1
|
Hadiya S, Ibrahem RA, Abd El-Baky RM, Elsabahy M, Hussein AM, Tolba ME, Aly SA. Nano-ciprofloxacin/meropenem exhibit bactericidal activity against Gram-negative bacteria and rescue septic rat model. Nanomedicine (Lond) 2023; 18:1553-1566. [PMID: 37933674 DOI: 10.2217/nnm-2022-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Aim: We hypothesized that simultaneous administration of two antibiotics loaded into a nanopolymer matrix would augment their synergistic bactericidal interaction. Methods: Nanoplatforms of chitosan/Pluronic® loaded with ciprofloxacin/meropenem (CS/Plu-Cip/Mer) were prepared by the ionic gelation method, using Plu at concentrations in the range 0.5-4% w/v. CS/Plu-Cip/Mer was evaluated for antibacterial synergistic activity in vitro and in vivo. Results: CS/Plu-Cip and CS/Plu-Mer with Plu concentrations of 3% w/v and 2% w/v, respectively, exhibited ∼80% encapsulation efficiency. The MICs of pathogens were fourfold to 16-fold lower for CS/Plu-Cip/Mer than for Cip/Mer. Synergy was evidenced for CS/Plu-Cip/Mer with a bactericidal effect (at 1× MIC and sub-MICs), and it significantly decreased bacterial load and rescued infected rats. Conclusion: This study illustrates the ability of CS/Plu nanopolymer to intensify synergy between antibiotics, thereby providing a promising potential to rejuvenate antibiotics considered ineffective against resistant pathogens.
Collapse
Affiliation(s)
- Safy Hadiya
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, 71515, Egypt
| | - Reham A Ibrahem
- Department of Microbiology & Immunology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Rehab M Abd El-Baky
- Department of Microbiology & Immunology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Deraya University, Minia, 61511, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Abeer Mr Hussein
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mohammed Em Tolba
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Sherine A Aly
- Department of Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
2
|
Zhang Y, Liu R, Feng Q, Li H, Li Y, Liu X. Insulin-Loaded Soybean Trypsin Inhibitor-Chitosan Nanoparticles: Preparation, Characterization, and Protective Effect Evaluation. Polymers (Basel) 2023; 15:2648. [PMID: 37376294 DOI: 10.3390/polym15122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this work was to prepare insulin-loaded nanoparticles using soybean trypsin inhibitor (STI) and chitosan (CS) as a potential coating. The nanoparticles were prepared by complex coacervation, and characterized for their particle size, polydispersity index (PDI), and encapsulation efficiency. In addition, the insulin release and enzymatic degradation of nanoparticles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) were evaluated. The results showed that the optimal conditions for preparing insulin-loaded soybean trypsin inhibitor-chitosan (INs-STI-CS) nanoparticles were as follows: CS concentration of 2.0 mg/mL, STI concentration of 1.0 mg/mL, and pH 6.0. The INs-STI-CS nanoparticles prepared at this condition had a high insulin encapsulation efficiency of 85.07%, the particle diameter size was 350 ± 5 nm, and the PDI value was 0.13. The results of the in vitro evaluation of simulated gastrointestinal digestion showed that the prepared nanoparticles could improve the stability of insulin in the gastrointestinal tract. Compared with free insulin, the insulin loaded in INs-STI-CS nanoparticles was retained at 27.71% after 10 h of digestion in the intestinal tract, while free insulin was completely digested. These findings will provide a theoretical basis for improving the stability of oral insulin in the gastrointestinal tract.
Collapse
Affiliation(s)
- Yihao Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Ruijia Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Qixu Feng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - You Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S. Self-assembled chitosan-insulin oral nanoparticles - A critical perspective review. Int J Biol Macromol 2023:125125. [PMID: 37263321 DOI: 10.1016/j.ijbiomac.2023.125125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Chitosan is an abundant natural cationic polysaccharide with excellent biodegradability, bioadhesion, and biocompatibility. Chitosan is extensively researched for various particulate oral insulin drug delivery systems. Oral insulin is economically efficient and more convenient than injections, with greater patient compliance. Electrostatic ionic interaction between cationic chitosan and anionic polymer or insulin leads to the formation of spontaneously self-assembled nanoparticles. This simple technique attracted many researchers as it can be carried out quickly in mild conditions without harmful solvents, such as surfactants or chemical cross-linkers that might degrade the insulin structure. The formulated chitosan nanoparticles help to protect the core insulin from enzymatic degradation in the digestive system and improve paracellular intestinal uptake from the enterocytes due to mucoadhesion and reversible tight junction opening. Moreover, functionalized chitosan nanoparticles create newer avenues for targeted and prolonged delivery. This review focuses on modified chitosan-insulin nanoparticles and their implications on oral insulin delivery. Dependent variables and their optimal concentration ranges used in self-assembly techniques for chitosan-insulin nanoparticular synthesis are summarized. This review provides a comprehensive guide to fine-tune the essential factors to formulate stable insulin-chitosan nanoparticles using mild ionic interactions.
