1
|
Massoud RI, Bouaziz M, Abdallah H, Zeiz A, Flamini G, El-Dakdouki MH. Comparative Study on the Chemical Composition and Biological Activities of the Essential Oils of Lavandula angustifolia and Lavandula x intermedia Cultivated in Lebanon. ACS OMEGA 2024; 9:30244-30255. [PMID: 39035964 PMCID: PMC11256343 DOI: 10.1021/acsomega.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 07/23/2024]
Abstract
The phytochemical profile of essential oils is influenced by genetic and paragenetic factors. In this research, we studied the essential oils of Lavandula angustifolia and Lavandula x intermedia cultivated in Lebanon. The latter is a cross hybrid between Lavandula angustifolia and Lavandula latifolia and is also known as lavandin and Lavandula hybrida. Specifically, the chemical composition and biological activities (antibacterial, antioxidant, anticancer, and hemolytic) of the essential oils were assessed. GC-MS results showed marked differences in the chemical compositions of the oils. For example, linalool was more abundant in L. x intermedia (44.15%) than in L. angustifolia (32%), while an opposite trend was observed for the percentages of 1,8-cineole (8.6% in L. angustifolia and 4.0% in L. x intermedia). FTIR analysis confirmed the richness of both oils in monoterpenes and sesquiterpenes. In terms of antioxidant activity, L. angustifolia essential oil demonstrated significantly better activity (IC50= 5.24 ± 1.20 mg/mL) compared to L. x intermedia oil in the DPPH radical scavenging assay. MTT cell viability assays revealed that L. angustifolia essential oil was a slightly more potent antiproliferative agent than L. x intermedia oil on human colorectal (HCT-116) and human breast (MCF-7) cancer cells. The antibacterial activity of the essential oils was tested against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, and Serratia marcescens. Both oils showed good antibacterial activities with MIC values of 0.174 and 0.169 mg/mL for L. angustifolia and L. x intermedia oils, respectively. MBC determinations revealed that the antibacterial activity was bactericidal against all bacteria, except Staphylococcus aureus. Furthermore, both essential oils did not exhibit notable hemolytic activity on red blood cells. Overall, Lebanese L. angustifolia and L. x intermedia essential oils have promising industrial and medicinal values.
Collapse
Affiliation(s)
- Rana I. Massoud
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, Sfax BP117 33038, Tunisia
| | - Hiba Abdallah
- Department
of Chemistry, Faculty of Sciences I, Lebanese
University, Hadath Campus, Beirut 11-5020, Lebanon
| | - Ali Zeiz
- Department
of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon
| | - Guido Flamini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| |
Collapse
|
2
|
Bhattacharya S, Gupta N, Flekalová A, Gordillo-Alarcón S, Espinel-Jara V, Fernández-Cusimamani E. Exploring Folklore Ecuadorian Medicinal Plants and Their Bioactive Components Focusing on Antidiabetic Potential: An Overview. PLANTS (BASEL, SWITZERLAND) 2024; 13:1436. [PMID: 38891245 PMCID: PMC11174784 DOI: 10.3390/plants13111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Diabetes mellitus (DM) is a global health concern characterized by a deficiency in insulin production. Considering the systemic toxicity and limited efficacy associated with current antidiabetic medications, there is the utmost need for natural, plant-based alternatives. Herbal medicines have experienced exponential growth in popularity globally in recent years for their natural origins and minimal side effects. Ecuador has a rich cultural history in ethnobotany that plays a crucial role in its people's lives. This study identifies 27 Ecuadorian medicinal plants that are traditionally used for diabetes treatment and are prepared through infusion, decoction, or juice, or are ingested in their raw forms. Among them, 22 plants have demonstrated hypoglycemic or anti-hyperglycemic properties that are rich with bioactive phytochemicals, which was confirmed in several in vitro and in vivo studies. However, Bryophyllum gastonis-bonnieri, Costus villosissimus, Juglans neotropica, Pithecellobium excelsum, and Myroxylon peruiferum, which were extensively used in traditional medicine preparation in Ecuador for many decades to treat diabetes, are lacking in pharmacological elucidation. The Ecuadorian medicinal plants used to treat diabetes have been found to have several bioactive compounds such as flavonoids, phenolics, fatty acids, aldehydes, and terpenoids that are mainly responsible for reducing blood sugar levels and oxidative stress, regulating intestinal function, improving insulin resistance, inhibiting α-amylase and α-glucosidase, lowering gluconeogenic enzymes, stimulating glucose uptake mechanisms, and playing an important role in glucose and lipid metabolism. However, there is a substantial lack of integrated approaches between the existing ethnomedicinal practices and pharmacological research. Therefore, this review aims to discuss and explore the traditional medicinal plants used in Ecuador for treating DM and their bioactive phytochemicals, which are mainly responsible for their antidiabetic properties. We believe that the use of Ecuadorian herbal medicine in a scientifically sound way can substantially benefit the local economy and industries seeking natural products.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic;
