1
|
Vinković K, Vukoje M, Rožić M, Galić N. Bisphenol A monitoring during anaerobic degradation of papers with thermochromic prints in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118117. [PMID: 37182486 DOI: 10.1016/j.jenvman.2023.118117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/02/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pseudoestrogene bisphenol A (BPA) can be important ingredient of thermochromic inks, increasingly used materials in thermal printing paper, security printing, advertising, design and as temperature indicators in medicine and food industry. BPA mass fraction in thermochromic inks can be up to several percent. Hence, disposal of items with thermochromic prints pose a risk of environmental pollution. In this work BPA mass fraction was monitored during anaerobic degradation of papers with thermochromic prints in soil in both matrices: papers and soil. The degradation conditions simulated deeper layers of waste at a landfill site. Six types of papers with prints of thermochromic ink containing 2% of BPA were subjected to anaerobic degradation over up to 150 days. Initial mass fractions of BPA in papers decreased form (126-460) μg/g to (<QL - 45) μg/g after 150 days. BPA amounts were reduced 10 to 50 times depending on the paper type: least for synthetic paper and most for wood-free coated. For soil analysis new HPLC-UV method was developed and validated. The method was linear from 0.75 ng/g to 0.6 μg/g of BPA in soil with correlation coefficient of 0.9994. Method precision was 4.4%, accuracy 83% and detection limit 0.9 ng/g. Expectedly, amount of BPA in soil was increasing during the experiment. Mass fractions of BPA in soil were from not detected in earlier stage of degradation to (4.9-23.2) ng/g after 150 days. Final BPA amounts in soil were similar to those found in industrial, urban and agricultural soils worldwide. Hence, BPA from papers with thermochromic prints was notably decomposed, and contaminated soil had the capacity to absorb and decompose BPA even under anaerobic conditions. After 150 days of anaerobic degradation, only up to 1.86% of BPA contained in paper prints was found in soil, whilst, on average, 4% of initial BPA remained in paper.
Collapse
Affiliation(s)
- Kristinka Vinković
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | - Marina Vukoje
- University of Zagreb Faculty of Graphic Arts, Getaldićeva 2, 10000, Zagreb, Croatia.
| | - Mirela Rožić
- University of Zagreb Faculty of Graphic Arts, Getaldićeva 2, 10000, Zagreb, Croatia.
| | - Nives Galić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Amiri M, Akbari Javar H, Mahmoudi-Moghaddam H, Salavati-Niasari M. Green synthesis of perovskite-type nanocomposite using Crataegus for modification of bisphenol a sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Silica Hydride: A Separation Material Every Analyst Should Know About. Molecules 2021; 26:molecules26247505. [PMID: 34946587 PMCID: PMC8708426 DOI: 10.3390/molecules26247505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
This review describes the development, special features and applications of silica hydride-based stationary phases for HPLC. The unique surface of this material is in contrast to ordinary, standard silica, which is the material most frequently used in modern HPLC stationary phases. The standard silica surface contains mainly silanol (Si-OH) groups, while the silica hydride surface is instead composed of silicon-hydrogen groups, which is much more stable, less reactive and delivers different chromatographic and chemical characteristics. Other aspects of this material are described for each of the different bonded moieties available commercially. Some applications for each of these column types are also presented as well as a generic model for method development on silica hydride-based stationary phases.
Collapse
|
4
|
Frankowski R, Rębiś T, Werner J, Grześkowiak T, Zgoła-Grześkowiak A. Application of the electropolymerized poly(3,4-ethylenedioxythiophene) sorbent for solid-phase microextraction of bisphenols. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5068-5080. [PMID: 33034600 DOI: 10.1039/d0ay01118e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new, simple, and effective procedure using poly(3,4-ethylenedioxythiophene)/lignosulfonate electropolymerized sorbent solid-phase microextraction (PEDOT/LS-SPME) combined with LC-MS/MS for determination of bisphenols in environmental water samples was developed. Various parameters influencing the performance of the analytical procedure including the type of sorbent, electropolymerization time, sorbent preconditioning time, extraction time, desorption (time and solvent), and sample pH were investigated and optimized. Under optimal conditions the proposed method allowed us to achieve good precision (n = 5) between 6.0 and 12.1%. The limits of detection were equal to 0.17 μg L-1 for BPA, 0.16 μg L-1 for BPF, 0.07 μg L-1 for BPE, 0.05 μg L-1 for BPB, and 0.027 μg L-1 for BPAF. The proposed method was successfully applied for the determination of bisphenols in aqueous environmental samples.
