1
|
Pätzmann N, O'Dwyer PJ, Beránek J, Kuentz M, Griffin BT. Predictive computational models for assessing the impact of co-milling on drug dissolution. Eur J Pharm Sci 2024; 198:106780. [PMID: 38697312 DOI: 10.1016/j.ejps.2024.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Co-milling is an effective technique for improving dissolution rate limited absorption characteristics of poorly water-soluble drugs. However, there is a scarcity of models available to forecast the magnitude of dissolution rate improvement caused by co-milling. Therefore, this study endeavoured to quantitatively predict the increase in dissolution by co-milling based on drug properties. Using a biorelevant dissolution setup, a series of 29 structurally diverse and crystalline drugs were screened in co-milled and physically blended mixtures with Polyvinylpyrrolidone K25. Co-Milling Dissolution Ratios after 15 min (COMDR15 min) and 60 min (COMDR60 min) drug release were predicted by variable selection in the framework of a partial least squares (PLS) regression. The model forecasts the COMDR15 min (R2 = 0.82 and Q2 = 0.77) and COMDR60 min (R2 = 0.87 and Q2 = 0.84) with small differences in root mean square errors of training and test sets by selecting four drug properties. Based on three of these selected variables, applicable multiple linear regression equations were developed with a high predictive power of R2 = 0.83 (COMDR15 min) and R2 = 0.84 (COMDR60 min). The most influential predictor variable was the median drug particle size before milling, followed by the calculated drug logD6.5 value, the calculated molecular descriptor Kappa 3 and the apparent solubility of drugs after 24 h dissolution. The study demonstrates the feasibility of forecasting the dissolution rate improvements of poorly water-solube drugs through co-milling. These models can be applied as computational tools to guide formulation in early stage development.
Collapse
Affiliation(s)
- Nicolas Pätzmann
- School of Pharmacy, University College Cork, Cork, Ireland; Department Preformulation and Biopharmacy, Zentiva, k.s., Prague, Czechia
| | | | - Josef Beránek
- Department Preformulation and Biopharmacy, Zentiva, k.s., Prague, Czechia
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | | |
Collapse
|
2
|
Sokač K, Miloloža M, Kučić Grgić D, Žižek K. Polymeric Amorphous Solid Dispersions of Dasatinib: Formulation and Ecotoxicological Assessment. Pharmaceutics 2024; 16:551. [PMID: 38675212 PMCID: PMC11053848 DOI: 10.3390/pharmaceutics16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhancements due to challenges such as significant first-pass metabolism, poor absorption, and limited oral bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic polymer polyvinylpyrrolidone (PVP). Drug amorphization was induced in a planetary ball mill by solvent-free co-grinding, facilitating mechanochemical activation. This process resulted in the formation of amorphous solid dispersions (ASDs). The ASD capsules exhibited a notable enhancement in the release rate of DAS compared to capsules containing the initial drug. Given that anticancer drugs often undergo limited metabolism in the body with unchanged excretion, the ecotoxicological effect of the native form of DAS was investigated as well, considering its potential accumulation in the environment. The highest ecotoxicological effect was observed on the bacteria Vibrio fischeri, while other test organisms (bacteria Pseudomonas putida, microalgae Chlorella sp., and duckweed Lemna minor) exhibited negligible effects. The enhanced drug release not only contributes to improved oral absorption but also has the potential to reduce the proportion of DAS that enters the environment through human excretion. This comprehensive approach highlights the significance of integrating advances in drug development while considering its environmental implications.
Collapse
Affiliation(s)
- Katarina Sokač
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.K.G.); (K.Ž.)
| | - Martina Miloloža
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.K.G.); (K.Ž.)
| | | | | |
Collapse
|
3
|
Rao L, Bhardwaj BY, Chugh M, Sharma A, Shah R, Minocha N, Pandey P. Enhanced Efficacy of Carvedilol by Utilization of Solid Dispersion and Other Novel Strategies: A Review. Cardiovasc Hematol Disord Drug Targets 2023; 23:141-156. [PMID: 37953616 DOI: 10.2174/011871529x247622231101075854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Carvedilol is classified as a second class drug of Biopharmaceutical classification system (BCS), and it is an excellent beta blocker and vasodilating agent. It is used in a diverse range of disease states. Despite having tremendous advantages, the drug cannot be used effectively and productively due to aquaphobicity and poor bioavailability. To overcome this limitation, numerous novel approaches and tactics have been introduced over the past few years, such as Selfmicro emulsifying drug delivery systems (SMEDDS), nanoparticles, solid dispersions and liposomal drug delivery. The present review aims to accentuate the role of solid dispersion in improving the dissolution profile and aqua solubility of carvedilol and also to emphasize other novel formulations of carvedilol proposed to prevail the limitations of carvedilol. Solid dispersion and other novel approaches were found to play a significant role in overcoming the drawbacks of carvedilol, among which solid dispersion is the most feasible and effective approach being used worldwide. Reduced particle size, more wettability, and large surface area are obtained by the implementation of solid dispersion technique, hence improving carvedilol solubility and bioavailability.
