1
|
Kovtareva S, Kusepova L, Tazhkenova G, Mashan T, Bazarbaeva K, Kopishev E. Surface Modification of Mesoporous Silica Nanoparticles for Application in Targeted Delivery Systems of Antitumour Drugs. Polymers (Basel) 2024; 16:1105. [PMID: 38675024 PMCID: PMC11054758 DOI: 10.3390/polym16081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The problem of tumour therapy has attracted the attention of many researchers for many decades. One of the promising strategies for the development of new dosage forms to improve oncology treatment efficacy and minimise side effects is the development of nanoparticle-based targeted transport systems for anticancer drugs. Among inorganic nanoparticles, mesoporous silica deserves special attention due to its outstanding surface properties and drug-loading capability. This review analyses the various factors affecting the cytotoxicity, cellular uptake, and biocompatibility of mesoporous silica nanoparticles (MSNs), constituting a key aspect in the development of safe and effective drug delivery systems. Special attention is paid to technological approaches to chemically modifying MSNs to alter their surface properties. The stimuli that regulate drug release from nanoparticles are also discussed, contributing to the effective control of the delivery process in the body. The findings emphasise the importance of modifying MSNs with different surface functional groups, bio-recognisable molecules, and polymers for their potential use in anticancer drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (S.K.); (L.K.); (G.T.); (T.M.); (K.B.)
| |
Collapse
|
2
|
Sarkar Lotfabadi A, Abadi B, Rezaei N. Biomimetic nanotechnology for cancer immunotherapy: State of the art and future perspective. Int J Pharm 2024; 654:123923. [PMID: 38403091 DOI: 10.1016/j.ijpharm.2024.123923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Cancer continues to be a significant worldwide cause of mortality. This underscores the urgent need for novel strategies to complement and overcome the limitations of conventional therapies, such as imprecise targeting and drug resistance. Cancer Immunotherapy utilizes the body's immune system to target malignant cells, reducing harm to healthy tissue. Nevertheless, the efficacy of immunotherapy exhibits variation across individuals and has the potential to induce autoimmune responses. Biomimetic nanoparticles (bNPs) have transformative potential in cancer immunotherapy, promising improved accurate targeting, immune system activation, and resistance mechanisms, while also reducing the occurrence of systemic autoimmune side effects. This integration offers opportunities for personalized medicine and better therapeutic outcomes. Despite considerable potential, bNPs face barriers like insufficient targeting, restricted biological stability, and interactions within the tumor microenvironment. The resolution of these concerns is crucial in order to expedite the integration of bNPs from the research setting into clinical therapeutic uses. In addition, optimizing manufacturing processes and reducing bNP-related costs are essential for practical implementation. The present research introduces comprehensive classifications of bNPs as well as recent achievements in their application in cancer immunotherapies, emphasizing the need to address barriers for swift clinical integration.
Collapse
Affiliation(s)
- Alireza Sarkar Lotfabadi
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Al-Nadaf AH, Awadallah A, Thiab S. Superior rat wound-healing activity of green synthesized silver nanoparticles from acetonitrile extract of Juglans regia L: Pellicle and leaves. Heliyon 2024; 10:e24473. [PMID: 38293455 PMCID: PMC10827513 DOI: 10.1016/j.heliyon.2024.e24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The process of wound healing is complicated. Antimicrobial silver has been one of the substances used for wounds since ancient times. Moreover, traditional medicine has long used Juglans regia L. to promote wound healing. Since eco-friendly nanotechnology has various uses in biomedical research, the aim of this study was to assess the wound-healing capacity of bio-reduced silver nanoparticles (AgNPs). UV, DLS, TEM, and FTIR were used to characterize the prepared AgNPs. Pellicle's bioreduced AgNP (AgNP/P) has a better polydispersity index (PI) of 0.336 compared to its chemically synthesized peers, which have a PI of 0.67. Using incision and excision wound healing models, AgNPs and extracts were compared to Solcoseryl®. Skin-breaking strength, wound contraction, epithelialization time, histology, and cytokines were all assessed. Juglans regia L. pellicle extract (P) has shown significant effectiveness in both models, as well as their bio-reduced partner AgNP/P. The skin's tensile strength following AgNP/P therapy (871 g, p value < 0.05) is comparable to that after Solcoseryl® (928 g), both of which are significantly better than AgNP (592 g) in the incision wound model. Epithelialization time (16.0 and 16.5 days) did not substantially differ from Solcoseryl® (15.3 days) (P value < 0.05). There was an elevated collagen content. Low levels of IL1β (189.0 pg/g) and high levels of TNF-α (1007.1 pg/g) in the case of AgNP/P suggest various cellular kinds of maturation and various wound healing structures that are evident in histopathology investigations. The bioreduced AgNP/P could find use as a pharmaceutical agent for wound healing dressings.
