1
|
Venkatesan D, Muthukumar S, Iyer M, Babu HWS, Gopalakrishnan AV, Yadav MK, Vellingiri B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer's disease (AD). J Biochem Mol Toxicol 2024; 38:e23741. [PMID: 38816991 DOI: 10.1002/jbt.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Sindduja Muthukumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
2
|
Green L, Coronado-Zamora M, Radío S, Rech GE, Salces-Ortiz J, González J. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biol 2022; 20:275. [PMID: 36482348 PMCID: PMC9733279 DOI: 10.1186/s12915-022-01479-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Escalation in industrialization and anthropogenic activity have resulted in an increase of pollutants released into the environment. Of these pollutants, heavy metals such as copper are particularly concerning due to their bio-accumulative nature. Due to its highly heterogeneous distribution and its dual nature as an essential micronutrient and toxic element, the genetic basis of copper tolerance is likely shaped by a complex interplay of genetic and environmental factors. RESULTS In this study, we utilized the natural variation present in multiple populations of Drosophila melanogaster collected across Europe to screen for variation in copper tolerance. We found that latitude and the degree of urbanization at the collection sites, rather than any other combination of environmental factors, were linked to copper tolerance. While previously identified copper-related genes were not differentially expressed in tolerant vs. sensitive strains, genes involved in metabolism, reproduction, and protease induction contributed to the differential stress response. Additionally, the greatest transcriptomic and physiological responses to copper toxicity were seen in the midgut, where we found that preservation of gut acidity is strongly linked to greater tolerance. Finally, we identified transposable element insertions likely to play a role in copper stress response. CONCLUSIONS Overall, by combining genome-wide approaches with environmental association analysis, and functional analysis of candidate genes, our study provides a unique perspective on the genetic and environmental factors that shape copper tolerance in natural D. melanogaster populations and identifies new genes, transposable elements, and physiological traits involved in this complex phenotype.
Collapse
Affiliation(s)
- Llewellyn Green
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Coronado-Zamora
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Radío
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E. Rech
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Judit Salces-Ortiz
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Tinkov AA, Nguyen TT, Santamaria A, Bowman AB, Buha Djordjevic A, Paoliello MMB, Skalny AV, Aschner M. Sirtuins as molecular targets, mediators, and protective agents in metal-induced toxicity. Arch Toxicol 2021; 95:2263-2278. [PMID: 34028595 DOI: 10.1007/s00204-021-03048-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Metal dyshomeostasis, and especially overexposure, is known to cause adverse health effects due to modulation of a variety of metabolic pathways. An increasing body of literature has demonstrated that metal exposure may affect SIRT signaling, although the existing data are insufficient. Therefore, in this review we discuss the available data (PubMed-Medline, Google Scholar) on the influence of metal overload on sirtuin (SIRT) signaling and its association with other mechanisms involved in metal-induced toxicity. The existing data demonstrate that cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), aluminium (Al), hexavalent chromium (CrVI), manganese (Mn), iron (Fe), and copper (Cu) can inhibit SIRT1 activity. In addition, an inhibitory effect of Cd, Pb, As, and Fe on SIRT3 has been demonstrated. In turn, metal-induced inhibition of SIRT was shown to affect deacetylation of target proteins including FOXO, PGC1α, p53 and NF-kB. Increased acetylation downregulates PGC1α signaling pathway, resulting in cellular altered redox status and increased susceptibility to oxidative stress, as well as decreased mitochondrial biogenesis. Lower rates of LKB1 deacetylation may be responsible for metal-induced decreases in AMPK activity and subsequent metabolic disturbances. A shift to the acetylated FOXO results in increased expression of pro-apoptotic genes which upregulates apoptosis together with increased p53 signaling. Correspondingly, decreased NF-kB deacetylation results in upregulation of target genes of proinflammatory cytokines, enzymes, and cellular adhesion molecules thus promoting inflammation. Therefore, alterations in sirtuin activity may at least partially mediate metal-induced metabolic disturbances that have been implicated in neurotoxicity, nephrotoxicity, cardiotoxicity, and other toxic effects of heavy metals.
