1
|
Sayyed FH, Rathod N, Mishra VK, Nalawade V, Roy B. Identification, trace level quantification, and in silico assessment of potential genotoxic impurity in Famotidine. Drug Chem Toxicol 2024; 47:564-572. [PMID: 38425309 DOI: 10.1080/01480545.2024.2321941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Potential genotoxic impurities in medications are an increasing concern in the pharmaceutical industry and regulatory bodies because of the risk of human carcinogenesis. To prevent the emergence of these impurities, it is crucial to carefully examine not only the final product but also the intermediates and key starting material (KSM) used in drug synthesis. During the related substances analysis of KSM of Famotidine, an unknown impurity in the range of 0.5-1.0% was found prompting the need for isolation and characterization due to the possibility of its to infiltrate into the final product. In this study, the impurity was isolated and characterized as 5-(2-chloroethyl)-3,3-dimethyl-3,4-dihydro-2H-1,2,4,6-thiatriazine 1,1-dioxide using multiple instrumental analysis, uncovering a structural alert that raises concern. Considering the potential impact of impurity on human health, an in silico genotoxicity assessment was established using Derek and Sarah tool in accordance with ICH M7 guideline. Furthermore, molecular docking and molecular dynamics simulation were performed to evaluate the specific interaction of the impurity with DNA. The findings reveal consistent interaction of the impurity with the dG-rich region of the DNA duplex and binding at the minor groove. Both in silico prediction and molecular dynamic study confirmed the genotoxic character of the impurity. The newly discovered impurity in famotidine has not been reported previously, and there is currently no analytical method available for its identification and control. A highly sensitive HPLC-UV method was developed and validated in accordance with ICH requirements, enabling quantification of the impurity at trace level in famotidine ensuring its safe release.
Collapse
Affiliation(s)
- Faiz Hussain Sayyed
- Amity School of Applied Sciences (ASAS), Amity University Mumbai, Mumbai - Pune Expressway Bhatan, Mumbai, Maharashtra, India
| | - Nitin Rathod
- IPCA Laboratories, Chemical Research Division, Mumbai, India
| | - Vipin Kumar Mishra
- Amity School of Applied Sciences (ASAS), Amity University Mumbai, Mumbai - Pune Expressway Bhatan, Mumbai, Maharashtra, India
| | - Vighnesh Nalawade
- Amity School of Applied Sciences (ASAS), Amity University Mumbai, Mumbai - Pune Expressway Bhatan, Mumbai, Maharashtra, India
| | - Bappaditya Roy
- Amity School of Applied Sciences (ASAS), Amity University Mumbai, Mumbai - Pune Expressway Bhatan, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Xia HC, Wang HH, Han D, Yang HK, Lv JL, Kong YY. Phenothiazine-based fluorescent probes for the detection of hydrazine in environment and living cells. Talanta 2024; 269:125448. [PMID: 38029607 DOI: 10.1016/j.talanta.2023.125448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
As an important chemical raw material, hydrazine brings convenience to people's lives and provides opportunities for human development. However, the misuse or leakage of hydrazine has brought pollution to the environment, including water, soil and living organisms. At the same time, hydrazine poses a potential threat to human health as a carcinogen. Despite the enormous challenges, it is crucial to develop an effective method to detect hydrazine in environmental samples. In this work, we have synthesized a series of probes based on phenothiazine fluorophore by the introduction of different substituents and developed a novel probe for the detection of hydrazine. The probe is capable of detecting hydrazine in aqueous solutions with high sensitivity and selectivity, and can be easily fabricated into paper test strips for use in in situ samples. In addition, the probe is effective in detecting hydrazine in water, soil, cells, and zebrafish, providing an excellent tool for detecting hydrazine in the environment.