Collapse
Affiliation(s)
- Afaf H. Al-Nadaf
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Alkarak, Jordan
| | - Areej Awadallah
- Department of Pharmaceutics, Faculty of Pharmacy, Mutah University, Alkarak, Jordan
| | - Samar Thiab
- Faculty of Pharmacy, Applied Private Science University, Amman, Jordan
| |
Collapse
|
4
|
Mehta P, Shende P. Evasion of opsonization of macromolecules using novel surface-modification and biological-camouflage-mediated techniques for next-generation drug delivery. Cell Biochem Funct 2023; 41:1031-1043. [PMID: 37933222 DOI: 10.1002/cbf.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.
Collapse
Affiliation(s)
- Parth Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| | - Pravin Shende
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| |
Collapse
|
5
|
Chen H, Yang K, Sang S, Guo X, Ge Y, Wang H, Xiao P, Dong X, Zhao D. A mechanical HSA biosensor based on multi-field-coupling-mediated magnetic sensitization strategy. Anal Biochem 2023; 677:115264. [PMID: 37516423 DOI: 10.1016/j.ab.2023.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The conventional mechanical biosensor based on stress and electrical conversion can be an effective method to detect key human biomarkers for clinical diagnosis and early disease prevention. However, the applications of this type of biosensor are greatly limited due to their unsatisfactory sensitivity. In this work, a magnetic-sensitized (MS) mechanical biosensor based on multi-field coupling was developed for higher sensitivity, giving access to detect human serum albumin (HSA). Via introducing secondary magnetic antibodies labeled with magnetized Fe2O3 nanoparticles to the stress and electrical conversion element of the MS-biosensor, the multi-field coupling was realized based on stress, electricity, and magnetism. Under the action of the magnetic field, the magnetic force of the secondary magnetic antibody and the stress of antigen-antibody binding jointly drove and enhanced the deformation of the MS-biosensor, amplifying the electrical signal, and realizing magnetic sensitization. The HSA was detected by the MS-biosensor at a range of 0-80 μg/mL with a limit of detection (LOD) of 0.14 μg/mL, demonstrating the high performance of the MS-biosensor. Moreover, the MS-biosensor showed high selectivity, specificity, and stability, indicating that the magnetic sensitization strategy of the MS-biosensor was significant for the clinical application of mechanical biosensors.
