1
|
Santos AR, Koike TE, Santana AM, Miranda NC, Dell Aquila RA, Silva TC, Aoki MS, Miyabara EH. Glutamine supplementation accelerates functional recovery of EDL muscles after injury by modulating the expression of S100 calcium-binding proteins. Histochem Cell Biol 2023:10.1007/s00418-023-02194-5. [PMID: 37179509 DOI: 10.1007/s00418-023-02194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
The aim of the current study was to investigate the effect of glutamine supplementation on the expression of HSP70 and the calcium-binding proteins from the S100 superfamily in the recovering extensor digitorum longus (EDL) muscle after injury. Two-month-old Wistar rats were subjected to cryolesion of the EDL muscle and then randomly divided into two groups (with or without glutamine supplementation). Starting immediately after the injury, the supplemented group received daily doses of glutamine (1 g/kg/day, via gavage) for 3 and 10 days orally. Then, muscles were subjected to histological, molecular, and functional analysis. Glutamine supplementation induced an increase in myofiber size of regenerating EDL muscles and prevented the decline in maximum tetanic strength of these muscles evaluated 10 days after injury. An accelerated upregulation of myogenin mRNA levels was detected in glutamine-supplemented injured muscles on day 3 post-cryolesion. The HSP70 expression increased only in the injured group supplemented with glutamine for 3 days. The increase in mRNA levels of NF-κB, the pro-inflammatory cytokines IL-1β and TNF-α, and the calcium-binding proteins S100A8 and S100A9 on day 3 post-cryolesion in EDL muscles was attenuated by glutamine supplementation. In contrast, the decrease in S100A1 mRNA levels in the 3-day-injured EDL muscles was minimized by glutamine supplementation. Overall, our results suggest that glutamine supplementation accelerates the recovery of myofiber size and contractile function after injury by modulating the expression of myogenin, HSP70, NF-κB, pro-inflammatory cytokines, and S100 calcium-binding proteins.
Collapse
Affiliation(s)
- Audrei R Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Tatiana E Koike
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Alana M Santana
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Natalya C Miranda
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Rodrigo A Dell Aquila
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Thiago C Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Marcelo S Aoki
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo, SP, 03828-000, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Abstract
The aim of the article is to examine side effects of increased dietary intake of amino acids, which are commonly used as a dietary supplement. In addition to toxicity, mutagenicity and carcinogenicity, attention is focused on renal and gastrointestinal tract functions, ammonia production, and consequences of a competition with other amino acids for a carrier at the cell membranes and enzymes responsible for their degradation. In alphabetic order are examined arginine, β-alanine, branched-chain amino acids, carnosine, citrulline, creatine, glutamine, histidine, β-hydroxy-β-methylbutyrate, leucine, and tryptophan. In the article is shown that enhanced intake of most amino acid supplements may not be risk-free and can cause a number of detrimental side effects. Further research is necessary to elucidate effects of high doses and long-term consumption of amino acid supplements on immune system, brain function, muscle protein balance, synthesis of toxic metabolites, and tumor growth and examine their suitability under certain circumstances. These include elderly, childhood, pregnancy, nursing a baby, and medical condition, such as diabetes and liver disease. Studies are also needed to examine adaptive response to a long-term intake of any substance and consequences of discontinuation of supplementation.
Collapse
Affiliation(s)
- M HOLEČEK
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Koike TE, Dell Aquila RA, Silva KS, Aoki MS, Miyabara EH. Glutamine supplementation improves contractile function of regenerating soleus muscles from rats. J Muscle Res Cell Motil 2022; 43:87-97. [PMID: 35201551 DOI: 10.1007/s10974-022-09615-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
This study evaluated the effects of glutamine supplementation immediately after freezing injury on morphological and contractile function of regenerating soleus muscles from rats. Young male Wistar rats were subjected to cryolesion of soleus muscles, and immediately after received a daily supplementation of glutamine (1 g/kg/day). The muscles were evaluated on post-injury days 3 and 10. Glutamine-supplemented injured muscles had a lower number of CD11b positive immune cells and higher mRNA levels of IL-4 compared to those from the cryolesioned muscles analyzed on post-injury day 3. The mRNA and protein expression levels of the myogenic transcription factor MyoD were also higher in glutamine-supplemented injured muscles than in injured muscles examined on post-cryolesion day 3. In addition, glutamine-supplemented injured muscles had a higher size of their regenerating myofibers, attenuated decline in maximum tetanic strength and improved fatigue resistance compared to those from injured muscles evaluated on post-cryolesion day 10. No effect was observed in uninjured muscles supplemented with glutamine. Our results suggest that glutamine supplementation improves the resolution of inflammation, as well as the size and functional recovery of regenerating myofibers from soleus muscles by accelerating the up-regulation of IL-4 and MyoD expression. Future non-pharmacological rehabilitation studies are warranted to investigate the effect of glutamine supplementation on the outcome of injured skeletal muscles.
