1
|
Medina S, Zhang QY, Lauer FT, Santos-Medina LV, Factor-Litvak P, Islam T, Eunus M, Rahman M, Uddin MN, Liu KJ, Parvez F. Arsenic exposure is associated with alterations to multiple red blood cell parameters among adults in rural Bangladesh. Toxicol Appl Pharmacol 2024; 484:116858. [PMID: 38341105 PMCID: PMC11069126 DOI: 10.1016/j.taap.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Chronic arsenic exposures are associated with multiple hematologic disturbances, including anemia. The goal of this study was to evaluate associations between arsenic exposures and hematological parameters among men and women who are chronically exposed to elevated levels of arsenic from drinking water. Hematologic analyses were performed on blood collected from 755 participants (45% male and 54% female) in the Health Effects of Arsenic Longitudinal Study (HEALS) cohort, Bangladesh. Herein, we used linear regression models to estimate associations between red blood cell (RBC) parameters (i.e., RBC counts, hematocrit (HCT), hemoglobin (Hgb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC)) and measurements of arsenic exposure (urinary arsenic and urinary arsenic metabolites). Arsenic exposures showed trending associations with decreased RBC counts in both men and women, a positive association with MCV in males, and an inverse association with MCHC among males, but not among non-smoking females. Among men, those who smoked had stronger associations between arsenic exposures and MCHC than non-smoking males. Collectively, our results show that arsenic exposures affect multiple RBC parameters and highlight potentially important sex differences in arsenic-induced hematotoxicity.
Collapse
Affiliation(s)
- Sebastian Medina
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM 87131, USA; New Mexico Highlands University, Department of Biology, Las Vegas, NM 87701, USA
| | - Qian-Yun Zhang
- The University of New Mexico School of Medicine, Department of Pathology, Albuquerque, NM 87131, USA
| | - Fredine T Lauer
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM 87131, USA
| | - Laura V Santos-Medina
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM 87131, USA; New Mexico Highlands University, Department of Biology, Las Vegas, NM 87701, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Tariqul Islam
- University of Chicago and Columbia University Field Research Office, Dhaka 1230, Bangladesh
| | - Mahbubul Eunus
- University of Chicago and Columbia University Field Research Office, Dhaka 1230, Bangladesh
| | - Mizanour Rahman
- University of Chicago and Columbia University Field Research Office, Dhaka 1230, Bangladesh
| | - Mohammad Nasir Uddin
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology, Santosh, Tangail 1902, Bangladesh
| | - Ke Jian Liu
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM 87131, USA; Stony Brook University, Department of Pathology, Stony Brook, NY 11794, USA.
| | - Faruque Parvez
- Mailman University School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Wang B, Cheng H, Lin C, Zhang X, Duan X, Wang Q, Xu D. Arsenic exposure analysis for children living in central China: From ingestion exposure to biomarkers. CHEMOSPHERE 2022; 287:132194. [PMID: 34509767 DOI: 10.1016/j.chemosphere.2021.132194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Emerging evidence indicates that chronic low-dose arsenic (As) exposure can pose adverse health effects to children. This study aimed to systematically study the exposure risk induced by As ingestion in children living in Hubei Province, central China. The feasibility of first morning spot urine instead of 24-h urine as an environmental exposure biomarker was also explored. A total of 120 children aged 2-17 years were recruited from an urban area for the collection of biomarker samples (first morning and 24-h urine samples), environmental exposure samples (duplicate diets, drinking water, and soil), and related child-specific exposure factors. The external exposure risk, internal exposure level, and source of exposure to As in children were analyzed. The results indicated that As concentration in duplicated diets, water, and soil were 29.2 μg kg-1, 1.3 μg L-1, and 9.3 mg kg-1, respectively; these were all below the corresponding maximum allowable levels in China (the threshold value of As in most food, drinking water and soil are 0.5 mg⸱kg-1, 0.01 mg L-1, and 20 mg⸱kg-1, respectively). Dietary intake was the predominant exposure route, accounting for 90% of the total daily dose. The combined oral non-carcinogenic and carcinogenic risks all exceeded the corresponding maximum acceptable risk level. Therefore, As bioavailability should be investigated and used in health risk assessment. Multiple linear regression analysis indicated that urinary As was positively associated with dietary As, with a one-unit increase in daily As intake from the diet associating with 4.82 and 5.21 μg g-1 increases in 24-h urine and first morning urine, respectively. Furthermore, significant correlations with 24-h urine and external exposure metrics suggested that creatine-adjusted As concentrations in first morning urine could be an appropriate substitute of 24-h urine as exposure biomarkers.