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| | - Adéla Flekalová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| | - Salomé Gordillo-Alarcón
- Department of Medicine, Faculty of Health Sciences, Universidad Técnica del Norte, Avda. 17 de Julio 5-21, Ibarra 100105, Ecuador;
| | - Viviana Espinel-Jara
- Department of Nursing, Faculty of Health Sciences, Universidad Técnica del Norte, Avda. 17 de Julio 5-21, Ibarra 100105, Ecuador;
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| |
Collapse
|
3
|
Foudah AI, Ayman Salkini M, Alqarni MH, Alam A. Preparation and evaluation of antidiabetic activity of mangiferin-loaded solid lipid nanoparticles. Saudi J Biol Sci 2024; 31:103946. [PMID: 38384280 PMCID: PMC10879835 DOI: 10.1016/j.sjbs.2024.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
This study aimed to develop and optimize mangiferin-loaded solid lipid nanoparticles (MG-SLNs) using the microemulsion technique and ultrasonication. The MG-SLNs were composed of Labrafil M 2130 CS, MG, ethanol, Tween 80, and water. The optimized MG-SLNs exhibited a particle size of 138.37 ± 3.39 nm, polydispersity index of 0.247 ± 0.023, entrapment efficiency of 84.37 ± 2.43 %, and zeta potential of 18.87 ± 2.42 mV. Drug release studies showed a two-fold increase in the release of MG from SLNs compared to the solution. Confocal images indicated deeper permeation of MG-SLNs, highlighting their potential. Molecular docking confirmed mangiferin's inhibitory activity against α-amylase, consistent with previous findings. In vitro studies showed that MG-SLNs inhibited α-amylase activity by 55.43 ± 6.11 %, α-glucosidase activity by 68.76 ± 3.14 %, and exhibited promising antidiabetic activities. In a rat model, MG-SLNs significantly and sustainably reduced blood glucose levels for up to 12 h. Total cholesterol and triglycerides decreased, while high-density lipoprotein cholesterol increased. Both MG-SOL and MG-SLNs reduced SGOT and SGPT levels, with MG-SLNs showing a more significant reduction in SGOT compared to MG-SOL. Overall, the biochemical results indicated that both formulations improved diabetes-associated alterations. In conclusion, the study suggests that loading MG in SLNs using the newly developed approach could be an efficient oral treatment for diabetes, offering sustained blood glucose reduction and positive effects on lipid profiles and liver enzymes.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Carvalho RPR, Carvalho IRD, Costa RVD, Guimarães-Ervilha LO, Machado-Neves M. The effects of eugenol on histological, enzymatic, and oxidative parameters in the major salivary glands and pancreas of healthy male Wistar rats. Arch Oral Biol 2023; 154:105764. [PMID: 37454526 DOI: 10.1016/j.archoralbio.2023.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE We evaluated the effects of eugenol on histological, enzymatic, and oxidative parameters in the pancreas, parotid, submandibular, and sublingual glands of healthy male rats. DESIGN Twenty-four adult Wistar rats were assigned into four groups (n = 6/group). Control rats received 2% Tween-20 (eugenol vehicle), whereas the other animals received 10, 20, and 40 mg kg-1 eugenol through gavage daily for 60 d. Major salivary and pancreatic glands were weighed and preserved fixed for microscopic analysis and frozen for in vitro assays. RESULTS Eugenol did not alter glands' weight and serum amylase activity regardless of the concentration. The highest dose of eugenol caused an increase in pancreatic amylase activity and a reduction of lipase activity from serum and pancreas. Eugenol at 40 mg kg-1 diminished the activity of SOD and FRAP in the submandibular gland and CAT and FRAP in the sublingual gland. However, it did not exert any effect on GST regardless of the gland. Additionally, 40 mg kg-1 eugenol increased MDA levels in pancreatic, parotid, and submandibular glands and NO levels in the sublingual. The concentrations of eugenol induced distinct responses in the glands regarding the activity of Na+/K+, Mg2+, and total ATPase activity. They also affected histomorphometrical and histochemistrical parameters in the submandibular gland only. CONCLUSIONS Results indicated that 40 mg kg-1 eugenol altered most of the biochemical and oxidatived parameters of digestive glands. Only submandibular glands presented histological changes after eugenol exposure suggesting potential implications for its function.
