1
|
Xu S, Yu L, Hou Y, Huang B, Wang H, Li D, Wang D. Chemical composition, chemotypic characterization, and histochemical localization of volatile components in different cultivars of Zanthoxylum bungeanum Maxim. leaves. J Food Sci 2023; 88:1336-1348. [PMID: 36786362 DOI: 10.1111/1750-3841.16490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/29/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Zanthoxylum bungeanum Maxim., an important spice plant, is rich in volatile components and has formed several cultivars in China. Genetic variation among different cultivars has significant effects on volatile components. In this study, a total of 52 volatile compounds were detected from 11 cultivars of Z. bungeanum, among which palmitic acid, (+)-limonene, phytol, β-caryophyllene, and terpinyl acetate were screened as characteristic compounds, with palmitic acid and phytol contributing the most to the volatile composition. Combined with the results of chemometric and content analyses, three Z. bungeanum chemotypes were identified: (+)-limonene, β-caryophyllene + terpinyl acetate, and palmitic acid + phytol. In addition, the dynamics of the accumulation of its main components were explored, and the optimal harvest period for Z. bungeanum leaves (late July or early August) was clarified. Moreover, histochemical analysis results showed that terpenoids were mainly accumulated in the oil cells of Z. bungeanum leaves, and there were some differences in the number of oil cells in different chemotypes of Z. bungeanum, which might affect the yield and quality of volatile components. The results showed that the differences of chemical composition among diverse chemotypes of Z. bungeanum might be an important factor leading to the quality differences of the same planting resources. Accordingly, the study on the classification of Z. bungeanum chemotypes and the accumulation patterns of major chemical components is of great theoretical significance and practical value as a favorable guarantee for the development and utilization of Z. bungeanum resources and quality control.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Li Yu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuping Hou
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Bo Huang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Hong Wang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization relies on the College of Forestry of Northwest A & F University, Yangling, Shaanxi, China
| | - Dongmei Wang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization relies on the College of Forestry of Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Characterization and purification of esterase from Cellulomonas fimi DB19 isolated from Zanthoxylum armatum with its possible role in diesel biodegradation. Arch Microbiol 2022; 204:580. [DOI: 10.1007/s00203-022-03210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|
3
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
4
|
Rozina, Ahmad M, Zafar M, Yousaf Z, Ullah SA, Sultana S, Bibi F. Identification of novel, non-edible oil seeds via scanning electron microscopy as potential feedstock for green synthesis of biodiesel. Microsc Res Tech 2021; 85:708-720. [PMID: 34553807 DOI: 10.1002/jemt.23942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 01/24/2023]
Abstract
In the present era, environmental glitches associated with extensive emission of greenhouse gases (GHG) and energy crises caused by exhausting fossil fuel reservoirs has diverted researcher's interest toward alternative and renewable energy sources. Biodiesel is a renewable, biodegradable, and sustainable alternative to petro-diesel. Biodiesel synthesized from non-edible seed oils is preferred due its cost effectiveness and eco-friendly nature. Hence, our present study focused on investigation and identification of micromorphological characters of six novel, non-edible seed oil feedstock for biodiesel production via scanning electron microscopy (SEM). Results of light microscopy of seeds revealed distinct variation in seed size (15.8-1.8 mm in length and 9.4-1.1 in width), shape (round to Cuneiform), and color (from black to yellowish green). Non-edible seed oil content fall in range of 28-38% (wt/wt). Free fatty acid (FFA) content varied from 0.56 to 2.06 mg KOH/g. Multivariate analysis was performed to investigate correlation between three significant variables of seed oil yielding feedstock such as potential for biodiesel synthesis, oil content, and FFA content via principal component analysis. Ultra morphological investigation of seeds surfaces via SEM exhibited distinctive variation in surface sculpturing, cell arrangement, cell shape, periclinal wall shape, margins, protuberances, and anticlinal wall shape. Seed surface sculpturing varied from reticulate, semitectate, wrinkled, rugose, papillate, perforate, and striate. Periclinal wall arrangements confirmed variation from glabrous, raised, depressed, elevated, smooth, pentagonal, entire, and ripple margins. Whereas, anticlinal walls pattern demonstrated variation from angular, smooth, wavy, deep, dentate, entire, irregular, puzzled, elongated, curved, and depressed. Finally, it was concluded from obtained results that SEM could be a possible useful tool in disclosing veiled micromorphological characters of non-edible oil yielding seeds, which provides useful information to researchers for their correct, authentic identification, and classification in modern synthetic system.