Collapse
Affiliation(s)
- Tatiana E Koike
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
| | - Rodrigo A Dell Aquila
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
| | - Kellana S Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
| | - Marcelo S Aoki
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo, SP, 03828-000, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
4
|
Tolerable amounts of amino acids for human supplementation: summary and lessons from published peer-reviewed studies. Amino Acids 2021; 53:1313-1328. [PMID: 34338884 PMCID: PMC8416832 DOI: 10.1007/s00726-021-03054-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022]
Abstract
Amino acid supplementation may be indicated to correct for insufficient amino acid intake in healthy individuals, and in specific physiological or pathophysiological situations. However, there is a concern to not supplement beyond the tolerable upper intake level (UL) by determining parameters of no-observed-adverse-effect level (NOAEL) or lowest-observed-adverse-effect level (LOAEL) for each amino acid. Since the NOAEL and LOAEL values are at least one order of magnitude different when comparing the values obtained in rats and humans, the aim of this review is to evaluate to what extent the amino acid UL measured in the rat model, when referenced to the dietary usual consumption (UC) and dietary requirement (RQ) for indispensable amino acids, may be used as an approximation of the UL in humans. This review then compares the ratios of the NOAEL or LOAEL over UC and RQ in the rat model with the same ratios calculated in humans for the nine amino acids (arginine, serine, glycine, histidine, leucine, lysine, methionine, phenylalanine, and tryptophan) for which this comparison can be done. From the calculations made, it appears that for these 9 amino acids, the calculated ratios for rats and humans, although rather different for several amino acids, remains for all of them in the same order of magnitude. For tryptophan, tyrosine, and valine, the ratios calculated in rats are markedly different according to the sex of animals, raising the view that it may be also the case in humans.
Collapse
|
5
|
Bampidis V, Azimonti G, de Lourdes Bastos M, Christensen H, Dusemund B, Kos Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Glandorf B, Gropp J, Herman L, Rychen G, Saarela M, Anguita M, Galobart J, Holczkecht O, Manini P, Pettenati E, Pizzo F, Tarrés‐Call J. Safety and efficacy of l-glutamine produced using Corynebacterium glutamicum NITE BP-02524 for all animal species. EFSA J 2020; 18:e06075. [PMID: 32874286 PMCID: PMC7447988 DOI: 10.2903/j.efsa.2020.6075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of l-glutamine (≥ 98.0%) produced by fermentation using a genetically modified strain of Corynebacterium glutamicum (NITE BP-02524). It is intended to be used in feed for all animal species and categories as nutritional additive (amino acid) and as sensory additive (flavouring compound). Viable cells of the production strain and its recombinant DNA were not detected in the additive. l-Glutamine manufactured by fermentation using C. glutamicum NITE BP-02524 does not give rise to any safety concern with regard to the genetic modification of the production strain. The use of l-glutamine produced by fermentation using C. glutamicum NITE BP-02524 in animal nutrition is considered safe for all animal species when applied as a nutritional additive to achieve an adequate amino acid profile in feed and to overcome potential glutamine shortages during critical periods of life. The proposed use level (25 mg/kg feed) when used as sensory additive (flavouring compound) is safe for all animal species. The uses of l-glutamine produced using C. glutamicum NITE BP-02524 as nutritional additive or as flavouring compound are considered safe for the consumer. l-Glutamine produced using C. glutamicum NITE BP-02524 is not toxic by inhalation, is non-irritant to skin and eyes and is not a skin sensitiser. l-Glutamine produced using C. glutamicum NITE BP-02524 is considered safe for the environment. l-glutamine is a non-essential amino acid and it plays a physiological role as such. Recent evidence shows that glutamine may act as conditionally essential amino acid mainly in growing animals and has some specific effects e.g. in improving intestinal development and immune response. This amino acid produced by fermentation using C. glutamicum NITE BP-02524 is regarded as an efficacious source of glutamine for all animal species. For supplemental l-glutamine to be as efficacious in ruminants as in non-ruminants, it would require protection against degradation in the rumen. The use of l-glutamine as sensory additive at 25 mg/kg feed is considered efficacious.