Collapse
Affiliation(s)
| | | | - Rosiany Vieira da Costa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Ullah O, Shah M, Rehman NU, Ullah S, Al-Sabahi JN, Alam T, Khan A, Khan NA, Rafiq N, Bilal S, Al-Harrasi A. Aroma Profile and Biological Effects of Ochradenus arabicus Essential Oils: A Comparative Study of Stem, Flowers, and Leaves. Molecules 2022; 27:molecules27165197. [PMID: 36014440 PMCID: PMC9414473 DOI: 10.3390/molecules27165197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022] Open
Abstract
The present analysis explores the chemical constituents and determines the in vitro antimicrobial, antidiabetic, and antioxidant significance of the essential oils (EOs) of the stem, leaves, and flowers of Ochradenus arabicus for the first time. The EOs of the flowers presented seventy-four constituents contributing to 81.46% of the total EOs, with the major compounds being 24-norursa-3,12-diene (13.06%), 24-norursa-3,12-dien-11-one (6.61%), and 24-noroleana-3,12-diene (6.25%). The stem EOs with sixty-one compounds contributed 95.95% of the total oil, whose main bioactive compounds were (+)-camphene (21.50%), eremophilene (5.87%), and δ-selinene (5.03%), while a minimum of fifty-one compounds in the leaves’ EOs (98.75%) were found, with the main constituents being n-hexadecanoic acid (12.32%), octacosane (8.62%), tetradecanoic acid (8.54%), and prehydro fersenyl acetone (7.27%). The antimicrobial activity of the EOs of O. arabicus stem, leaves, and flowers was assessed against two bacterial strains (Escherichia coli and Streptococcus aureus) and two fungal strains (Penicillium simplicissimum and Rhizoctonia solani) via the disc diffusion assay. However, the EOs extracted from the stem were found effective against one bacterial strain, E. coli, and one fungal strain, R. Solani, among the examined microbes in comparison to the standard and negative control. The tested EOs samples of the O. arabicus stem displayed a maximum potential to cure diabetes with an IC50 = 0.40 ± 0.10 µg/mL, followed by leaves and flowers with an IC50 = 0.71 ± 0.11 µg/mL and IC50 = 10.57 ± 0.18 µg/mL, respectively, as compared to the standard acarbose (IC50 = 377.26 ± 1.20 µg/mL). In addition, the EOs of O. arabicus flowers had the highest antioxidant activity (IC50 = 106.40 ± 0.19 µg/mL) as compared to the standard ascorbic acid (IC50 = 73.20 ± 0.17 µg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In the ABTS assay, the EOs of the same sample (flower) depicted the utmost potential to scavenge the free radicals with an IC50 = 178.0 ± 0.14 µg/mL as compared with the ascorbic acid, having an IC50 of 87.34 ± 0.10 µg/mL the using 2,2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic acid (ABTS) assay. The EOs of all parts of O. arabicus have useful bioactive components due to which they present antidiabetic and antioxidant significance. Furthermore, additional investigations are considered necessary to expose the responsible components of the examined biological capabilities, which would be effective in the production of innovative drugs.
Collapse
Affiliation(s)
- Obaid Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Chemistry, University of Malakand, Chakdara Dir Lower 18800, Pakistan
| | - Muddaser Shah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Jamal Nasser Al-Sabahi
- Central Instrumentation Laboratory, Medical Research Center, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Tanveer Alam
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| |
Collapse
|
6
|
Uddin ABMN, Hossain F, Reza ASMA, Nasrin MS, Alam AHMK. Traditional uses, pharmacological activities, and phytochemical constituents of the genus Syzygium: A review. Food Sci Nutr 2022; 10:1789-1819. [PMID: 35702283 PMCID: PMC9179155 DOI: 10.1002/fsn3.2797] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The genus Syzygium comprises 1200-1800 species that belong to the family of Myrtaceae. Moreover, plants that are belonged to this genus are being used in the traditional system of medicine in Asian countries, especially in China, India, and Bangladesh. The aim of this review is to describe the scientific works and to provide organized information on the available traditional uses, phytochemical constituents, and pharmacological activities of mostly available species of the genus Syzygium in Bangladesh. The information related to genus Syzygium was analytically composed from the scientific databases, including PubMed, Google Scholar, Science Direct, Web of Science, Wiley Online Library, Springer, Research Gate link, published books, and conference proceedings. Bioactive compounds such as flavanone derivatives, ellagic acid derivatives and other polyphenolics, and terpenoids are reported from several species of the genus Syzygium. However, many members of the species of the genus Syzygium need further comprehensive studies regarding phytochemical constituents and mechanism-based pharmacological activities.