Collapse
Affiliation(s)
- Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
5
|
Frankowski R, Zgoła-Grześkowiak A, Grześkowiak T, Sójka K. The presence of bisphenol A in the thermal paper in the face of changing European regulations - A comparative global research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114879. [PMID: 32505936 DOI: 10.1016/j.envpol.2020.114879] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is used as a color developer in a thermal paper that after a heating process reacts with a leuco dye and changes it to a colored form. Receipts from cash registers are considered as the main source of consumer exposure to bisphenols together with polycarbonates and epoxy resins. Levels of BPA and its possible alternatives were determined in thermal paper samples collected between May 2018 and May 2019 in 22 European and 17 non-European countries on all inhabited continents (220 samples in total, 133 of which were from Europe and 87 from other countries). These measurements were intended to check the level of BPA presence in receipts originating from different countries, especially from Europe in the light of changing regulations restricting its use. The effect of thermal printing on developer content was also analyzed, but no major changes in concentrations of bisphenols were observed during the process. Thus, printed receipts could be used for the determination of bisphenol content. Analysis of receipts from 39 countries has shown that BPA is still the most common compound used around the world with 69% samples containing this color developer. Among other tested bisphenols, BPS was used as a color developer in 20% samples, but it was noted that all samples collected from Japan and the United States of America were found to contain only BPS. Other bisphenols (F, AF, E, and B) considered as possible alternatives for BPA were detected only at trace levels or not detected at all, which showed that they were not used as color developers. The relatively large use of BPS as a BPA substitute is worrying because this compound not only has similar endocrine properties but is also poorly biodegradable. Besides, its relatively high polarity facilitates spreading in the environment.
Collapse
Affiliation(s)
- Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Krzysztof Sójka
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
6
|
Vinković K, Vukoje M, Rožić M, Galić N. Migration of pseudoestrogen bisphenol A from various types of paper with thermochromic prints to artificial sweat solutions. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1704775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kristinka Vinković
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marina Vukoje
- Faculty of Graphic Arts, University of Zagreb, Zagreb, Croatia
| | - Mirela Rožić
- Faculty of Graphic Arts, University of Zagreb, Zagreb, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Zhang Y, Ling Y, Zhang Y, Yao G, Yao M, Zhang F. Simultaneous determination of 17 bisphenols in polycarbonate by ultra-high performance supercritical fluid chromatography with tandem mass spectrometry. J Sep Sci 2019; 42:2578-2586. [PMID: 31144456 DOI: 10.1002/jssc.201900279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022]
Abstract
A novel method was developed for the first time for the determination of 17 bisphenols by ultra-high performance supercritical fluid chromatography with tandem mass spectrometry. Under the optimal conditions, 17 bisphenols were separated successfully on a high density diol column in 9 min using methanol and carbon dioxide as mobile phase. 0.02% ammonium hydroxide/methanol v/v was used as the post-column compensation solvent to improve response of mass spectrometry. Linear relations of matrix-matched calibration curve were favorable over the selected concentration range of 1-100 μg/kg with correlation coefficients greater than 0.9981. The method limit of detection and limit of quantitation were 0.1-0.5 μg/kg and 0.5-2.5 μg/kg, respectively. The average recoveries at three spiked levels in polycarbonate were in the range of 81.8-114.5%. Intra-day and inter-day precisions for six replicates were below 15.0%. This method was successfully applied to determine bisphenols in polycarbonate.
