantity and composition of carbohydrates and proteins in the AOM. By extracting AOM from the strain for which optimal separation was observed and adding it to the others, cell separation improved from <55% to >90%. This was attributed to elevated levels of acidic carbohydrates as well as glycoprotein-carbohydrate conjugations, which in turn were related to the nature and quantity of proteins and carbohydrates present in the AOM. Therefore, it was concluded that process optimisation requires an in-depth understanding of the AOM and its components. If culturing algae for biotechnology applications, this indicates that strain selection is not only important with respect to high value product content, but also for cell separation.
Collapse
Affiliation(s)
- Narasinga Rao Hanumanth Rao
- bioMASS Lab, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia; Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Russell Yap
- bioMASS Lab, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Whittaker
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Richard M Stuetz
- bioMASS Lab, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia; UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bruce Jefferson
- Cranfield Water Science Institute, School of Applied Sciences, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - William L Peirson
- Water Research Laboratory, School of Civil and Environmental Engineering, The University of New South Wales, Manly Vale, NSW, 2093, Australia
| | - Anthony M Granville
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rita K Henderson
- bioMASS Lab, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Gonzalez-Torres A, Rich A, Marjo C, Henderson R. Evaluation of biochemical algal floc properties using Reflectance Fourier-Transform Infrared Imaging. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Hu X, Zhou J, Liu G, Gui B. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. J Environ Sci (China) 2016; 46:83-91. [PMID: 27521939 DOI: 10.1016/j.jes.2015.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/15/2015] [Accepted: 08/27/2015] [Indexed: 06/06/2023]
Abstract
As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel.
Collapse
Affiliation(s)
- Xia Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bing Gui
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Pati S, Nie B, Arnold RD, Cummings BS. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed Chromatogr 2016; 30:695-709. [PMID: 26762903 PMCID: PMC8425715 DOI: 10.1002/bmc.3683] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/21/2023]
Abstract
Lipids make up a diverse subset of biomolecules that are responsible for mediating a variety of structural and functional properties as well as modulating cellular functions such as trafficking, regulation of membrane proteins and subcellular compartmentalization. In particular, phospholipids are the main constituents of biological membranes and play major roles in cellular processes like transmembrane signaling and structural dynamics. The chemical and structural variety of lipids makes analysis using a single experimental approach quite challenging. Research in the field relies on the use of multiple techniques to detect and quantify components of cellular lipidomes as well as determine structural features and cellular organization. Understanding these features can allow researchers to elucidate the biochemical mechanisms by which lipid-lipid and/or lipid-protein interactions take place within the conditions of study. Herein, we provide an overview of essential methods for the examination of lipids, including extraction methods, chromatographic techniques and approaches for mass spectrometric analysis.
Collapse
Affiliation(s)
- Sumitra Pati
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Ben Nie
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Meng Y, Yao C, Xue S, Yang H. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. BIORESOURCE TECHNOLOGY 2014; 151:347-354. [PMID: 24262844 DOI: 10.1016/j.biortech.2013.10.064] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell.
Collapse
Affiliation(s)
- Yingying Meng
- Marine Bioproducts Engineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China
| | | | | | | |
Collapse
|
10
|
Seddon AM, Casey D, Law RV, Gee A, Templer RH, Ces O. Drug interactions with lipid membranes. Chem Soc Rev 2009; 38:2509-19. [PMID: 19690732 DOI: 10.1039/b813853m] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of drug-membrane interactions is one that spans a wide range of scientific disciplines, from synthetic chemistry, through biophysics to pharmacology. Cell membranes are complex dynamic systems whose structures can be affected by drug molecules and in turn can affect the pharmacological properties of the drugs being administered. In this tutorial review we aim to provide a guide for those new to the area of drug-membrane interactions and present an introduction to areas of this topic which need to be considered. We address the lipid composition and structure of the cell membrane and comment on the physical forces present in the membrane which may impact on drug interactions. We outline methods by which drugs may cross or bind to this membrane, including the well understood passive and active transport pathways. We present a range of techniques which may be used to study the interactions of drugs with membranes both in vitro and in vivo and discuss the advantages and disadvantages of these techniques and highlight new methods being developed to further this field.
Collapse
Affiliation(s)
- Annela M Seddon
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington Campus, London, UK SW7 2AZ.
| | | | | | | | | | | |
Collapse
|
11
|
Carrasco-Pancorbo A, Navas-Iglesias N, Cuadros-Rodríguez L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: Modern lipid analysis. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2008.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Determination of Triacylglycerols in Butterfat by Normal-Phase HPLC and Electrospray–Tandem Mass Spectrometry. Lipids 2008; 44:169-95. [DOI: 10.1007/s11745-008-3247-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
|