Collapse
Affiliation(s)
- A. B. M. Neshar Uddin
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Farhad Hossain
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - A. S. M. Ali Reza
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Mst. Samima Nasrin
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | | |
Collapse
|
7
|
GC-MS Analysis and Biomedical Therapy of Oil from n-Hexane Fraction of Scutellaria edelbergii Rech. f.: In Vitro, In Vivo, and In Silico Approach. Molecules 2021; 26:molecules26247676. [PMID: 34946757 PMCID: PMC8706644 DOI: 10.3390/molecules26247676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy's. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.
Collapse
|
8
|
El-Nashar HAS, Eldehna WM, Al-Rashood ST, Alharbi A, Eskandrani RO, Aly SH. GC/MS Analysis of Essential Oil and Enzyme Inhibitory Activities of Syzygium cumini (Pamposia) Grown in Egypt: Chemical Characterization and Molecular Docking Studies. Molecules 2021; 26:molecules26226984. [PMID: 34834076 PMCID: PMC8618078 DOI: 10.3390/molecules26226984] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical composition of the leaf essential oil via gas chromatography-mass spectrometry (GC/MS) analysis revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL. In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL. Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of -6.75, -5.61, and -7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance memory performance and for diabetic patients to control blood glucose.
Collapse
Affiliation(s)
- Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (H.A.S.E.-N.); (W.M.E.)
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (H.A.S.E.-N.); (W.M.E.)
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.T.A.-R.); (A.A.); (R.O.E.)
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.T.A.-R.); (A.A.); (R.O.E.)
| | - Razan O. Eskandrani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.T.A.-R.); (A.A.); (R.O.E.)
| | - Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt;
| |
Collapse
|
9
|
Mariammal BGV, Devarajan DW, Jerrin R, Viswanathan S, Siddikuzzaman, Gopal R. In Vivo Treatment Efficacy of Essential Oil Isolated from Seeds of Momordica charantia in Streptozotocin-Induced Diabetes Mellitus. Recent Pat Biotechnol 2021; 15:316-331. [PMID: 34515016 DOI: 10.2174/1872208315666210910092105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/16/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND All parts of Momordica charantia L. have potential hypoglycemic properties in reversing the metabolic disorder of diabetes mellitus. However, there exists a need for preparing an effective and safer formulation of active phytochemicals. We have also reviewed and analyzed certain patents on such preparatory methods for Momordica charantia L. formulations. OBJECTIVE This study aimed to isolate essential oil from the seeds of Momordica charantia L., analyze its phytochemicals, and study their anti-diabetic effects. METHODS The essential oil was isolated by the hydrodistillation method and analyzed for phytochemicals by GC-MS. Furthermore, its acute toxicity was tested in rats. Anti-diabetic effects were evaluated in Streptozotocin-induced diabetic rats with 17.5 and 55 mg/kg b.wt of essential oil by evaluating blood glucose, serum lipid profile, liver glycogen, protein, and other serum markers such as ALT, AST, ALP, urea, and creatinine. The histologic changes in the liver, pancreas, and kidney were evaluated using Haematoxylin and Eosin staining. RESULTS The phytochemicals having hypoglycaemic and insulin induction potency were identified in the GC-MS analysis. A highly significant (p≤0.01; p≤0.001) reduction in blood glucose was observed from 17.5 mg/kg and 55 mg/kg essential oil treatments, respectively. Diabetes-associated metabolic alterations (p≤0.001) observed in diabetic control rats such as lipid profile, enzymes, glycogen, protein, urea, and creatinine were normalized upon treatment with essential oil. Moreover, the histologic changes in vital organs reversed in treated rats. CONCLUSION The essential oil of Momordica charantia L. seed has promising potency to normalize the metabolic changes of type II diabetes mellitus.