Collapse
Affiliation(s)
- Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Yaroslavl State University, Yaroslavl, Russia
| | - Thuy T Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Monica Maria Bastos Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.,Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Anatoly V Skalny
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia. .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Iftode A, Drăghici GA, Macașoi I, Marcovici I, Coricovac DE, Dragoi R, Tischer A, Kovatsi L, Tsatsakis AM, Cretu O, Dehelean C. Exposure to cadmium and copper triggers cytotoxic effects and epigenetic changes in human colorectal carcinoma HT-29 cells. Exp Ther Med 2020; 21:100. [PMID: 33363611 PMCID: PMC7725023 DOI: 10.3892/etm.2020.9532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Recent scientific evidence suggests a link between epigenetic changes (DNA methylation) and tumorigenesis. Moreover, a potential carcinogenic mechanism of cadmium was associated with changes in DNA methylation. In this study we investigated the impact of CdCl2 and CuSO4 aqueous solutions on DNA methylation in HT-29 cells by quantifying DNA methyltransferase (DNMT1, DNMT3A and DNMT3B) mRNA expression. Furthermore, we also studied the cytotoxic and anti-migratory potential of these substances. The results showed a dose-dependent decrease of viable cell percentage following 24 h of exposure (at concentrations of 0.05; 0.2; 1; 10 and 100 µg/ml), and an inhibitory effect on HT-29 cell migration capacity. In addition, RT-qPCR results showed that cadmium acts as a hypomethylating agent by suppressing DNMT expression, whereas copper acts as a hypermethylating compound by increasing DNMT expression. These findings suggest a cytotoxic potential of both cadmium and copper on HT-29 cells and their capacity to induce epigenetic changes.
Collapse
Affiliation(s)
- Andrada Iftode
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - George Andrei Drăghici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioana Macașoi
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dorina E Coricovac
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan Dragoi
- Department of Balneology, Rehabilitation and Rheumatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alina Tischer
- Department of Surgery I, Faculty of Medicine, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Octavian Cretu
- Department of Surgery I, Faculty of Medicine, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Zimbone S, Santoro AM, La Mendola D, Giacomelli C, Trincavelli ML, Tomasello MF, Milardi D, García-Viñuales S, Sciacca MFM, Martini C, Grasso G. The Ionophoric Activity of a Pro-Apoptotic VEGF165 Fragment on HUVEC Cells. Int J Mol Sci 2020; 21:E2866. [PMID: 32325956 PMCID: PMC7216235 DOI: 10.3390/ijms21082866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Copper plays an important role as a regulator in many pathologies involving the angiogenesis process. In cancerogenesis, tumor progression, and angiogenic diseases, copper homeostasis is altered. Although many details in the pathways involved are still unknown, some copper-specific ligands have been successfully used as therapeutic agents. Copper-binding peptides able to modulate angiogenesis represent a possible way to value new drugs. We previously reported that a fragment (VEGF73-101) of vascular endothelial growth factor (VEGF165), a potent angiogenic, induced an apoptotic effect on human umbilical vein endothelial cells. The aim of this study was to investigate the putative copper ionophoric activity of VEGF73-101, as well as establish a relationship between the structure of the peptide fragment and the cytotoxic activity in the presence of copper(II) ions. Here, we studied the stoichiometry and the conformation of the VEGF73-101/Cu(II) complexes and some of its mutated peptides by electrospray ionization mass spectrometry and circular dichroism spectroscopy. Furthermore, we evaluated the effect of all peptides in the absence and presence of copper ions by cell viability and cytofuorimetric assays. The obtained results suggest that VEGF73-101 could be considered an interesting candidate in the development of new molecules with ionophoric properties as agents in antiangiogenic therapeutic approaches.
Collapse
Affiliation(s)
- Stefania Zimbone
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (S.Z.); (A.M.S.); (M.F.T.); (D.M.); (S.G.-V.); (M.F.M.S.)
| | - Anna M. Santoro
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (S.Z.); (A.M.S.); (M.F.T.); (D.M.); (S.G.-V.); (M.F.M.S.)
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (D.L.M.); (C.G.); (M.L.T.); (C.M.)
| | - Chiara Giacomelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (D.L.M.); (C.G.); (M.L.T.); (C.M.)
| | - Maria L. Trincavelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (D.L.M.); (C.G.); (M.L.T.); (C.M.)
| | - Marianna F. Tomasello
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (S.Z.); (A.M.S.); (M.F.T.); (D.M.); (S.G.-V.); (M.F.M.S.)
| | - Danilo Milardi
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (S.Z.); (A.M.S.); (M.F.T.); (D.M.); (S.G.-V.); (M.F.M.S.)
| | - Sara García-Viñuales
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (S.Z.); (A.M.S.); (M.F.T.); (D.M.); (S.G.-V.); (M.F.M.S.)
| | - Michele F. M. Sciacca
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (S.Z.); (A.M.S.); (M.F.T.); (D.M.); (S.G.-V.); (M.F.M.S.)
| | - Claudia Martini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (D.L.M.); (C.G.); (M.L.T.); (C.M.)
| | - Giulia Grasso
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (S.Z.); (A.M.S.); (M.F.T.); (D.M.); (S.G.-V.); (M.F.M.S.)