Collapse
Affiliation(s)
- Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Lip Yong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, University Technology MARA, Selangor, Shah Alam 40450, Malaysia
| | - Najihah Binti Mohd Hasim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
4
|
de Lemos Vasconcelos Silva E, de Jesus Oliveira AC, de Carvalho Moreira LMC, Silva-Filho EC, Wanderley AG, de La Roca Soares MF, Soares-Sobrinho JL. Insulin-loaded nanoparticles based on acetylated cashew gum/chitosan complexes for oral administration and diabetes treatment. Int J Biol Macromol 2023; 242:124737. [PMID: 37148931 DOI: 10.1016/j.ijbiomac.2023.124737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Insulin is one of the most important drugs in the clinical treatment of diabetes. There is growing interest in oral insulin administration as it mimics the physiological pathway and potentially reduces side effects associated with subcutaneous injection. In this study, a nanoparticulate system was developed using acetylated cashew gum (ACG) and chitosan by the polyelectrolyte complexation method, for oral administration of insulin. The nanoparticles were characterized by size, zeta potential and encapsulation efficiency (EE%). And they had a particle size of 460 ± 11.0 nm, PDI of 0.2 ± 0.021, zeta potential of 30.6 ± 0.48 mV, and an EE% of 52.5 %. Cytotoxicity assays were performed for HT-29 cell lines. It was observed that ACG and nanoparticles did not have a significant effect on cell viability, verifying their biocompatibility. Hypoglycemic effects of the formulation were analyzed in vivo, noting that the nanoparticles reduced blood glucose by 51.0 % of baseline levels after 12 h, not inducing signs of toxicity or death. Biochemical and hematological profiles were not clinically modified. Histological study indicated no signs of toxicity. Results showed that the nanostructured system presented itself as a potential vehicle for oral insulin release.
Collapse
Affiliation(s)
- Eliadna de Lemos Vasconcelos Silva
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | | | - Monica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
5
|
Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. J Pharm Sci 2022; 111:2968-2982. [PMID: 36058255 DOI: 10.1016/j.xphs.2022.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Multiple advanced formulations and drug delivery systems (DDSs) have been developed to deliver protein-based biotherapeutics via the subcutaneous (SC) route. These formulations/DDSs include high-concentration solution, co-formulation of two or more proteins, large volume injection, protein cluster/complex, suspension, nanoparticle, microparticle, and hydrogel. These advanced systems provide clinical benefits related to efficacy and safety, but meanwhile, have more complicated formulations and manufacturing processes compared to conventional solution formulations. To develop a fit-for-purpose formulation/DDS for SC delivery, scientists need to consider multiple factors, such as the primary indication, targeted site, immunogenicity, compatibility, biopharmaceutics, patient compliance, etc. Next, they need to develop appropriate formulation (s) and manufacturing processes using the QbD principle and have a control strategy. This paper aims to provide a comprehensive review of advanced formulations/DDSs recently developed for SC delivery of proteins, as well as some knowledge gaps and potential strategies to narrow them through future research.
Collapse
|
6
|
Hadiya S, Ibrahem RA, Abd El-Baky RM, Elsabahy M, Aly SA. Nanosized Combined Antimicrobial Drugs Decreased Emergence of Resistance in Escherichia coli: A Future Promise. Microb Drug Resist 2022; 28:972-979. [DOI: 10.1089/mdr.2022.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Safy Hadiya
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt
| | - Reham A. Ibrahem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rehab M. Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, Egypt
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Sherine A. Aly
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Nemati M, Fathi-Azarbayjani A, Al-Salami H, Roshani Asl E, Rasmi Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct 2022; 40:623-635. [PMID: 35830577 DOI: 10.1002/cbf.3732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus affects almost half a billion patients worldwide and results from either destruction of β-cells responsible for insulin secretion or increased tissue resistance to insulin stimulation and the reduction of glycemic control. Novel drug delivery systems can improve treatment efficacy in diabetic patients. The low aqueous solubility of most oral antidiabetic drugs decreases drug bioavailability; therefore, there is a demand for the use of novel methods to overcome this issue. The application of bile acids mixed micelles and bilosomes can provide an enhancement in drug efficacy. Bile acids are amphiphilic steroidal molecules that contain a saturated tetracyclic hydrocarbon cyclopentanoperhydrophenanthrene ring, and consist of three 6-membered rings and a 5-membered ring, a short aliphatic side chain, and a tough steroid nucleus. This review offers a comprehensive and informative data focusing on the great potential of bile acid, their salts, and their derivatives for the development of new antidiabetic drug delivery system.