Collapse
Affiliation(s)
| | - David Wilson Devarajan
- School of Science, Arts, Media and Management (SSAMM), Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
| | - Ruselraj Jerrin
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
| | - Sundaram Viswanathan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
| | - Siddikuzzaman
- International Institute of Innovation & Technology (IIIT), Action Area 1D, Newtown, Kolkata, West Bengal-700156, India
| | - Rengaswamy Gopal
- Department of Zoology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India
| |
Collapse
|
10
|
Syzygium aromaticum Extracts as a Potential Antibacterial Inhibitors against Clinical Isolates of Acinetobacter baumannii: An In-Silico-Supported In-Vitro Study. Antibiotics (Basel) 2021; 10:antibiotics10091062. [PMID: 34572644 PMCID: PMC8472170 DOI: 10.3390/antibiotics10091062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
Imipenem is the most efficient antibiotic against Acinetobacter baumannii infection, but new research has shown that the organism has also developed resistance to this agent. A. baumannii isolates from a total of 110 clinical samples were identified by multiplex PCR. The antibacterial activity of Syzygium aromaticum multiple extracts was assessed following the GC-Mass spectra analysis. The molecular docking study was performed to investigate the binding mode of interactions of guanosine (Ethanolic extract compound) against Penicillin- binding proteins 1 and 3 of A. baumannii. Ten isolates of A. baumannii were confirmed to carry recA and iutA genes. Isolates were multidrug-resistant containing blaTEM and BlaSHV. The concentrations (0.04 to 0.125 mg mL-1) of S. aromaticum ethanolic extract were very promising against A. baumannii isolates. Even though imipenem (0.02 mg mL-1) individually showed a great bactericidal efficacy against all isolates, the in-silico study of guanosine, apioline, eugenol, and elemicin showed acceptable fitting to the binding site of the A. baumannii PBP1 and/or PBP3 with highest binding energy for guanosine between -7.1 and -8.1 kcal/mol respectively. Moreover, it formed π-stacked interactions with the residue ARG76 at 4.14 and 5.6, Å respectively. These findings might support the in vitro study and show a substantial increase in binding affinity and enhanced physicochemical characteristics compared to imipenem.
Collapse
|
11
|
Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2497354. [PMID: 34394824 PMCID: PMC8357497 DOI: 10.1155/2021/2497354] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
The biologically active phytochemicals are sourced from edible and medicinally important plants and are important molecules being used for the formulation of thousands of drugs. These phytochemicals have great benefits against many ailments particularly the inflammatory diseases or oxidative stress-mediated chronic diseases. Eugenol (EUG) is a versatile naturally occurring molecule as phenolic monoterpenoid and frequently found in essential oils in a wide range of plant species. EUG bears huge industrial applications particularly in pharmaceutics, dentistry, flavoring of foods, agriculture, and cosmeceutics. It is being focused recently due to its great potential in preventing several chronic conditions. The World Health Organization (WHO) has declared EUG as a nonmutant and generally recognized as safe (GRAS) molecule. The available literature about pharmacological activities of EUG shows remarkable anti-inflammatory, antioxidant, analgesic, and antimicrobial properties and has a significant effect on human health. The current manuscript summarizes the pharmacological characteristics of EUG and its potential health benefits.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mahnoor Khadim
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, China
| | - Yali Yang
- Department of Pathology, Affiliated Hospital of Yunnan University/Second People's Hospital of Yunnan Province, Kunming 650021, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
12
|
Singh N, Yadav SS, Kumar S, Narashiman B. A review on traditional uses, phytochemistry, pharmacology, and clinical research of dietary spice Cuminum cyminum L. Phytother Res 2021; 35:5007-5030. [PMID: 33893678 DOI: 10.1002/ptr.7133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/07/2022]
Abstract
Cuminum cyminum L. is a versatile spice belonging to family Apiaceae. Though the plant has pan-tropical distribution but it is indigenous to Egypt, the Mediterranean, and South Asian countries. It exhibits numerous culinary, traditional, and pharmacological attributes. Its traditional uses also validate its immense pharmacological potential. Cuminum cyminum is the hub of numerous bioactives such as alkaloids, flavonoids, terpenoids, and so forth. Cuminaldehyde is the major bioactive, rendered to most of its pharmacological as well as clinical significance. The present study comprised of current knowledge on its taxonomy, nutritional, traditional, phytochemistry, pharmacology (antimicrobial, antioxidant, anti-inflammation, antidiabetic, wound healing, anticancer, etc.), toxicology, and clinical attributes. Besides, the mechanism of action is also well explained. The present study provides a rationale for further bioprospection of this wonder plant. Future studies are needed to fill the research gaps, particularly on relevant phytocompound isolation, their pre-clinical and clinical characterization, evaluation, and structure-activity relationship. Moreover, well-designed and highly appropriate clinical and placebo trials are still needed to demonstrate the trustworthy role of cumin on human health.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | | | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Ch. Bansi Lal University, Bhiwani, India
| | | |
Collapse
|
13
|
Lammari N, Louaer O, Meniai AH, Fessi H, Elaissari A. Plant oils: From chemical composition to encapsulated form use. Int J Pharm 2021; 601:120538. [PMID: 33781879 DOI: 10.1016/j.ijpharm.2021.120538] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.