Collapse
Affiliation(s)
- Honglie Chen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Kun Yang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xing Guo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yang Ge
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Haoyu Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Pengli Xiao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | | | - Dong Zhao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
6
|
San HHM, Alcantara KP, Bulatao BPI, Sorasitthiyanukarn FN, Nalinratana N, Suksamrarn A, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Folic Acid-Grafted Chitosan-Alginate Nanocapsules as Effective Targeted Nanocarriers for Delivery of Turmeric Oil for Breast Cancer Therapy. Pharmaceutics 2022; 15:pharmaceutics15010110. [PMID: 36678739 PMCID: PMC9862360 DOI: 10.3390/pharmaceutics15010110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Folate receptors (FRs) highly expressed in breast cancers can be used as a recognized marker for preventing off-target delivery of chemotherapeutics. In this study, folic acid (FA)-grafted chitosan-alginate nanocapsules (CS-Alg-NCs) loaded with turmeric oil (TO) were developed for breast cancer targeting. CS was successfully conjugated with FA via an amide bond with a degree of substitution at 12.86%. The TO-loaded FA-grafted CS-Alg-NCs (TO-FA-CS-Alg-NCs) optimized by Box-Behnken design using response surface methodology had satisfactory characteristics with homogenous particle size (189 nm) and sufficient encapsulation efficiency and loading capacity (35.9% and 1.82%, respectively). In vitro release study of the optimized TO-FA-CS-Alg-NCs showed a sustained TO release following the Korsmeyer-Peppas model with a Fickian diffusion mechanism at pH 5.5 and 7.4. The TO-FA-CS-Alg-NCs showed lower IC50 than ungrafted TO-CS-Alg-NCs and unencapsulated TO against MDA-MB-231 and MCF-7 breast cancer cells, suggesting that FA-CS-Alg-NCs can improve anticancer activity of TO through its active targeting to the high FRs expressing breast cancers.
Collapse
Affiliation(s)
- Htet Htet Moe San
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul I. Bulatao
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Philippines
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-218-4221; Fax: +66-611-7586
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
AbouAitah K, Soliman AAF, Swiderska-Sroda A, Nassrallah A, Smalc-Koziorowska J, Gierlotka S, Lojkowski W. Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects. Pharmaceutics 2022; 14:pharmaceutics14122770. [PMID: 36559264 PMCID: PMC9785757 DOI: 10.3390/pharmaceutics14122770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. One way to overcome these barriers is to combine natural agents with nanoparticles. Our aim in the current study was to fabricate an anticancer nanoformulation for co-delivery of two natural agents, curcumin (CR) and colchicine (CL), with a core-shell structure. Using cancer cell lines, we compared the anticancer efficacy between the combination and a nanoformulation with CL alone. Methods: For the single-drug nanoformulation, we used phosphonate groups to functionalize mesoporous silica nanoparticles (MSNs) and loaded the MSNs with CL. Additional loading of this nanoformulation with CR achieved the co-delivery format. To create the structure with a core shell, we selected a chitosan−cellulose mixture conjugated with targeting ligands of folic acid for the coating. For evaluating anticancer and apoptosis effects, we assessed changes in important genes and proteins in apoptosis (p53, caspase-3, Bax, Bcl-2) in several cell lines (MCF-7, breast adenocarcinoma; HCT-116, colon carcinoma; HOS, human osteosarcoma; and A-549, non−small cell lung cancer). Results: Nanoformulations were successfully synthesized and contained 10.9 wt.% for the CL single-delivery version and 18.1 wt.% for the CL+CR co-delivery nanoformulation. Anticancer effects depended on treatment, cell line, and concentration. Co-delivery nanoformulations exerted anticancer effects that were significantly superior to those of single delivery or free CL or CR. Anticancer effects by cell line were in the order of HCT-116 > A549 > HOS > MCF-7. The lowest IC50 value was obtained for the nanoformulation consisting of CL and CR coated with a polymeric shell conjugated with FA (equivalent to 4.1 ± 0.05 µg/mL). With dual delivery compared with the free agents, we detected strongly increased p53, caspase-3, and Bax expression, but inhibition of Bcl-2, suggesting promotion of apoptosis. Conclusions: Our findings, although preliminary, indicate that the proposed dual delivery nanoformulation consisting of nanocore: MSNs loaded with CL and CR and coated with a shell of chitosan−cellulose conjugated folic acid exerted strong anticancer and apoptotic effects with potent antitumor activity against HCT-116 colon cells. The effect bested CL alone. Evaluating and confirming the efficacy of co-delivery nanoformulations will require in vivo studies.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St, Dokki, Giza 12622, Egypt