Collapse
Affiliation(s)
- Hong-Cheng Xia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Huan-Huan Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Di Han
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Hong-Kun Yang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Jie-Li Lv
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Ying-Ying Kong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
3
|
Fakayode SO, Bolton B, Dassow B, Galvez K, Chohan H. Rapid screening and multicomponent quantifications of active components of oral syrup over-the-counter medications by Raman and UV-visible spectroscopy and multivariate regression analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123447. [PMID: 37742594 DOI: 10.1016/j.saa.2023.123447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Over-the-counter medications (OTCMs) are frequently recommended as a first-line treatment for common ailments, diseases, and illnesses. Oral liquid dosage forms are advantageous for rapid absorption with no dissolution time and are easier for pediatric and geriatric consumers to swallow. The production of these medicines by pharmaceutical industry makes them readily available to the public. Although the US Food and Drug Administration (FDA) provides strict guidelines to drug manufacturers of these products; the risk of counterfeiting is a global issue. This can lead to several adverse effects and health issues. Here, we report a fast screening and quality assurance method using Raman and UV-visible spectroscopy combined with Principal Component Analysis (PCA) and Partial-Least-Square (PLS) regression of commonly used OTCM oral syrups. PLS regressions of UV-visible absorption spectra were used for multicomponent quantifications of the active component (acetaminophen, guaifenesin, dextromethorphan HBr, and phenylephrine HCl) concentrations of OTMCs in flavored (sugar or sugar-free) oral syrups. Raman and UV-visible spectral responses varied based on the type and concentration of the active component analyzed. PCA of the spectral data provided pattern recognition of the oral syrup OTCM. The developed PLS method demonstrated good linearity with an R2 > 0.9784 and high sensitivity with a low detection limit of 0.02 mg/mL for acetaminophen and guaifenesin. Moreover, the simultaneous quantification of concentrations of all active components by the described method yielded good accuracies ranging from 88 to 94%. This study provides an example of the benefits of the combined use of Raman and UV-vis spectral profiling, PCA, and PLS regression for the quality analysis of oral syrups OTCM providing multicomponent quantification of active components with no need for sample extraction. The reported method can be easily adapted and scaled for online detection analysis used in the drug manufacturing industry, both in-situ and field analysis, and for the quality control of syrups OTCM by regulatory agencies and quality control officers.
Collapse
Affiliation(s)
- Sayo O Fakayode
- Department of Chemistry, Physics & Astronomy, Georgia College, and State University, Milledgeville, GA 31061, United States.
| | - Brinkley Bolton
- Department of Chemistry, Physics & Astronomy, Georgia College, and State University, Milledgeville, GA 31061, United States
| | - Bailey Dassow
- Department of Chemistry, Physics & Astronomy, Georgia College, and State University, Milledgeville, GA 31061, United States
| | - Kairy Galvez
- Department of Chemistry, Physics & Astronomy, Georgia College, and State University, Milledgeville, GA 31061, United States
| | - Harmeet Chohan
- Department of Chemistry, Purdue State University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907-2084, United States
| |
Collapse
|
4
|
Li J, Ding H, Zhao Y, Lin M, Song L, Wang W, Dong H, Ma X, Liu W, Han L, Zheng F. DNA Repair-Responsive Engineered Whole Cell Microbial Sensors for Sensitive and High-Throughput Screening of Genotoxic Impurities. Anal Chem 2023; 95:12893-12902. [PMID: 37589895 DOI: 10.1021/acs.analchem.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Genotoxic impurities (GTIs) occurred in drugs, and food and environment pose a threat to human health. Accurate and sensitive evaluation of GTIs is of significance. Ames assay is the existing gold standard method. However, the pathogenic bacteria model lacks metabolic enzymes and requires mass GTIs, leading to insufficient safety, accuracy, and sensitivity. Whole-cell microbial sensors (WCMSs) can use normal strains to simulate the metabolic environment, achieving safe, sensitive, and high-throughput detection and evaluation for GTIs. Here, based on whether GTIs causing DNA alkylation required metabolic enzymes or not, two DNA repair-responsive engineered WCMS systems were constructed including Escherichia coli-WCMS and yeast-WCMS. A DNA repair-responsive promoter as a sensing element was coupled with an enhanced green fluorescent protein as a reporter to construct plasmids for introduction into WCMS. The ada promoter was screened out in the E. coli-WCMS, while the MAG1 promoter was selected for the yeast-WCMS. Different E. coli and yeast strains were modified by gene knockout and mutation to eliminate the interference and enhance the GTI retention in cells and further improved the sensitivity. Finally, GTI consumption of WCMS for the evaluation of methyl methanesulfonate (MMS) and nitrosamines was decreased to 0.46-8.53 μg and 0.068 ng-2.65 μg, respectively, decreasing 2-3 orders of magnitude compared to traditional methods. This study provided a novel approach to measure GTIs with different DNA damage pathways at a molecular level and facilitated the high-throughput screening and sensitive evaluation of GTIs.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Haotian Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yuning Zhao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Mingbin Lin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Linqi Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- Chongqing Fuling Institute for Food and Drug Control, Chongqing 408102, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Ma