Collapse
Affiliation(s)
- Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| | - Bigul Yogeshver Bhardwaj
- Institute of Pharmaceutical Sciences, Shoolini University, Solan - 173229, Himachal Pradesh, India
| | - Mahek Chugh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, Haryana, India
| | - Ashish Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| | - Rashmi Shah
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, Haryana, India
| | - Neha Minocha
- Chitkara School of Pharmacy, Chitkara University, Baddi - 174103, Himachal Pradesh, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| |
Collapse
|
4
|
Bolourchian N, Shafiee Panah M. The Effect of Surfactant Type and Concentration on Physicochemical Properties of Carvedilol Solid Dispersions Prepared by Wet Milling Method. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e126913. [PMID: 36060905 PMCID: PMC9420227 DOI: 10.5812/ijpr-126913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
The present study mainly aimed to prepare solid dispersions (SDs) of a poorly water-soluble compound, carvedilol (CA), in the presence of pluronic F68 (F68) and myrj 52 by wet milling technique in order to enhance drug dissolution. The process enabled the preparation of SDs without using any toxic organic solvents. SDs with different CA: surfactant ratios were prepared by wet milling followed by freeze-drying method and evaluated for their particle size and dissolution. They were also characterized based on/using X-ray diffraction (XRD), differential scanning calorimetry (DSC), fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), and saturated solubility. The effect of cryoprotectant type on the dissolution and particle size of SDs was also investigated. Wet milling process resulted in the reduced particle size depending on the type of surfactant. The significant drug dissolution and saturated solubility enhancement were recorded for milled SD formulations. In this regard, Myrj had a greater impact compared to F68. Dissolution efficiencies (DE30) obtained for the myrj-included SDs were up to 8.2-fold higher than that of untreated CA. The type of cryoprotectant was also found to affect the drug dissolution. According to the results, partial amorphization occurred in wet-milled samples, as confirmed by XRD and DSC analysis. It was concluded that using an appropriate surfactant along with wet-milling method may have been an effective approach for improving the dissolution rate of CA, a poorly soluble compound.
Collapse
Affiliation(s)
- Noushin Bolourchian
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mina Shafiee Panah
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Brokešová J, Slámová M, Zámostný P, Kuentz M, Koktan J, Krejčík L, Vraníková B, Svačinová P, Šklubalová Z. Mechanistic study of dissolution enhancement by interactive mixtures of chitosan with meloxicam as model. Eur J Pharm Sci 2021; 169:106087. [PMID: 34863871 DOI: 10.1016/j.ejps.2021.106087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022]
Abstract
To enhance dissolution rate of meloxicam (MX), a poorly soluble model drug, a natural polysaccharide excipient chitosan (CH) is employed in this work as a carrier to prepare binary interactive mixtures by either mixing or co-milling techniques. The MX-CH mixtures of three different drug loads were characterized for morphological, granulometric, and thermal properties as well as drug crystallinity. The relative dissolution rate of MX was determined in phosphate buffer of pH 6.8 using the USP-4 apparatus; a significant increase in MX dissolution rate was observed for both mixed and co-milled mixtures comparing to the raw drug. Higher dissolution rate of MX was evidently connected to surface activation by mixing or milling, which was pronounced by the higher specific surface energy as detected by inverse gas chromatography. In addition to the particle size reduction, the carrier effect of the CH was confirmed for co-milling by linear regression between the MX maximum relative dissolution rate and the total surface area of the mixture (R2 = 0.863). No MX amorphization or crystalline structure change were detected. The work of adhesion/cohesion ratio of 0.9 supports the existence of preferential adherence of MX to the coarse particles of CH to form stable interactive mixtures.
Collapse
Affiliation(s)
- Jana Brokešová
- Department of Pharmaceutical Technology, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203/8, Hradec Králové 500 05, Czech Republic
| | - Michaela Slámová
- Department of Organic Technology, UCT Prague, Faculty of Chemical Technology, Technická 5, Dejvice, Prague 6 166 28, Czech Republic
| | - Petr Zámostný
- Department of Organic Technology, UCT Prague, Faculty of Chemical Technology, Technická 5, Dejvice, Prague 6 166 28, Czech Republic
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Hofackerstrasse 30, Muttenz CH-4132, Switzerland
| | - Jakub Koktan
- Zentiva, K.S., U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Lukáš Krejčík
- Zentiva, K.S., U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Barbora Vraníková
- Department of Pharmaceutical Technology, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203/8, Hradec Králové 500 05, Czech Republic
| | - Petra Svačinová
- Department of Pharmaceutical Technology, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203/8, Hradec Králové 500 05, Czech Republic
| | - Zdenka Šklubalová
- Department of Pharmaceutical Technology, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203/8, Hradec Králové 500 05, Czech Republic.
| |
Collapse
|
6
|
Liu Y, Li C, Chen J, Han Y, Wei M, Liu J, Yu X, Li F, Hu P, Fu L, Liu Y. Electrospun high bioavailable rifampicin–isoniazid-polyvinylpyrrolidone fiber membranes. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01957-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Preparation and Evaluation of Rebamipide Colloidal Nanoparticles Obtained by Cogrinding in Ternary Ground Mixtures. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aphthous stomatitis is one of the side effects of chemotherapy and radiotherapy in cancer treatment. Rebamipide (RB) mouthwash for stomatitis acts as a radical scavenger. However, RB is poorly soluble in water, which leads to aggregation and precipitation of the dispersoid. The particle size of the drug needs to be less than 100 nm for the particles to reach the mucus layer in the oral cavity. In this study, we attempted to prepare nanoparticles of RB by cogrinding with polyvinylpyrrolidone (PVP) or hydroxypropyl cellulose (HPC) and sodium dodecyl sulfate (SDS) using a mixer ball mill, and evaluated the physicochemical properties of RB nanoparticles, the stability of dispersion in water, and permeation of the mucus layer in vitro. By cogrinding, the particle size decreased to around 110 nm, and powder X-ray diffraction (PXRD) of the particles showed totally broad halo patterns, which suggested a decreased crystalline region. Furthermore, the solubility of RB nanoparticles increased by approximately fourfold compared with RB crystals, and the water dispersibility and permeation of the mucus layer were improved. The results suggest that in a ternary ground mixture of RB, PVP or HPC, and SDS, the RB nanoparticles obtained can be applied as a formulation for stomatitis.
Collapse
|