Collapse
Affiliation(s)
- Narimane Lammari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France; Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Ouahida Louaer
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France.
| |
Collapse
|
14
|
Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110632] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Effect of eugenol treatment in hyperglycemic murine models: A meta-analysis. Pharmacol Res 2021; 165:105315. [PMID: 33497803 DOI: 10.1016/j.phrs.2020.105315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Diabetes is a highly prevalent health condition affecting many people worldwide. In vitro studies have described the positive effects of cloves and its major compound, eugenol, in the treatment of diabetes. However, it is unclear whether the effects of this compound are negative, neutral, or positive, on hyperglycemic animals. Therefore, a meta-analytical review was conducted to determine the magnitude of effects of eugenol on variables directly and indirectly related to diabetes. This study revealed that eugenol treatment decreased the glucose levels and the activity of carbohydrate-metabolizing enzymes, ameliorated the lipid profile, and reduced the oxidative, renal, and hepatic damages in hyperglycemic rodents. Moreover, eugenol alleviated the weight loss and restored the activity of the antioxidant defense system. Insulin levels was not affected by eugenol treatment. Also, mixed model analyses revealed that the use of purified or non-purified eugenol and the concentrations administered significantly affected the treatment outcome. In conclusion, our findings indicate that eugenol may have potential therapeutic effects in the treatment of diabetes. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
|
16
|
Mohamed RS, Abdel-Salam AM. Efficiency of a formulated condiment (duqqa) in mitigation of diabetes and its complications induced by streptozotocin-nicotinamide in rats. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Duqqa is a condiment, consisting of black pepper, cumin, sesame, coriander and high amount of salt. Reducing salt and adding other beneficial items to traditional duqqa can make it suitable dietary supplement for diabetes management. The current study aimed to assess the effect of a modified duqqa on diabetes and its complications in diabetic rats. Methods: The modified duqqa was formulated by mixing grounded fermented wheat, sesame, coriander, cumin, chicory leaves, cinnamon, turmeric and date seeds powder and studied in diabetic rats which were developed by streptozotocin-nicotinamide injection. Thirty-two rats were divided into four groups (n = 8) including non-diabetic, diabetic control and the other two groups fed on balanced diet supplemented with either 10 or 20% of duqqa prior the induction of diabetes (for one week) to the end of the experiment (8 weeks). Results: The dietary supplementation with 10 and 20% of the formulated duqqa prior the induction of diabetes did not delay the onset of diabetes in rats but produced reduction (32.56% and 50.47%, respectively) in the glucose levels of diabetic rats. Also, diabetic rats fed on the formulated duqqa showed insulin concentrations higher than that of diabetic control rats. Feeding diabetic rats on the formulated duqqa reversed the elevation of kidney lipid peroxidation and nitric oxide, limited the disturbance in the lipid profile as well as liver and kidney functions and elevated both serum and femur magnesium concentrations. Conclusion: The results indicated the hypoglycemic effect of the formulated duqqa and its efficiency in delaying diabetes complications.
Collapse
Affiliation(s)
- Rasha S. Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
17
|
Idm’hand E, Msanda F, Cherifi K. Ethnopharmacological review of medicinal plants used to manage diabetes in Morocco. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00166-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractDiabetes is a chronic metabolic disorder which affects millions of people every year. If diabetes is not controlled, it can cause serious damage and a number of health complications. The aim of this paper was to review published ethnobotanical and ethnopharmacological evidences of Moroccan plants with antidiabetic potentials. Publications describing the medicinal plants used for the treatment of diabetes in Morocco were searched from the databases, including Google Scholar, Elsevier, Medline, Web of Science, SCOPUS and Pubmed. Other literature source was also used including books and theses available in library. About 750 literature references were studied, and only 240 research publications based on data from different Moroccan provinces published until June 2019 were included in this review. In total, 255 plants species belonging to 70 families were reported. Compositae and Lamiaceae were mentioned as the most represented families. The frequently used plant species in the dwellers of most regions of Morocco are Trigonella foenum-graecum, Artemesia herba-alba, Nigella sativa, Olea europaea, Allium cepa and Marrubium vulgare. This review provides useful information and current scientific knowledge on the medicinal plants used to manage diabetes in Morocco. Medicinal plants reported should be submitted to chemical, pharmacological and clinical studies to identify pharmacologically active metabolites and to confirm their antidiabetic activity.
