1
|
Sureshkumar J, Jenipher C, Sriramavaratharajan V, Gurav SS, Gandhi GR, Ravichandran K, Ayyanar M. Genus Equisetum L: Taxonomy, toxicology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116630. [PMID: 37207877 DOI: 10.1016/j.jep.2023.116630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The genus Equisetum (Equisetaceae) is cosmopolitan in distribution, with 41 recognized species. Several species of Equisetum are widely used in treating genitourinary and related diseases, inflammatory and rheumatic problems, hypertension, and wound healing in traditional medicine practices worldwide. This review intends to present information on the traditional uses, phytochemical components, pharmacological activities, and toxicity of Equisetum spp. and to analyze the new insights for further study. METHODS Relevant literature has been scanned and collected via various electronic repositories, including PubMed, Science Direct, Google Scholar, Springer Connect, and Science Online, from 1960 to 2022. RESULTS Sixteen Equisetum spp. were documented as widely used in traditional medicine practices by different ethnic groups throughout the world. A total of 229 chemical compounds were identified from Equisetum spp. with the major group of constituents being flavonol glycosides and flavonoids. The crude extracts and phytochemicals of Equisetum spp. exhibited significant antioxidant, antimicrobial, anti-inflammatory, antiulcerogenic, antidiabetic, hepatoprotective, and diuretic properties. A wide range of studies have also demonstrated the safety of Equisetum spp. CONCLUSION The reported pharmacological properties of Equisetum spp. support its use in traditional medicine, though there are gaps in understanding the traditional usage of these plants for clinical experiments. The documented information revealed that the genus is not only a great herbal remedy but also has several bioactives with the potential to be discovered as novel drugs. Detailed scientific investigation is still needed to fully understand the efficacy of this genus; hence, very few Equisetum spp. were studied in detail for phytochemical and pharmacological investigation. Moreover, its bioactives, structure-activity connection, in vivo activity, and associated mechanism of action ought to be explored further.
Collapse
Affiliation(s)
- J Sureshkumar
- Department of Botany, Sri Kaliswari College (Autonomous), (Affiliated to Madurai Kamaraj University), Sivakasi, 626 123, India.
| | - C Jenipher
- Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, 613 503, Tamil Nadu, India.
| | - V Sriramavaratharajan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India.
| | - S S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa, 403 001, India.
| | - G Rajiv Gandhi
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi, 683104, India.
| | - K Ravichandran
- Department of Physics, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, 613 503, Tamil Nadu, India.
| | - M Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, 613 503, Tamil Nadu, India.
| |
Collapse
|
2
|
Abdalla MA, Famuyide I, Wooding M, McGaw LJ, Mühling KH. Secondary Metabolite Profile and Pharmacological Opportunities of Lettuce Plants following Selenium and Sulfur Enhancement. Pharmaceutics 2022; 14:pharmaceutics14112267. [PMID: 36365086 PMCID: PMC9695180 DOI: 10.3390/pharmaceutics14112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Selenium (Se) is an essential trace nutrient for humans and animals owing to its role in redox regulation, thyroid hormone control factors, immunity, inflammatory reactions, brain activities, and carbohydrate regulation. It is also important to support muscle development, as well as for reproductive and cardiovascular well-being. Furthermore, sulfur is known to be a healing element, due to the remarkable function of specialized and secondary S-containing compounds. The scope of the current study was to determine the impact of Se and S enrichment on the secondary metabolite accumulation and antibacterial and NO inhibition activities in green and red leaf lettuce (V1 and V2, respectively). The plants were grown in a hydroponic system supplied with different S concentrations (S0: 0, S1: 1 mM and S2: 1.5 mM K2SO4) via the nutrient solution and foliar-applied varying levels of Se (0, 0.2 and 2.6 µM). Electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QTOF/MS) combined with ultra-performance liquid chromatography (UPLC) was used to identify the secondary metabolites in green and red lettuce. The results indicated that extracts of the biofortified lettuce were not cytotoxic to Vero kidney cells at the highest concentration tested of 1 mg/mL. The ESI/MS of the tentatively identified metabolites showed that the response values of 5-O-caffeoylquinic acid, cyanidin 3-O-galactoside, quercetin 3-O-(6''-acetyl-glucoside) and quercetin 3-O-malonylglucoside were induced synergistically under higher Se and S levels in red lettuce plants. The acetone extract of red lettuce had antibacterial activity against Pseudomonas aeruginosa, with a minimum inhibitory concentration (MIC) of 0.156 and 0.625 μg/mL under S2/Se1 and S2/Se2 treatments, respectively. As with antibacterial activity, the acetone extract of green (V1) lettuce treated with adequate (S1) and higher S (S2) under Se-limiting conditions showed the ability to inhibit nitric oxide (NO) release from macrophages. NO production by macrophages was inhibited by 50% at respective concentrations of 106.1 ± 2.4 and 101.0 ± 0.6 μg/mL with no toxic effect on the cells, in response to S1 and S2, respectively, under Se-deficient conditions (Se0). Furthermore, the red cultivar (V2) exhibited the same effect as the green cultivar (V1) regarding NO inhibition, with IC50 = 113.0 ± 4.2 μg/mL, in response to S1/Se2 treatments. Collectively, the promising NO inhibitory effect and antibacterial activity of red lettuce under the above-mentioned conditions might be attributed to the production of flavonoid glycosides and phenylpropanoic acid esters under the same condition. To the best of our knowledge, this is the first report to show the novel approach of the NO inhibitory effect of Se and S enrichment in food crops, as an indicator for the potential of Se and S as natural anti-inflammatory agents.