Collapse
Affiliation(s)
- Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
9
|
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, Alsowayeh N, Tambuwala MM. Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update. Pharmaceutics 2021; 13:1568. [PMID: 34683861 PMCID: PMC8538773 DOI: 10.3390/pharmaceutics13101568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence of diabetes mellitus (DM) is increasing rapidly at an accelerating rate worldwide. The status of diabetes has changed over the last three generations; whereas before it was deemed a minor disease of older people but currently it is now one of the leading causes of morbidity and mortality among middle-aged and young people. High blood glucose-mediated functional loss, insulin sensitivity, and insulin deficiency lead to chronic disorders such as Type 1 and Type 2 DM. Traditional treatments of DM, such as insulin sensitization and insulin secretion cause undesirable side effects, leading to patient incompliance and lack of treatment. Nanotechnology in diabetes studies has encouraged the development of new modalities for measuring glucose and supplying insulin that hold the potential to improve the quality of life of diabetics. Other therapies, such as β-cells regeneration and gene therapy, in addition to insulin and oral hypoglycemic drugs, are currently used to control diabetes. The present review highlights the nanocarrier-based drug delivery systems and emerging treatment strategies of DM.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana 142021, Punjab, India
| | - Mayank Sharma
- SVKM’s NMIMS School of Pharmacy & Technology Management, Shirpur 425405, Maharashtra, India;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Noorah Alsowayeh
- Biology Department, College of Education, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| |
Collapse
|
10
|
Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul 2021; 38:414-436. [PMID: 34157915 DOI: 10.1080/02652048.2021.1942275] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fast progress in nanomedicine and nanoparticles (NP) materials presents unconventional solutions which are expected to revolutionise health care with great potentials including, enhanced efficacy, bioavailability, drug targeting, and safety. This review provides a comprehensive update on widely used organic and inorganic NP with emphasis on the recent development, challenges and future prospective for bio applications where, further investigations into innovative synthesis methodologies, properties and applications of NP would possibly reveal new improved biomedical relevance. NP exhibits exceptional physical and chemical properties due to their high surface area to volume ratio and nanoscale size, which led to breakthroughs in therapeutic, diagnostic and screening techniques repeated line. Finally, an update of FDA-approved NP is explored where innovative design engineering allowed a paradigmatic shift in their market share. This review would serve as a discerning comprehensive source of information for learners who are seeking a cutting-edge review but have been astounded by the size of publications.
Collapse
Affiliation(s)
- Heidi Mohamed Abdel-Mageed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
| | - Nermeen Zakaria AbuelEzz
- Biochemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Rasha Ali Radwan
- Biochemistry Department Faculty of Pharmacy, Sinai University-Kantara branch, El Ismailia; Egypt
| | - Saleh Ahmed Mohamed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
11
|
Samprasit W, Opanasopit P, Chamsai B. Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible Colon-targeted delivery. Pharm Dev Technol 2021; 26:362-372. [PMID: 33423571 DOI: 10.1080/10837450.2021.1873370] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
α-Mangostin-loaded mucoadhesive nanoparticles (NPs) were prepared for colon-targeted drug delivery against colorectal cancer cells using pH-dependent composite mucoadhesive NPs. Chitosan (CS) and thiolated chitosan (TCS) were used to form the NPs, following by genipin (GP) crosslinking and the surface modification by Eudragit® L100 (L100). The particle size, morphologies and characteristics of NPs were observed. The α-mangostin loading and release patterns were investigated. In vitro mucoadhesive properties were examined by the wash-off method. In addition, the anti-tumour activity was tested on colorectal cancer cells. The results showed that NPs were slightly oblong in shape with particle size ranging between 300 and 900 nm. The small size of NPs was found with TCS and larger NPs were observed by GP and L100 process. However, GP and L100 provided an increase in α-mangostin loading, limited the release of α-mangostin in the upper gastrointestinal tract, and enhanced α-mangostin delivery to the colon. The TCS-based NPs with GP and L100 exhibited strong mucoadhesion to colon mucosa, more than uncoated-NPs and CS-based NPs. Moreover, NPs exhibited the anti-tumour activity. Therefore, the mucoadhesive TCS-based NPs could be a promising candidate for a controlled-release drug delivery system of α-mangostin to the colon.
Collapse
Affiliation(s)
- Wipada Samprasit
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Praneet Opanasopit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Benchawan Chamsai
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|