Collapse
Affiliation(s)
- Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongguang Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Xuan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qin Wang
- Institute of Environmental Health and Related Product Safety, Chinese Center for Disease and Prevention, Beijing, 100021, PR China
| | - Dongqun Xu
- Institute of Environmental Health and Related Product Safety, Chinese Center for Disease and Prevention, Beijing, 100021, PR China
| |
Collapse
|
3
|
Poonia T, Singh N, Garg MC. Contamination of Arsenic, Chromium and Fluoride in the Indian groundwater: a review, meta-analysis and cancer risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021; 18:2891-2902. [DOI: 10.1007/s13762-020-03043-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 08/20/2024]
|
4
|
Bhattacharyya K, Sengupta S, Pari A, Halder S, Bhattacharya P, Pandian BJ, Chinchmalatpure AR. Characterization and risk assessment of arsenic contamination in soil-plant (vegetable) system and its mitigation through water harvesting and organic amendment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2819-2834. [PMID: 33411124 DOI: 10.1007/s10653-020-00796-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Field experiments with vegetables [cauliflower (Brassica oleracea var. botrytis), tomato (Solanum lycopersicum) and spinach (Spinacia oleracea)] were conducted at geogenically arsenic-contaminated Ghentugachi village in West Bengal, India, for two consecutive years to study arsenic accumulation by the selected vegetables and to explore the efficiencies of use of harvested/harnessed water and organic amendments (Mustard Cake, Vermicompost and Farm Yard Manure) in reducing arsenic load in soil-plant system. Results revealed that arsenic accumulations in the cauliflower head, spinach leaf and tomato fruit were in the range of 0.15-0.17, 2.73-3.00 and 0.08 mg kg-1. Organic amendment and pond water irrigation when applied either separately or together were found to be effective in reducing arsenic contamination in soil-plant system compared to irrigation with shallow tube well-drafted underground water. Vermicompost remained most successful among the organic amendments. Conjunctive use of surface (pond) and ground water also significantly reduced the level of arsenic in the system. The risk of dietary intake of arsenic through the selected vegetables was computed through % Provisional Tolerable Weekly Intake, Hazard Quotient and Target Cancer Risk. Cauliflower and tomato were found safe in the individual contribution to food chain, while consumption of spinach leaf (possessing 10.4-22.6% more arsenic than maximum tolerable limits) remained unsafe in all dietary risk measures.
Collapse
Affiliation(s)
- Kallol Bhattacharyya
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sudip Sengupta
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Arnab Pari
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sanjay Halder
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Parijat Bhattacharya
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - B J Pandian
- Water Technology Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Anil R Chinchmalatpure
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, 392012, India
| |
Collapse
|
5
|
Zhang H. The migration dynamics and the speciation of arsenic in the Hetao area, Inner Mongolia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:332. [PMID: 32378004 DOI: 10.1007/s10661-020-08327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Arsenic contamination of the groundwater in the Hetao area in Inner Mongolia, China, has been a serious problem since the 1980s. In this study, the behavioral mechanics of arsenic in soil in the Hetao area, in relation to arsenic concentrations in groundwater, were studied using elemental speciation analysis. It is for probing the possible mechanisms of correlation and interaction within water and soil of the area, which is little work on it not only in the Hetao area but also worldwide. Associated with our previous work on water in this area, soil samples were collected along transects through areas strongly affected by arsenic poisoning. Sequential extractions were used to determine the speciation in soil of arsenic and other elements (Cd, Cu, Mo, Pb, Sb, Sn, and Zn) which are with similar geochemical behaviors to arsenic in natural systems. The results show that the arsenic concentration in soil is correlated with arsenic concentration in groundwater. This implies that arsenic transformation as a main factor of the resident poisoning of the area could be related with groundwater and soil. These results suggest that arsenic poisoning in the Hetao area is related with water and soil. The tracers moving through water are retained in the shallow stratum including soil and persist in the water affected by the movement of arsenic through the shallow stratum and soil. Graphical abstract.