Collapse
Affiliation(s)
- Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
- Correspondence: (M.A.A.); (K.H.M.); Tel.: +49-431-880-6471 (M.A.A.); +49-0431-880-3189 (K.H.M.)
| | - Ibukun Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Madelien Wooding
- Department of Chemistry, Natural Sciences 1 Building, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
- Correspondence: (M.A.A.); (K.H.M.); Tel.: +49-431-880-6471 (M.A.A.); +49-0431-880-3189 (K.H.M.)
| |
Collapse
|
3
|
Oyeyinka BO, Afolayan AJ. Suitability of Banana and Plantain Fruits in Modulating Neurodegenerative Diseases: Implicating the In Vitro and In Vivo Evidence from Neuroactive Narratives of Constituent Biomolecules. Foods 2022; 11:foods11152263. [PMID: 35954031 PMCID: PMC9367880 DOI: 10.3390/foods11152263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Active principles in plant-based foods, especially staple fruits, such as bananas and plantains, possess inter-related anti-inflammatory, anti-apoptotic, antioxidative, and neuromodulatory activities. Neurodegenerative diseases affect the functionality of the central and peripheral nervous system, with attendant cognitive deficits being hallmarks of these conditions. The dietary constitution of a wide range of bioactive compounds identified in this review further iterates the significance of the banana and plantain in compromising, halting, or preventing the pathological mechanisms of neurological disorders. The neuroprotective mechanisms of these biomolecules have been identified by using protein expression regulation and specific gene/pathway targeting, such as the nuclear and tumor necrosis factors, extracellular signal-regulated and mitogen-activated protein kinases, activator protein-1, and the glial fibrillary acidic protein. This review establishes the potential double-edged neuro-pharmacological fingerprints of banana and plantain fruits in their traditionally consumed pulp and less utilized peel component for human nutrition.
Collapse
|
4
|
Fatima H, Shahid M, Pruitt C, Pung MA, Mills PJ, Riaz M, Ashraf R. Chemical Fingerprinting, Antioxidant, and Anti-Inflammatory Potential of Hydroethanolic Extract of Trigonella foenum-graecum. Antioxidants (Basel) 2022; 11:364. [PMID: 35204245 PMCID: PMC8869320 DOI: 10.3390/antiox11020364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, the antioxidant and anti-inflammatory potential of hydroethanolic extract of T. foenum-graecum seeds was evaluated. Phenolic profiling of T. foenum-graecum was conducted through high-performance liquid chromatography-photodiode array (HPLC-PDA) as well as through the mass spectrometry technique to characterize compounds responsible for bioactivity, which confirmed almost 18 compounds, 13 of which were quantified through a chromatographic assay. In vitro antioxidant analysis of the extract exhibited substantial antioxidant activities with the lowest IC50 value of both DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) inhibition assays. The extract was found to be non-toxic against human RBCs and murine macrophage RAW 264.7 cells. Moreover, the extract significantly (p < 0.001) reduced the lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α), intrlukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) in RAW 264.7 cells in a concentration-dependent manner. The hydroethanolic extract of T. foenum-graecum exhibited considerable anti-inflammatory potential by decreasing the cellular infiltration to the inflammatory site in both carrageenan-induced peritonitis and an air pouch model of inflammation. Pretreatment with T. foenum-graecum extract caused significant improvement in antioxidants such as superoxide dismutase (SOD), CAT (catalase), malondialdehyde (MDA), and myeloperoxidase (MPO) against oxidative stress induced by carrageenan. Based on our results of in vivo and in vitro experimentation, we concluded that hydroethanolic extract of T. foenum-graecum is a potential source of phenolic compounds with antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Hina Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Chris Pruitt
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Meredith A. Pung
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Paul J. Mills
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| |
Collapse
|
5
|
Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4393266. [PMID: 34777687 PMCID: PMC8580629 DOI: 10.1155/2021/4393266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules, flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that this natural product has beneficial effects on cancer treatment has boosted the researchers' interest towards more extensive studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.
Collapse
|