Collapse
Affiliation(s)
- Yujia Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China.,School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Yun Ling
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Guihong Yao
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Meiyi Yao
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
8
|
The Development of Silica Hydride Stationary Phases for High-Performance Liquid Chromatography from Conception to Commercialization. SEPARATIONS 2019. [DOI: 10.3390/separations6020027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The development of a stationary phase material for high-performance liquid chromatography based on a surface of silica hydride as opposed to silanols on ordinary silica is discussed including synthetic approaches, characterization, and applications. There are several synthetic approaches available to create a silica hydride surface. Modification of the Si–H moiety on the silica surface can be accomplished through the use of a hydrosilation reaction. Both the intermediate silica hydride and the material modified with an organic moiety can be characterized by a number of spectroscopic as well as a variety of other methods. Further insights into the retention mechanism are provided through chromatographic measurements. The ultimate utility of any chromatographic stationary phase material is determined by its success in solving challenging analytical problems. A broad range of applications is reviewed to illustrate the versatility and usefulness of silica hydride-based stationary phases.
Collapse
|
9
|
Luo X, Zheng H, Zhang Z, Wang M, Yang B, Huang L, Wang M. Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection. Microchem J 2018. [DOI: 10.1016/j.microc.2017.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Vinković K, Rožić M, Galić N. Development and validation of an HPLC method for the determination of endocrine disruptors bisphenol A and benzophenone in thermochromic printing inks. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1391102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kristinka Vinković
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mirela Rožić
- Faculty of Graphic Arts, University of Zagreb, Zagreb, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Guan T, Sun Y, Yu H, Li T, Zhang J, Zhang T. A fluorescence polarization assay for bisphenol analogs in soybean oil using glucocorticoid receptor. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering; Jilin University; Changchun P. R. China
| | - Yonghai Sun
- College of Food Science and Engineering; Jilin University; Changchun P. R. China
| | - Hansong Yu
- College of Food Science and Engineering; Jilin Agricultural University; Changchun P. R. China
| | - Tiezhu Li
- College of Food Science and Engineering; Jilin University; Changchun P. R. China
| | - Jie Zhang
- College of Food Science and Engineering; Jilin University; Changchun P. R. China
| | - Tiehua Zhang
- College of Food Science and Engineering; Jilin University; Changchun P. R. China
| |
Collapse
|
12
|
Ultrasound-Assisted Upper Liquid Microextraction Coupled to Molecular Fluorescence for Detection of Bisphenol A in Commercial Beverages. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0714-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal Biochem 2016; 499:51-56. [PMID: 26820097 DOI: 10.1016/j.ab.2016.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
In this study, a colorimetric method was exploited to detect bisphenol A (BPA) based on BPA-specific aptamer and cationic polymer-induced aggregation of gold nanoparticles (AuNPs). The principle of this assay is very classical. The aggregation of AuNPs was induced by the concentration of cationic polymer, which is controlled by specific recognition of aptamer with BPA and the reaction of aptamer and cationic polymer forming "duplex" structure. This method enables colorimetric detection of BPA with selectivity and a detection limit of 1.50 nM. In addition, this colorimetric method was successfully used to determine spiked BPA in tap water and river water samples.
Collapse
|
14
|
Yasri NG, Sundramoorthy AK, Gunasekaran S. Azo dye functionalized graphene nanoplatelets for selective detection of bisphenol A and hydrogen peroxide. RSC Adv 2015. [DOI: 10.1039/c5ra16530j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A new electrochemical sensor is developed based on graphene nanoplatelets functionalized with tri-azo dye (direct blue 71) for selective and highly sensitive detection of bisphenol A and hydrogen peroxide in pH 7 phosphate buffered saline solution.
Collapse
Affiliation(s)
- Nael G. Yasri
- Department of Biological Systems Engineering
- University of Wisconsin-Madison
- Madison
- USA
- Department of Chemistry
| | | | - Sundaram Gunasekaran
- Department of Biological Systems Engineering
- University of Wisconsin-Madison
- Madison
- USA
| |
Collapse
|