Collapse
Affiliation(s)
- Hui Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China.
| |
Collapse
|
6
|
Renal accumulation of prooxidant mineral elements and CKD in domestic cats. Sci Rep 2020; 10:3160. [PMID: 32081923 PMCID: PMC7035273 DOI: 10.1038/s41598-020-59876-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/17/2020] [Indexed: 01/16/2023] Open
Abstract
Felids have a high incidence of chronic kidney disease (CKD), for which the most common renal lesion is chronic interstitial nephritis (CIN). CIN can be induced by tissue oxidative stress, which is determined by the cellular balance of pro- and anti-oxidant metabolites. Fish-flavoured foods are more often fed to cats than dogs, and such foods tend to have higher arsenic content. Arsenic is a pro-oxidant metallic element. We propose that renal accumulation of pro-oxidant elements such as arsenic and depletion of anti-oxidant elements such as zinc, underpin the high incidence of CIN in domestic cats. Total arsenic and other redox-reactive metal elements were measured in kidneys (after acid-digestion) and urine (both by inductively-coupled plasma-mass spectrometry) of domestic cats (kidneys, n = 56; urine, n = 21), domestic dogs (kidneys, n = 54; urine, n = 28) and non-domesticated Scottish Wildcats (kidneys, n = 17). Renal lesions were graded by severity of CIN. In our randomly sampled population, CIN was more prevalent in domestic cat versus domestic dog (51%, n = 32 of 62 cats; 15%, 11 of 70 dogs were positive for CIN, respectively). CIN was absent from all Scottish wildcats. Tissue and urinary (corrected for creatinine) arsenic content was higher in domestic cats, relative to domestic dogs and wildcats. Urine arsenic was higher in domestic cats and dogs with CIN. Arsenobetaine, an organic and relatively harmless species of arsenic, was the primary form of arsenic found in pet foods. In summary, the kidneys of domestic cats appear to have greater levels of pro-oxidant trace elements, as compared to dogs and wildcats. Since there was no difference in renal arsenic levels in cats with or without CIN, renal arsenic accumulation does not appear a primary driver of excess CIN in cats. Given clear differences in renal handling of pro vs. anti-oxidant minerals between cats and dogs, further in vivo balance studies are warranted. These may then inform species-specific guidelines for trace element incorporation into commercial diets.
Collapse
|
7
|
Biswas A, Swain S, Chowdhury NR, Joardar M, Das A, Mukherjee M, Roychowdhury T. Arsenic contamination in Kolkata metropolitan city: perspective of transportation of agricultural products from arsenic-endemic areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22929-22944. [PMID: 31177413 DOI: 10.1007/s11356-019-05595-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Arsenic exposure route for humans is through the drinking of contaminated water and intake of arsenic-contaminated foods, particularly in arsenic-exposed areas of Bengal delta. Transport of the arsenic-contaminated crops and vegetables grown using arsenic-contaminated groundwater and soil in arsenic-exposed areas to the uncontaminated sites and consequent dietary intakes leads to great threats for the population residing in non-endemic areas with respect to consumption of arsenic through drinking water. We have studied the food materials collected from 30 families and their dietary habits, apparently who consume arsenic-free drinking water as well as 9 well-known markets of Kolkata city. The total and inorganic arsenic intake has been estimated from the collected foodstuffs from the market basket survey (n = 93) and household survey (n = 139), respectively for human risk analysis. About 100% of the collected samples contained detectable amount of arsenic (range 24-324 μg/kg), since the origin of the food materials was somewhere from arsenic-endemic areas. The daily consumption of inorganic arsenic (iAs) from rice grain and vegetables for adult and children is 76 μg and 41.4 μg, respectively. Inorganic arsenic (mainly arsenite and arsenate) contributes approximately 88% of the total content of arsenic in vegetable. In most of the cases, insufficient nutrient intake by the studied population may lead to arsenic toxicity in the long run. An independent cancer risk assessment study on the same population indicates that the main risk of cancer might appear through the intake of arsenic-contaminated rice grain and cereals.