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Amr Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Julita Smalc-Koziorowska
- Laboratory of Semiconductor Characterization, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| |
Collapse
|
8
|
Zhang WJ, Li S, Vijayan V, Lee JS, Park SS, Cui X, Chung I, Lee J, Ahn SK, Kim JR, Park IK, Ha CS. ROS- and pH-Responsive Polydopamine Functionalized Ti 3C 2T x MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244392. [PMID: 36558246 PMCID: PMC9786132 DOI: 10.3390/nano12244392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Premature drug release and poor controllability is a challenge in the practical application of tumor therapy, which may lead to poor chemotherapy efficacy and severe adverse effects. In this study, a reactive oxygen species (ROS)-cleavable nanoparticle system (MXene-TK-DOX@PDA) was designed for effective chemotherapy drug delivery and antibacterial applications. Doxorubicin (DOX) was conjugated to the surface of (3-aminopropyl)triethoxysilane (APTES)-functionalized MXene via an ROS-cleavable diacetoxyl thioketal (TK) linkage. Subsequently, the surfaces of the MXene nanosheets were coated with pH-responsive polydopamine (PDA) as a gatekeeper. PDA endowed the MXene-TK-DOX@PDA nanoparticles with superior biocompatibility and stability. The MXene-TK-DOX@PDA nanoparticles had an ultrathin planar structure and a small lateral size of approximately 180 nm. The as-synthesized nanoparticles demonstrated outstanding photothermal conversion efficiency, superior photothermal stability, and a remarkable extinction coefficient (23.3 L g-1 cm-1 at 808 nm). DOX exhibited both efficient ROS-responsive and pH-responsive release performance from MXene-TK-DOX@PDA nanoparticles due to the cleavage of the thioketal linker. In addition, MXene-TK-DOX@PDA nanoparticles displayed high antibacterial activity against both Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) within 5 h. Taken together, we hope that MXene-TK-DOX@PDA nanoparticles will enrich the drug delivery system and significantly expand their applications in the biomedical field.
Collapse
Affiliation(s)
- Wei-Jin Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Shuwei Li
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Jun Seok Lee
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sung Soo Park
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Xiuguo Cui
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Ildoo Chung
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaejun Lee
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suk-kyun Ahn
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Ning Z, Zhao Y, Yan X, Hua Y, Meng Z. Flower-like Composite Material Delivery of Co-Packaged Lenvatinib and Bufalin Prevents the Migration and Invasion of Cholangiocarcinoma. NANOMATERIALS 2022; 12:nano12122048. [PMID: 35745387 PMCID: PMC9230555 DOI: 10.3390/nano12122048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
The co-delivery of multiple drugs using nanocarriers has been recognized as a promising strategy for cancer treatment to enhance therapeutic efficacy. In this study, a monodisperse mesoporous silica nanoparticle (mSiO2) is prepared and functionalized into high-efficiency loaded Lenvatinib and Bufalin for targeted delivery to Cholangiocarcinoma (CCA). mSiO2 was synthesized on solid silica nanoparticles by oil–water interface method, and highly monodisperse mSiO2 with uniform morphology was obtained. mSiO2 was then sequentially modified by polyethylene glycol (PEG) and the targeting molecule folic acid (FA). mSiO2-FA was designed as co-delivery system for Lenvatinib (Le) and Bufalin (Bu) to increase drug availability and highly target tumor cells. Compared with unfunctionalized mSiO2, mSiO2-FA can more efficiently enter human CCA cell lines (9810 cells) and enhance intracellular drug delivery. Moreover, drug-loaded mSiO2-FA (Le/Bu@mSiO2-FA) significantly inhibited the viability, migration and invasion of 9810 cells. In vivo, the nanocomplex significantly reduced the tumor load in CCA tumor-bearing mouse models compared to Le or Bu alone. The current work provides a useful strategy for highly targeted and multidrug-resistance reversal therapy for CCA.
Collapse
|
10
|
Synthesis, cytotoxicities, and carbonic anhydrase inhibition activities of pyrazoline–benzenesulfonamide derivatives harboring phenol/polyphenol moieties. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|