- Gansu Institute for Drug Control, Lanzhou 730000, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
- Zhejiang Center for Safety Study of Drug Substances (Industrial Technology Innovation Platform), Hangzhou 310018, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Determination of Three Alkyl Camphorsulfonates as Potential Genotoxic Impurities Using GC-FID and GC-MS by Analytical QbD. SEPARATIONS 2022. [DOI: 10.3390/separations9090246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Camphorsulfonic acid salts are commonly used in the manufacturing production of active pharmaceutical ingredients (APIs) and have the potential to form alkyl camphorsulfonates, which can be considered as potential genotoxic impurities (PGIs). Alkyl camphorsulfonates should be controlled using the Threshold of Toxicological Concern (TTC) when detected in APIs due to their genotoxicity. An in silico study utilizing the ICH M7 guideline was performed in order to classify the alkyl camphorsulfonates that can be produced from the reaction of camphorsulfonic acid salts with methanol, ethanol, and isopropyl alcohol, which are commonly used solvents in API manufacturing processes. Two sensitive, reproducible, and accurate analytical methods using GC-FID and GC-MS were developed using the analytical Quality By Design (QbD) approaches for the quantitation of three alkyl camphorsulfonates in APIs satisfying the control limit of PGIs according to the TTC. The detection limits of the GC-FID method were found to be between 1.5 to 1.9 ppm, and the detection limits of the GC-MS method were found to be between 0.055 to 0.102 ppm. The method was validated in terms of accuracy, linearity, precision, detection limit, quantitation limit, specificity and robustness.
Collapse
|
6
|
Analytical Method Development for 19 Alkyl Halides as Potential Genotoxic Impurities by Analytical Quality by Design. Molecules 2022; 27:molecules27144437. [PMID: 35889310 PMCID: PMC9320377 DOI: 10.3390/molecules27144437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Major issues in the pharmaceutical industry involve efficient risk management and control strategies of potential genotoxic impurities (PGIs). As a result, the development of an appropriate method to control these impurities is required. An optimally sensitive and simultaneous analytical method using gas chromatography with a mass spectrometry detector (GC–MS) was developed for 19 alkyl halides determined to be PGIs. These 19 alkyl halides were selected from 144 alkyl halides through an in silico study utilizing quantitative structure–activity relationship (Q-SAR) approaches via expert knowledge rule-based software and statistical-based software. The analytical quality by design (QbD) approach was adopted for the development of a sensitive and robust analytical method for PGIs. A limited number of literature studies have reviewed the analytical QbD approach in the PGI method development using GC–MS as the analytical instrument. A GC equipped with a single quadrupole mass spectrometry detector (MSD) and VF-624 ms capillary column was used. The developed method was validated in terms of specificity, the limit of detection, quantitation, linearity, accuracy, and precision, according to the ICH Q2 guideline.
Collapse
|
7
|
Luo L, Gu C, Li M, Zheng X, Zheng F. Determination of residual 4-nitrobenzaldehyde in chloramphenicol and its pharmaceutical formulation by HPLC with UV/Vis detection after derivatization with 3-nitrophenylhydrazine. J Pharm Biomed Anal 2018; 156:307-312. [DOI: 10.1016/j.jpba.2018.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/18/2022]
|
8
|
Teasdale A, Elder DP. Analytical control strategies for mutagenic impurities: Current challenges and future opportunities? Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Zhu Q, Scriba GK. Analysis of small molecule drugs, excipients and counter ions in pharmaceuticals by capillary electromigration methods – recent developments. J Pharm Biomed Anal 2018; 147:425-438. [DOI: 10.1016/j.jpba.2017.06.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
|
10
|
Reddy AVB, Yusop Z, Jaafar J, Bin Aris A, Abdul Majid Z. A simple, selective, and sensitive gas chromatography-mass spectrometry method for the analysis of five process-related impurities in atenolol bulk drug and capsule formulations. J Sep Sci 2017; 40:3086-3093. [DOI: 10.1002/jssc.201700252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Ambavaram Vijaya Bhaskar Reddy
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment; Universiti Teknologi Malaysia; Johor Bahru Malaysia
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | - Zulkifli Yusop
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | - Jafariah Jaafar
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | - Azmi Bin Aris
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment; Universiti Teknologi Malaysia; Johor Bahru Malaysia
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| |
Collapse
|
11
|
Zheng X, Luo L, Zhou J, Ruan X, Liu W, Zheng F. Development and validation of a general derivatization HPLC method for the trace analysis of acyl chlorides in lipophilic drug substances. J Pharm Biomed Anal 2017; 140:327-333. [DOI: 10.1016/j.jpba.2017.03.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/14/2022]
|