| |
Collapse
|
6
|
Bicho RC, Roelofs D, Mariën J, Scott-Fordsmand JJ, Amorim MJB. Epigenetic effects of (nano)materials in environmental species - Cu case study in Enchytraeus crypticus. ENVIRONMENT INTERNATIONAL 2020; 136:105447. [PMID: 31924578 DOI: 10.1016/j.envint.2019.105447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Chemical stressors can induce epigenomic changes, i.e., changes that are transferred to the next generation, even when the stressor is removed. Literature on chemical induced epigenetic effects in environmental species is scarce. We here provide the first results on epigenetic effects caused by nanomaterials with an environmental OECD standard soil model species Enchytraeus crypticus species. We assessed the epigenetic potential in terms of global DNA methylation, gene-specific methylation via bisulfite sequencing and MS-HRM (Methylation Sensitive - High Resolution Melting), and gene expression qPCR for genes involved in DNA methylation, histone modifications, non-coding RNA and stress response mechanisms). We have exposed E. crypticus in a multigenerational (MG) test design to Cu (copper oxide nanomaterials (CuO NMs) and copper salt (CuCl2)). To link possible epigenetic effects to population changes, we used exposure concentrations (ECx) that caused a 10% and 50% reduction in the reproductive output (10% and 50% are the standards for regulatory Risk Assessment), the organisms were exposed for five consecutive generations (F1-F5) plus two generations after transferring to clean media (F5-F7), 7 generations in a total of 224 days. Results showed that MG exposure to Cu increased global DNA methylation and corresponded with phenotypic effects (reproduction). Gene expression analyses showed changes in the epigenetic, stress and detoxification gene targets, depending on the generation and Cu form, also occurring in post-exposure generations, hence indicative of transgenerational effects. There were in general clear differences between organisms exposed to different Cu-forms, hence indicate nanoparticulate-specific effects.
Collapse
Affiliation(s)
- Rita C Bicho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Janine Mariën
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol In Vitro 2018; 54:310-316. [PMID: 30389602 DOI: 10.1016/j.tiv.2018.10.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the effects of excessive copper (Cu)-induced cytotoxicity on oxidative stress and mitochondrial apoptosis in chicken hepatocytes. Chicken hepatocytes were cultured in medium in the absence and presence of copper sulfate (CuSO4) (10, 50, 100 μM), in N-acetyl-L-cysteine (NAC) (1 mM), and the combination of CuSO4 and NAC for 24 h. Morphologic observation and function, reactive oxygen species (ROS) level, antioxidant indices, nitric oxide (NO) content, mitochondrial membrane potential (MMP), and apoptosis-related mRNA and protein levels were determined. These results indicated that excessive Cu could induce release of intracellular lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT); increase levels of ROS, superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), lipid peroxidation (LPO), and NO; decrease glutathione (GSH) content and MMP; upregulated Bak1, Bax, CytC, and Caspase3 mRNA and protein expression, inhibited Bcl2 mRNA and protein expression, and induced cell apoptosis in a dose effect. The Cu-caused changes of all above factors were alleviated by treatment with NAC. These results suggested that excessive Cu could induce oxidative stress and apoptosis via mitochondrial pathway in chicken hepatocytes.
Collapse
|
8
|
Athanasopoulos D, Karagiannis G, Tsolaki M. Recent Findings in Alzheimer Disease and Nutrition Focusing on Epigenetics. Adv Nutr 2016; 7:917-27. [PMID: 27633107 PMCID: PMC5015036 DOI: 10.3945/an.116.012229] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease with no effective cure so far. The current review focuses on the epigenetic mechanisms of AD and how nutrition can influence the course of this disease through regulation of gene expression, according to the latest scientific findings. The search strategy was the use of scientific databases such as PubMed and Scopus in order to find relative research or review articles published in the years 2012-2015. By showing the latest data of various nutritional compounds, this study aims to stimulate the scientific community to recognize the value of nutrition in this subject. Epigenetics is becoming a very attractive subject for researchers because it can shed light on unknown aspects of complex diseases like AD. DNA methylation, histone modifications, and microRNAs are the principal epigenetic mechanisms involved in AD pathophysiology. Nutrition is an environmental factor that is related to AD through epigenetic pathways. Vitamin B-12, for instance, can alter the one-carbon metabolism and thus interfere in the DNA methylation process. The research results might seem ambiguous about the clinical role of nutrition, but there is strengthening evidence that proper nutrition can not only change epigenetic biomarker levels but also prevent the development of late-onset AD and attenuate cognition deficit. Nutrition might grow to become a preventive and even therapeutic alternative against AD, especially if combined with other antidementia interventions, brain exercise, physical training, etc. Epigenetic biomarkers can be a very helpful tool to help researchers find the exact nutrients needed to create specific remedies, and perhaps the same biomarkers can be used even in patient screening in the future.
Collapse
Affiliation(s)
| | | | - Magda Tsolaki
- Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece; and Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| |
Collapse
|