Collapse
|
18
|
Pereira AS, Banegas-Luna AJ, Peña-García J, Pérez-Sánchez H, Apostolides Z. Evaluation of the Anti-Diabetic Activity of Some Common Herbs and Spices: Providing New Insights with Inverse Virtual Screening. Molecules 2019; 24:E4030. [PMID: 31703341 PMCID: PMC6891552 DOI: 10.3390/molecules24224030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Culinary herbs and spices are widely used as a traditional medicine in the treatment of diabetes and its complications, and there are several scientific studies in the literature supporting the use of these medicinal plants. However, there is often a lack of knowledge on the bioactive compounds of these herbs and spices and their mechanisms of action. The aim of this study was to use inverse virtual screening to provide insights into the bioactive compounds of common herbs and spices, and their potential molecular mechanisms of action in the treatment of diabetes. In this study, a library of over 2300 compounds derived from 30 common herbs and spices were screened in silico with the DIA-DB web server against 18 known diabetes drug targets. Over 900 compounds from the herbs and spices library were observed to have potential anti-diabetic activity and liquorice, hops, fennel, rosemary, and fenugreek were observed to be particularly enriched with potential anti-diabetic compounds. A large percentage of the compounds were observed to be potential polypharmacological agents regulating three or more anti-diabetic drug targets and included compounds such as achillin B from yarrow, asparasaponin I from fenugreek, bisdemethoxycurcumin from turmeric, carlinoside from lemongrass, cinnamtannin B1 from cinnamon, crocin from saffron and glabridin from liquorice. The major targets identified for the herbs and spices compounds were dipeptidyl peptidase-4 (DPP4), intestinal maltase-glucoamylase (MGAM), liver receptor homolog-1 (NR5A2), pancreatic alpha-amylase (AM2A), peroxisome proliferator-activated receptor alpha (PPARA), protein tyrosine phosphatase non-receptor type 9 (PTPN9), and retinol binding protein-4 (RBP4) with over 250 compounds observed to be potential inhibitors of these particular protein targets. Only bay leaves, liquorice and thyme were found to contain compounds that could potentially regulate all 18 protein targets followed by black pepper, cumin, dill, hops and marjoram with 17 protein targets. In most cases more than one compound within a given plant could potentially regulate a particular protein target. It was observed that through this multi-compound-multi target regulation of these specific protein targets that the major anti-diabetic effects of reduced hyperglycemia and hyperlipidemia of the herbs and spices could be explained. The results of this study, taken together with the known scientific literature, indicated that the anti-diabetic potential of common culinary herbs and spices was the result of the collective action of more than one bioactive compound regulating and restoring several dysregulated and interconnected diabetic biological processes.
Collapse
Affiliation(s)
- Andreia S.P. Pereira
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria Hillcrest 0083, South Africa;
| | - Antonio J. Banegas-Luna
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Jorge Peña-García
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria Hillcrest 0083, South Africa;
| |
Collapse
|
19
|
Kirkan B, Sarikurkcu C, Amarowicz R. Composition, and antioxidant and enzyme‐inhibition activities, of essential oils from
Satureja thymbra
and
Thymbra spicata
var.
spicata. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bulent Kirkan
- Water Institute, Suleyman Demirel University Isparta Turkey
| | - Cengiz Sarikurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy Suleyman Demirel University Isparta Turkey
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn Poland
| |
Collapse
|
20
|
Pandiyan GN, Mathew N, Munusamy S. Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:549-556. [PMID: 30861442 DOI: 10.1016/j.ecoenv.2019.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 05/06/2023]
Abstract
This study was conducted to attain an alternate plant essential oil (EO) based mosquito larvicide against the dengue vector Aedes aegypti. Here three plants were selected based on their local availability, safety and insecticidal properties. EOs were extracted from Syzygium aromaticum (Myrtaceae) flower buds, fruits of Illicium verum (Schisandraceae) and Trachyspermum ammi (Apiaceae) by hydro-distillation and tested against Ae. aegypti larvae individually and in combinations to find synergistic interactions. Chemical constituent analysis of EOs was done by GC/MS/MS analysis and the main constituents in T. ammi were thymol (93.58%) and terpinen-4-ol (2.16%), in S. aromaticum eugenol 56.32% and caryophyllene 17.91% and in I. verum trans-anethole 53.05% and p-anisaldehyde 12.47%. The EOs from T. ammi, I. verum and S. aromaticum and their top components thymol, trans-anethole and eugenol exhibited larvicidal activity with LC50 values 39.48, 41.30, 66.90, 59.76, 50.19 and 60.89 mgL-1 respectively against Ae. aegypti larvae. The values for the co-toxicity factors for the binary combinations of the EOs were > 20 showing synergistic interactions among the binary mixtures. The respective LC50 values for the 1:1 binary combinations (S. aromaticum + I. verum), (S. aromaticum + T. ammi) and (I. verum + T. ammi) were 49.07, 48.54 and 27.67 mgL-1. β-cyclodextrin inclusion complex made with I. verum + T. ammi combination showed an LC50 value of 23.93 mgL-1. On the whole the outcome of this study draw attention to the capability of synergistic EO combinations to emerge as a safe and environment friendly effective larvicide to control Aedes mosquitoes.