Collapse
Affiliation(s)
- Rozina
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zainab Yousaf
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sher Aman Ullah
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Sultana
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farhana Bibi
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Vashisath S, Maurya AK, Agnihotri VK. Comparative chemical profiling of Zanthoxylum armatum DC. from western Himalayan bioresource. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1975579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sachin Vashisath
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Antim K. Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific And Innovative Research, (AcSIR), Ghaziabad, India
| | - Vijai K. Agnihotri
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific And Innovative Research, (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Aromatic Profile Variation of Essential Oil from Dried Makwhaen Fruit and Related Species. PLANTS 2021; 10:plants10040803. [PMID: 33921889 PMCID: PMC8072721 DOI: 10.3390/plants10040803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022]
Abstract
The aim of this research is to evaluate the relationship between genotype, phenotype, and chemical profiles of essential oil obtained from available Zanthoxylum spp. Three specimens of makhwaen (MK) distributed in Northern Thailand were genetically and morphologically compared with other Zanthoxylum spices, known locally as huajiao (HJ) and makwoung (MKO), respectively. HJ was taxonomically confirmed as Z. armatum while MKO and MK were identified as Z. rhetsa and Z. myriacanthum. Genetic sequencing distributed these species into three groups accordingly to their confirmed species. Essential oil of the dried fruits from these samples was extracted and analyzed for their chemical and physical properties. Cluster analysis of their volatile compositions separated MKO and MK apart from HJ with L-limonene, terpinen-4-ol, β-phellandrene, and β-philandrene. By using odor attributes, the essential oil of MKO and MK were closely related possessing fruity, woody, and citrus aromas, while the HJ was distinctive. Overall, the phenotypic characteristic can be used to elucidate the species among makhwaen fruits of different sources. The volatile profiling was nonetheless dependent on the genotypes but makwoung and makhwaen showed similar profiles.
Collapse
|
7
|
In Vitro Antibacterial Activities of Methanolic Extracts of Fruits, Seeds, and Bark of Zanthoxylum armatum DC. J Trop Med 2020; 2020:2803063. [PMID: 32565829 PMCID: PMC7292994 DOI: 10.1155/2020/2803063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Crude methanol extracts of fruits, seeds, and bark of Zanthoxylum armatum were investigated in vitro for antimicrobial activities against 9 different bacterial strains: Bacillus subtilis, Enterococcus faecalis, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus epidermidis using agar well diffusion method, and the MBC values were determined. Only 5 bacteria, i.e., Bacillus subtilis, Enterococcus faecalis, MRSA, Staphylococcus aureus, and Staphylococcus epidermidis exhibited antibacterial properties against the different extracts. The fruit and seed extracts showed activities against 5 bacteria, while the bark extract was active against 2 bacteria only (MRSA and Staphylococcus aureus). Staphylococcus aureus was found to be more susceptible for all the extracts compared to other strains. The maximum ZOI of 20.72 mm was produced by fruits (wild) and 18.10 mm (cultivated) against Staphylococcus aureus. Likewise, the least ZOI of 11.73 mm was produced by seeds (wild) and 11.29 mm (cultivated) against Escherichia faecalis. Similarly, the lowest MBC value of 0.78 mg/mL was obtained for fruit extracts against MRSA, 1.56 mg/mL for fruits, seeds, and bark extracts against Bacillus subtilis, MRSA, and Staphylococcus aureus, and highest value of 50 mg/mL for fruits and seeds extracts against S. epidermidis. The fruits, seeds, and bark extracts of Z. armatum exhibited remarkable antibacterial properties against different pathogenic bacteria causing several diseases, which suggests the potential use of this plant for treating different bacterial diseases such as skin infection, urinary tract infection, dental problems, diarrhea, and dysentery.
Collapse
|