Collapse
Affiliation(s)
- Anirban Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Shresthashree Swain
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | | | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Meenakshi Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
8
|
On the Use of Hair Analysis for Assessing Arsenic Intoxication. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16060977. [PMID: 30889915 PMCID: PMC6466288 DOI: 10.3390/ijerph16060977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
Correlations between the concentrations of arsenic in scalp hair and in drinking water as well as in blood and/or urine have been reported. These correlations clearly show exposure–absorption–excretion relationships. In addition, arsenic metabolites such as monomethylarsonic acid and dimethylarsinic acid have been identified and quantified in these tissues and fluids, leaving little doubt that elevated levels of arsenic in the hair can reflect systemic arsenic intoxication. Consequently, hair analysis has potential merit as a screening procedure for poisoning by arsenic. However, questions regarding the exogenous versus the endogenous deposition of arsenic in the hair, and uncertainties about the normal level of arsenic in the hair remain unresolved. Pending their resolution, the determination of arsenic in hair should remain a screening tool, and clinical signs and symptoms should be employed to complete the diagnosis of arsenic poisoning.
Collapse
|
9
|
Das A, Biswas A, Guha Mazumder DN. Association between skin lesion and arsenic concentration in hair by mixed bivariate model in chronic arsenic exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2359-2369. [PMID: 29582264 DOI: 10.1007/s10653-018-0102-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Skin lesion is one of the important health hazards caused by high intake of arsenic through drinking water and diet, and the other hazards include several types of cancers (viz. skin, lung and urinary bladder), ischemic heart disease, hypertension, etc. Two most important biomarkers to measure arsenic intake in a human body are arsenic concentration in urine and hair. The primary interest of this paper is the association between skin lesion and arsenic concentration in hair for participants with chronic arsenic exposure from West Bengal, India, using bivariate regression model based on copula function. The result showed participants with high arsenic concentration in hair had higher incidence of developing skin lesion. Arsenic concentration in hair was significantly higher for the participants with an arsenic concentration in water > 10 mg/L.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Statistics, Acharya Prafulla Chandra College, Kolkata, West Bengal, 700131, India.
| | - Anirban Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | |
Collapse
|
10
|
Golui D, Guha Mazumder DN, Sanyal SK, Datta SP, Ray P, Patra PK, Sarkar S, Bhattacharya K. Safe limit of arsenic in soil in relation to dietary exposure of arsenicosis patients from Malda district, West Bengal- A case study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:227-235. [PMID: 28624591 DOI: 10.1016/j.ecoenv.2017.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 05/28/2023]
Abstract
Safe limit of arsenic in soil in relation to dietary exposure of arsenicosis patients was established in Malda district of West Bengal. Out of 182 participants examined, 80 (43.9%) participants showed clinical features of arsenicosis, characterized by arsenical skin lesion (pigmentation and keratosis), while 102 participants did not have any such lesion (control). Experimental results of the twenty eight soils (own field) of the participants showed the mean Olsen extractable and total arsenic concentration of 0.206 and 6.70mgkg-1, respectively. Arsenic concentration in rice grain ranged from 2.00 to 1260μgkg-1 with the mean value of 146μgkg-1. The hazard quotient (HQ) for intake of As by human through consumption of rice varied from 0.03 to 3.52. HQ exceeds 1.0 for drinking water and rice grain grown in the study area in many cases. As high as 77.6% variation in As content in rice grain could be explained by the solubility-free ion activity model. Toxic limit of extractable As in soil for rice in relation to soil properties and human health hazard, associated with consumption of rice grain by human, was established. For example, the permissible limit of Olsen extractable As in soil would be 0.43mgkg-1 for rice cultivation, if soil pH and organic carbon content were 7.5% and 0.50%, respectively. However, the critical limit of Olsen extractable As in soil would be 0.54mgkg-1, if soil pH and organic carbon were 8.5% and 0.75%, respectively. The conceptual framework of fixing the toxic limit of arsenic in soils with respect to soil properties and human health under modeling-framework was established.