Collapse
|
6
|
Haba Y, Fujimura T, Oyama K, Kinoshita J, Miyashita T, Fushida S, Harada S, Ohta T. Effect of Oral Branched-Chain Amino Acids and Glutamine Supplementation on Skeletal Muscle Atrophy After Total Gastrectomy in Rat Model. J Surg Res 2019; 243:281-288. [DOI: 10.1016/j.jss.2019.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023]
|
7
|
Chang YH, Yu MS, Wu KH, Hsu MC, Chiou YH, Wu HP, Peng CT, Chao YH. Effectiveness of Parenteral Glutamine on Methotrexate-induced Oral Mucositis in Children with Acute Lymphoblastic Leukemia. Nutr Cancer 2017; 69:746-751. [DOI: 10.1080/01635581.2017.1324995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yu-Hsiang Chang
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Nursing, Tajen University, Pingtung, Taiwan
| | - Ming-Sun Yu
- Haematology-Oncology Section, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology and Oncology, Children's Hospital, China Medical University, Taichung, Taiwan
- School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Chou Hsu
- Department of Recreation Sports Management, Tajen University, Pintung, Taiwan
| | - Yee-Hsuan Chiou
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Han-Ping Wu
- Division of Pediatric General Medicine, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Tien Peng
- Division of Pediatric Hematology and Oncology, Children's Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Sakamoto K, Mori A, Nakahara T, Morita M, Ishii K. Effect of Long-Term Treatment of L-Ornithine on Visual Function and Retinal Histology in the Rats. Biol Pharm Bull 2015; 38:139-43. [DOI: 10.1248/bpb.b14-00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Masahiko Morita
- Healthcare Products Development Center, Kyowa Hakko Bio Co., Ltd
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| |
Collapse
|
9
|
Lindinger MI, Anderson SC. Seventy day safety assessment of an orally ingested, l-glutamine-containing oat and yeast supplement for horses. Regul Toxicol Pharmacol 2014; 70:304-11. [DOI: 10.1016/j.yrtph.2014.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022]
|
10
|
Szabó J, Andrásofszky E, Tuboly T, Bersényi A, Weisz A, Hetényi N, Hullár I. Effect of arginine or glutamine supplementation on production, organ weights, interferon gamma, interleukin 6 and antibody titre of broilers. Acta Vet Hung 2014; 62:348-61. [PMID: 25038949 DOI: 10.1556/avet.2014.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was designed to test whether supplementation of the diet with arginine (Arg) or glutamine (Gln) or their combination influences the production, organ weights and humoral immune response of broilers. A total of 432 one-day-old male Ross 308 broiler chickens were divided into 6 treatment groups: control, Arg-0.5%, Arg-1%, Gln-0.5%, Gln-1% and Arg-0.5%+Gln-0.5%. Drinking water and feed were provided ad libitum. On day 18 of the experiment 50% of chickens in each treatment group were immunised with bovine serum albumin. Ten and 21 days after immunisation blood samples were collected to determine the anti-albumin IgY titre, interleukin 6 (IL6) and interferon gamma (IFNG) and to measure the weight of the liver, spleen, bursa of Fabricius and thymus. Arg or Gln supplementation of the diets influenced neither the production nor the organ weights until 18 days of age. Between 18 and 39 days of age both Arg (0.5% and 1%) and Arg + Gln supplementation improved the feed conversion ratio (FCR) by 3.7%, 6.3% and 4.9%, respectively, while Gln-1% worsened it by 15%. Immunisation slightly (-0.79%) depressed the body weight gain of broilers fed the control diet, which was significantly improved by both Arg (0.5 or 1%) and Arg + Gln supplementation. Immunisation increased the weight of the spleen, bursa and thymus and decreased that of the liver. Supplementation with 1% Gln depressed (-5.13%) the body weight gain of the immunised chickens but strongly stimulated the immune response. Supplementations with Arg and Gln did not influence the IL6 and IFNG level of the blood; however, on day 10 after immunisation these two parameters showed a negative correlation with each other. Regarding production, organ weights and immunity, Arg supplementation should be recommended in the grower phase, while Gln supplementation can be useful in pullets raised for egg production, where a good immune response to vaccinations is an important factor.
