1
|
Karaman EF, Abudayyak M, Guler ZR, Bektas S, Kaptan E, Ozden S. The effects of fumonisin B1 on intercellular communications and miRNA modulations: Non-genotoxic carcinogenesis mechanisms in human kidney cells. Toxicology 2024; 509:153968. [PMID: 39414224 DOI: 10.1016/j.tox.2024.153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Fumonisin B1 (FB1), which is produced by Fusarium species, is one of the most prevalent mycotoxins known to exert several toxic effects, particularly nephrotoxicity. While its genotoxic carcinogenic mechanisms have been extensively studied, its influence on non-genotoxic pathways including intercellular communication and microRNA (miRNA) regulation remain underexplored. The present study investigates the effects of FB1 on gap junctions, miRNA expression profiles, and their relationship in human kidney cells (HK-2 and HEK293). Both cell lines showed increased apoptosis rates at 50 and 100 µM, while FB1 exposure significantly reduced gap junctional intercellular communication (GJIC) and decreased the expression levels of related genes, including Cx43, Cx45, e-cadherin, Cadherin-2, and β-catenin. After FB1 treatments alteration on the regulation of miRNAs including let-7a-5p, miR-125a-5p, miR-222-3p, miR-92a-3p, let-7b-5p, let-7e-5p, miR-21-5p, miR-155-5p, let-7i-5p, let-7d-5p, let-7f-5p, miR-181b-5p, miR-15b-5p, miR-23b-3p, miR-20b-5p, miR-196a-5p miRNAs have been shown. Let-7a-5p was selected among the altered miRNAs to elucidate the relationship between miRNAs and GJIC after FB1 exposure as it is one of the common miRNAs that changes in both cell lines and one of its target genes is Cx45, which is an important gene for GJIC. However, transfection analysis did not show any differences, resulting in Cx45 not being a direct target of let-7a-5p in HK-2 and HEK-293 cells. Through comprehensive analysis, we elucidated that FB1's impact on intercellular signaling cascades and its regulatory role on miRNA expression profiles, offering valuable insights into carcinogenesis beyond traditional genotoxic paradigms. Understanding these mechanisms is crucial for elucidating the mechanisms of FB1-induced toxicity.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Topkapi, Istanbul 34015, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey.
| |
Collapse
|
2
|
Wu Y, Deng X, Wu Z, Liu D, Fu X, Tang L, He S, Lv J, Wang J, Li Q, Zhan T, Tang Z. Multilayer omics reveals the molecular mechanism of early infection of Clonorchis sinensis juvenile. Parasit Vectors 2023; 16:285. [PMID: 37587524 PMCID: PMC10428567 DOI: 10.1186/s13071-023-05891-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Clonorchiasis remains a non-negligible global zoonosis, causing serious socioeconomic burdens in endemic areas. Clonorchis sinensis infection typically elicits Th1/Th2 mixed immune responses during the course of biliary injury and periductal fibrosis. However, the molecular mechanism by which C. sinensis juvenile initially infects the host remains poorly understood. METHODS The BALB/c mouse model was established to study early infection (within 7 days) with C. sinensis juveniles. Liver pathology staining and observation as well as determination of biochemical enzymes, blood routine and cytokines in blood were conducted. Furthermore, analysis of liver transcriptome, proteome and metabolome changes was performed using multi-omics techniques. Statistical analyses were performed using Student's t-test. RESULTS Histopathological analysis revealed that liver injury, characterized by collagen deposition and inflammatory cell infiltration, occurred as early as 24 h of infection. Blood indicators including ALT, AST, WBC, CRP and IL-6 indicated that both liver injury and systemic inflammation worsened as the infection progressed. Proteomic data showed that apoptosis and junction-related pathways were enriched within 3 days of infection, indicating the occurrence of liver injury. Furthermore, proteomic and transcriptomic analysis jointly verified that the detoxification and antioxidant defense system was activated by enrichment of glutathione metabolism and cytochrome P450-related pathways in response to acute liver injury. Proteomic-based GO analysis demonstrated that biological processes such as cell deformation, proliferation, migration and wound healing occurred in the liver during the early infection. Correspondingly, transcriptomic results showed significant enrichment of cell cycle pathway on day 3 and 7. In addition, the KEGG analysis of multi-omics data demonstrated that numerous pathways related to immunity, inflammation, tumorigenesis and metabolism were enriched in the liver. Besides, metabolomic screening identified several metabolites that could promote inflammation and hepatobiliary periductal fibrosis, such as CA7S. CONCLUSIONS This study revealed that acute inflammatory injury was rapidly triggered by initial infection by C. sinensis juveniles in the host, accompanied by the enrichment of detoxification, inflammation, fibrosis, tumor and metabolism-related pathways in the liver, which provides a new perspective for the early intervention and therapy of clonorchiasis.
Collapse
Affiliation(s)
- Yuhong Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, 530021, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases With Integrative Medicine, Nanning, 530021, China
| | - Dengyu Liu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaoyin Fu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lili Tang
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Shanshan He
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jiahui Lv
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Jilong Wang
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Qing Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Tingzheng Zhan
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
3
|
Leroy K, Pieters A, Cooreman A, Van Campenhout R, Cogliati B, Vinken M. Connexin-Based Channel Activity Is Not Specifically Altered by Hepatocarcinogenic Chemicals. Int J Mol Sci 2021; 22:11724. [PMID: 34769157 PMCID: PMC8584159 DOI: 10.3390/ijms222111724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Connexin-based channels play key roles in cellular communication and can be affected by deleterious chemicals. In this study, the effects of various genotoxic carcinogenic compounds, non-genotoxic carcinogenic compounds and non-carcinogenic compounds on the expression and functionality of connexin-based channels, both gap junctions and connexin hemichannels, were investigated in human hepatoma HepaRG cell cultures. Expression of connexin26, connexin32, and connexin43 was evaluated by means of real-time reverse transcription quantitative polymerase chain reaction analysis, immunoblot analysis and in situ immunostaining. Gap junction functionality was assessed via a scrape loading/dye transfer assay. Opening of connexin hemichannels was monitored by measuring extracellular release of adenosine triphosphate. It was found that both genotoxic and non-genotoxic carcinogenic compounds negatively affect connexin32 expression. However, no specific effects related to chemical type were observed at gap junction or connexin hemichannel functionality level.
Collapse
Affiliation(s)
- Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| | - Alanah Pieters
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| | - Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, Brazil;
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| |
Collapse
|
4
|
Van Campenhout R, Gomes AR, De Groof TW, Muyldermans S, Devoogdt N, Vinken M. Mechanisms Underlying Connexin Hemichannel Activation in Disease. Int J Mol Sci 2021; 22:ijms22073503. [PMID: 33800706 PMCID: PMC8036530 DOI: 10.3390/ijms22073503] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gap junctions and connexin hemichannels mediate intercellular and extracellular communication, respectively. While gap junctions are seen as the “good guys” by controlling homeostasis, connexin hemichannels are considered as the “bad guys”, as their activation is associated with the onset and dissemination of disease. Open connexin hemichannels indeed mediate the transport of messengers between the cytosol and extracellular environment and, by doing so, fuel inflammation and cell death in a plethora of diseases. The present mini-review discusses the mechanisms involved in the activation of connexin hemichannels during pathology.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
| | - Ana Rita Gomes
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
| | - Timo W.M. De Groof
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (T.W.M.D.G.); (N.D.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Nick Devoogdt
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (T.W.M.D.G.); (N.D.)
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
- Correspondence: ; Tel.: +32-2-4774587
| |
Collapse
|