Collapse
Affiliation(s)
| | - Nisha Mathew
- ICMR-Vector Control Research Centre, Puducherry 605006, India..
| | | |
Collapse
|
21
|
Ibrahim A, Umar IA, Aimola IA, Mohammed A. Inhibition of key enzymes linked to diabetes by Annona senegalensis Pers (Annonaceae) leaf in vitro. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Ramadhan AH, Nawas T, Zhang X, Pembe WM, Xia W, Xu Y. Purification and identification of a novel antidiabetic peptide from Chinese giant salamander (Andrias davidianus) protein hydrolysate against α-amylase and α-glucosidase. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1354885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Abuubakar Hassan Ramadhan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Tazbidul Nawas
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Xiaowei Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Warda Mwinyi Pembe
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| |
Collapse
|
23
|
Fancello F, Zara S, Petretto GL, Chessa M, Addis R, Rourke JP, Pintore G. Essential oils from three species of Mentha harvested in Sardinia: chemical characterization and evaluation of their biological activity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1354020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Severino Zara
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | | | - Mario Chessa
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Roberta Addis
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
24
|
Khan I, Rahman H, Abd El-Salam NM, Tawab A, Hussain A, Khan TA, Khan UA, Qasim M, Adnan M, Azizullah A, Murad W, Jalal A, Muhammad N, Ullah R. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:247. [PMID: 28468660 PMCID: PMC5415797 DOI: 10.1186/s12906-017-1766-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
Background Medicinal plants are rich source of traditional herbal medicine around the globe. Most of the plant’s therapeutic properties are due to the presence of secondary bioactive compounds. Methods The present study analyzed the High Pressure Liquid Chromatography (HPLC) fractions of Puncia granatum (peel) extracts (aqueous, chloroform, ethanol and hexane) against multidrug resistant bacterial pathogens (Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus). All the fractions having antibacterial activity was processed for bioactive compounds identification using LC MS/MS analysis. Results Among total HPLC fractions (n = 30), 4 HPLC fractions of P. granatum (peel) showed potential activity against MDR pathogens. Fraction 1 (F1) and fraction 4 (F4) collected from aqueous extract showed maximum activity against P. aeruginosa. Fraction 2 (F2) of hexane showed antibacterial activity against three pathogens, while ethanol F4 exhibited antibacterial activity against A. baumannii. The active fractions were processed for LC MS/MS analysis to identify bioactive compounds. Valoneic acid dilactone (aqueous F1 and F4), Hexoside (ethanol F4) and Coumaric acid (hexane F2) were identified as bioactive compounds in HPLC fractions. Conclusion Puncia granatum peel extracts HPLC fractions exhibited potential inhibitory activity against MDR bacterial human pathogens. Several bioactive compounds were identified from the HPLC fractions. Further characterization of these compounds may be helpful to conclude it as therapeutic lead molecules against MDR pathogens.
Collapse
|
25
|
Ashraf A, Sarfraz RA, Mahmood A. Phenolic compounds’ characterization of Artemisia rutifolia spreng from Pakistani flora and their relationships with antioxidant and antimicrobial attributes. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1243556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aisha Ashraf
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Raja Adil Sarfraz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
- Central Hi-Tech Laboratory, University of Agriculture, Faisalabad, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
| |
Collapse
|
26
|
Zengin G, Nithiyanantham S, Sarikurkcu C, Uysal S, Ceylan R, Ramya KS, Maskovic P, Aktumsek A. Identification of phenolic profiles, fatty acid compositions, antioxidant activities, and enzyme inhibition effects of seven wheat cultivars grown in Turkey: A phytochemical approach for their nutritional value. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1238391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya-Turkey
| | | | - Cengiz Sarikurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Sengul Uysal
- Department of Biology, Science Faculty, Selcuk University, Konya-Turkey
| | - Ramazan Ceylan
- Department of Biology, Science Faculty, Selcuk University, Konya-Turkey
| | | | - Pavle Maskovic
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana, Čačak, Republic of Serbia
| | | |
Collapse
|
27
|
Khalil AA, Rahman UU, Khan MR, Sahar A, Mehmood T, Khan M. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv 2017. [DOI: 10.1039/c7ra04803c] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphical representation regarding sources, extraction techniques and nutraceutical perspectives of eugenol.
Collapse
Affiliation(s)
- Anees Ahmed Khalil
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Ubaid ur Rahman
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Tariq Mehmood
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Muneeb Khan
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| |
Collapse
|