Collapse
Affiliation(s)
- József Szabó
- 1 Szent István University Institute for Animal Breeding, Nutrition and Laboratory Animal Science István u. 2 H-1078 Budapest Hungary
| | - Emese Andrásofszky
- 1 Szent István University Institute for Animal Breeding, Nutrition and Laboratory Animal Science István u. 2 H-1078 Budapest Hungary
| | - Tamás Tuboly
- 2 Szent István University Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science István u. 2 H-1078 Budapest Hungary
| | - András Bersényi
- 1 Szent István University Institute for Animal Breeding, Nutrition and Laboratory Animal Science István u. 2 H-1078 Budapest Hungary
| | - Andrea Weisz
- 1 Szent István University Institute for Animal Breeding, Nutrition and Laboratory Animal Science István u. 2 H-1078 Budapest Hungary
| | - Nikoletta Hetényi
- 1 Szent István University Institute for Animal Breeding, Nutrition and Laboratory Animal Science István u. 2 H-1078 Budapest Hungary
| | - István Hullár
- 1 Szent István University Institute for Animal Breeding, Nutrition and Laboratory Animal Science István u. 2 H-1078 Budapest Hungary
| |
Collapse
|
11
|
Busse M, Border E, Junk PC, Ferrero RL, Andrews PC. Bismuth(iii) complexes derived from α-amino acids: the impact of hydrolysis and oxido-cluster formation on their activity against Helicobacter pylori. Dalton Trans 2014; 43:17980-90. [DOI: 10.1039/c4dt02505a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bi(iii) complexes, [BiL3] and [Bi2L3], derived from α-amino acids (LH) have been synthesised and characterised. Hydrolysis and oxido-cluster formation in water impacts significantly on their activity towardsH. pylori.
Collapse
Affiliation(s)
- Madleen Busse
- School of Chemistry
- Monash University
- Melbourne, Australia
| | - Emily Border
- School of Chemistry
- Monash University
- Melbourne, Australia
| | - Peter C. Junk
- School of Pharmacy and Molecular Sciences
- James Cook University
- Townsville, Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases
- Monash Institute of Medical Research
- Melbourne, Australia
| | | |
Collapse
|
12
|
Affiliation(s)
- Milan Holecek
- Charles University in Prague, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Wong AW, Magnuson BA, Nakagawa K, Bursey RG. Oral subchronic and genotoxicity studies conducted with the amino acid, l-glutamine. Food Chem Toxicol 2011; 49:2096-102. [DOI: 10.1016/j.fct.2011.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 11/28/2022]
|
14
|
|
15
|
Amino acids from chemical group 34 Flavouring Group Evaluation 26, Revision 1 - Scientific opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in contact with Food (AFC). EFSA J 2008. [DOI: 10.2903/j.efsa.2008.790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol 2008; 50:376-99. [PMID: 18325648 DOI: 10.1016/j.yrtph.2008.01.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 12/19/2007] [Accepted: 01/09/2008] [Indexed: 12/18/2022]
Abstract
Taurine, glutamine and arginine are examples of amino acids which have become increasingly popular as ingredients in dietary supplements and functional foods and beverages. Animal and human clinical research suggests that oral supplementation of these amino acids provides additional health and/or performance benefits beyond those observed from normal intake of dietary protein. The increased consumer awareness and use of these amino acids as ingredients in dietary supplements and functional foods warrant a comprehensive review of their safety through quantitative risk assessment, and identification of a potential safe upper level of intake. The absence of a systematic pattern of adverse effects in humans in response to orally administered taurine (Tau), l-glutamine (Gln) and l-arginine (Arg) precluded the selection of a no observed adverse effect level (NOAEL) or lowest observed adverse effect level (LOAEL). Therefore, by definition, the usual approach to risk assessment for identification of a tolerable upper level of intake (UL) could not be used. Instead, the newer method described as the Observed Safe Level (OSL) or Highest Observed Intake (HOI) was utilized. The OSL risk assessments indicate that based on the available published human clinical trial data, the evidence for the absence of adverse effects is strong for Tau at supplemental intakes up to 3 g/d, Gln at intakes up to 14 g/d and Arg at intakes up to 20 g/d, and these levels are identified as the respective OSLs for normal healthy adults. Although much higher levels of each of these amino acids have been tested without adverse effects and may be safe, the data for intakes above these levels are not sufficient for a confident conclusion of long-term safety, and therefore these values are not selected as the OSLs.
Collapse
Affiliation(s)
- Andrew Shao
- Council for Responsible Nutrition, 1828 L Street, NW, Suite 900, Washington, DC 20036-5114, USA.
| | | |
Collapse
|