Collapse
Affiliation(s)
- Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | | | - S K Sanyal
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741 252, India
| | - S P Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - P Ray
- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Jorhat, Assam 785 004, India
| | - P K Patra
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741 252, India
| | - S Sarkar
- Department of Agricultural Meteorology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741 252, India
| | - K Bhattacharya
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741 252, India
| |
Collapse
|
11
|
Cohen SM, Chowdhury A, Arnold LL. Inorganic arsenic: A non-genotoxic carcinogen. J Environ Sci (China) 2016; 49:28-37. [PMID: 28007178 DOI: 10.1016/j.jes.2016.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 05/02/2023]
Abstract
Inorganic arsenic induces a variety of toxicities including cancer. The mode of action for cancer and non-cancer effects involves the metabolic generation of trivalent arsenicals and their reaction with sulfhydryl groups within critical proteins in various cell types which leads to the biological response. In epithelial cells, the response is cell death with consequent regenerative proliferation. If this continues for a long period of time, it can result in an increased risk of cancer. Arsenicals do not react with DNA. There is evidence for indirect genotoxicity in various in vitro and in vivo systems, but these involve exposures at cytotoxic concentrations and are not the basis for cancer development. The resulting markers of genotoxicity could readily be due to the cytotoxicity rather than an effect on the DNA itself. Evidence for genotoxicity in humans has involved detection of chromosomal aberrations, sister chromatid exchanges in lymphocytes and micronucleus formation in lymphocytes, buccal mucosal cells, and exfoliated urothelial cells in the urine. Numerous difficulties have been identified in the interpretation of such results, including inadequate assessment of exposure to arsenic, measurement of micronuclei, and potential confounding factors such as tobacco exposure, folate deficiency, and others. Overall, the data strongly supports a non-linear dose response for the effects of inorganic arsenic. In various in vitro and in vivo models and in human epidemiology studies there appears to be a threshold for biological responses, including cancer.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, USA.
| | - Aparajita Chowdhury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, USA
| | - Lora L Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, USA
| |
Collapse
|
12
|
Biswas A, Deb D, Ghose A, Santra SC, Guha Mazumder DN. Seasonal perspective of dietary arsenic consumption and urine arsenic in an endemic population. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:4543-4551. [PMID: 24676993 DOI: 10.1007/s10661-014-3718-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking-cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p = 0.04) from 26 μg L(-1) in summer to 6 μg L(-1) in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day (-1)) and female (2.6 and 1.2 L day(-1)) participants from summer to winter. Arsenic intake through drinking water decreased (p = 0.04) in winter (29 μg day(-1)) than in summer (100 μg day(-1)), and urinary arsenic concentration decreased (p = 0.018) in winter (41 μg L(-1)) than in summer (69 μg L(-1)). Dietary arsenic intake remained unchanged (p = 0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.
Collapse
Affiliation(s)
- Anirban Biswas
- Department of Environmental Science, University of Kalyani, Kalyani, Nadia, West Bengal, India,
| | | | | | | | | |
Collapse
|
13
|
Biswas A, Deb D, Ghose A, Du Laing G, De Neve J, Santra SC, Guha Mazumder DN. Dietary arsenic consumption and urine arsenic in an endemic population: response to improvement of drinking water quality in a 2-year consecutive study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:609-619. [PMID: 23818078 DOI: 10.1007/s11356-013-1947-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L(-1)) in a first year (group I) and for participants using water lower in arsenic (<50 μg L(-1)) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt.(-1) day(-1) (p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt.(-1) day(-1) (p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt.(-1) day(-1) (p = 0.088) in males and 2.6 and 1.9 μg kg body wt.(-1) day(-1) (p = 0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L(-1) (p = 0.052) and in females 130 and 52 μg L(-1) (p = 0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L(-1) (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.(-1) day(-1) (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.
Collapse
Affiliation(s)
- Anirban Biswas
- Department of Environmental Science, University of Kalyani, Kalyani, Nadia, West Bengal, India,
| | | | | | | | | | | | | |
Collapse
|