1
|
Morgado S, Fonseca É, Freitas F, Caldart R, Vicente AC. In-depth analysis of Klebsiella aerogenes resistome, virulome and plasmidome worldwide. Sci Rep 2024; 14:6538. [PMID: 38503805 PMCID: PMC10951357 DOI: 10.1038/s41598-024-57245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Klebsiella aerogenes is an emergent pathogen associated with outbreaks of carbapenem-resistant strains. To date, studies focusing on K. aerogenes have been small-scale and/or geographically restricted. Here, we analyzed the epidemiology, resistome, virulome, and plasmidome of this species based on 561 genomes, spanning all continents. Furthermore, we sequenced four new strains from Brazil (mostly from the Amazon region). Dozens of STs occur worldwide, but the pandemic clones ST93 and ST4 have prevailed in several countries. Almost all genomes were clinical, however, most of them did not carry ESBL or carbapenemases, instead, they carried chromosomal alterations (omp36, ampD, ampG, ampR) associated with resistance to β-lactams. Integrons were also identified, presenting gene cassettes not yet reported in this species (blaIMP, blaVIM, blaGES). Considering the virulence loci, the yersiniabactin and colibactin operons were found in the ICEKp10 element, which is disseminated in genomes of several STs, as well as an incomplete salmochelin cluster. In contrast, the aerobactin hypervirulence trait was observed only in one ST432 genome. Plasmids were common, mainly from the ColRNAI replicon, with some carrying resistance genes (mcr, blaTEM, blaNDM, blaIMP, blaKPC, blaVIM) and virulence genes (EAST1, senB). Interestingly, 172 genomes of different STs presented putative plasmids containing the colicin gene.
Collapse
Affiliation(s)
- Sergio Morgado
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Érica Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Fernanda Freitas
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Raquel Caldart
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Boa Vista, RR, 69300-000, Brazil
| | - Ana Carolina Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
2
|
Peykov S, Stratev A, Kirov B, Gergova R, Strateva T. First detection of a colistin-resistant Klebsiella aerogenes isolate from a critically ill patient with septic shock in Bulgaria. Acta Microbiol Immunol Hung 2022; 69:209-214. [PMID: 36037044 DOI: 10.1556/030.2022.01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Colistin is considered as the last-line antibiotic for the treatment of infections caused by extensively drug-resistant Gram-negative pathogens belonging to the ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) group. The present study aimed to explore the colistin resistance mechanisms of a Klebsiella aerogenes (formerly Enterobacter aerogenes) isolate (Kae1177-1bg) obtained from a Bulgarian critically ill patient with septic shock in 2020. Antimicrobial susceptibility testing and whole-genome sequencing using DNA nanoball technology were performed. The resulting read pairs were used for draft genome assembly, MLST analysis and mutation screening in the pmrA/B, phoP/Q, and mgrB genes. Kae1177-1bg demonstrated high-level resistance to colistin, resistance to 3rd generation cephalosporins and susceptibility to all other antibiotics tested. In our strain a CMY-2-type class C cephalosporinase was the only β-lactamase identified. No mobile colistin resistance (mcr) genes were detected. A total of three missense variants in the genes for the two-component PmrA/PmrB system were identified. Two of them were located in the pmrB (pR57K and pN275K) and one in the pmrA gene (pL162M). The pN275K variant emerged as the most likely cause for colistin resistance because it affected a highly conservative position and was the only nonconservative amino acid substitution. In conclusion, to the best of our knowledge, this is the first documented clinical case of a high-level colistin-resistant K. aerogenes in Bulgaria and the first identification of the nonconservative amino acid substitution pN275K worldwide. Colistin-resistant Gram-negative pathogens of ESKAPE group are serious threat to public health and should be subjected to infection control stewardship practices.
Collapse
Affiliation(s)
- Slavil Peykov
- 1 Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.,2 BioInfoTech Laboratory, Sofia Tech Park, Sofia, Bulgaria.,3 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Stratev
- 4 Intensive Care Unit, UMHAT "St. Ivan Rilski", Sofia, Bulgaria.,5 Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Boris Kirov
- 2 BioInfoTech Laboratory, Sofia Tech Park, Sofia, Bulgaria
| | - Raina Gergova
- 3 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Tanya Strateva
- 3 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
3
|
Genetic Diversity of Virulent Polymyxin-Resistant Klebsiella aerogenes Isolated from Intensive Care Units. Antibiotics (Basel) 2022; 11:antibiotics11081127. [PMID: 36009996 PMCID: PMC9405322 DOI: 10.3390/antibiotics11081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
This study evaluated the scope and genetic basis of polymyxin-resistant Klebsiella aerogenes in Brazil. Eight polymyxin-resistant and carbapenemase-producing K. aerogenes strains were isolated from patients admitted to the ICU of a tertiary hospital. Bacterial species were identified by automated systems and antimicrobial susceptibility profile was confirmed using broth microdilution. The strains displayed a multidrug resistant profile and were subjected to whole-genome sequencing. Bioinformatic analysis revealed a variety of antimicrobial resistance genes, including the blaKPC-2. No plasmid-mediated colistin resistance gene was identified. Nonetheless, nonsynonymous mutations in mgrB, pmrA, pmrB, and eptA were detected, justifying the colistin resistance phenotype. Virulence genes encoding yersiniabactin, colibactin, and aerobactin were also found, associated with ICEKp4 and ICEKp10, and might be related to the high mortality observed among the patients. In fact, this is the first time ICEKp is identified in K. aerogenes in Brazil. Phylogenetic analysis grouped the strains into two clonal groups, belonging to ST93 and ST16. In summary, the co-existence of antimicrobial resistance and virulence factors is deeply worrying, as it could lead to the emergence of untreatable invasive infections. All these factors reinforce the need for surveillance programs to monitor the evolution and dissemination of multidrug resistant and virulent strains among critically ill patients.
Collapse
|
4
|
Mišić D, Kiskaroly F, Szostak MP, Cabal A, Ruppitsch W, Bernreiter-Hofer T, Milovanovic V, Feßler AT, Allerberger F, Spergser J, Müller E, Schwarz S, Braun SD, Monecke S, Ehricht R, Korus M, Benković D, Korzeniowska M, Loncaric I. The First Report of mcr-1-Carrying Escherichia coli Originating from Animals in Serbia. Antibiotics (Basel) 2021; 10:1063. [PMID: 34572647 PMCID: PMC8467794 DOI: 10.3390/antibiotics10091063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was continuous monitoring of the presence of mcr-1 to mcr-5 genes in Enterobacterales isolated from cattle, pigs, and domestic poultry at intensive breeding facilities in Northern Vojvodina, Serbia, from 1 January 1 to 1 October 2020. Out of 2167 examined samples, mcr-1 was observed in five E. coli isolates originating from healthy turkeys. Four isolates belonged to the phylogenetic group B1, and one isolate to the phylogenetic group A. Detected E. coli serogenotypes (somatic O and flagellar H antigens) were O8:H25 and O29:H25. Core-genome multi-locus sequence typing (cgMLST) revealed three ST58 isolates clustering together in Clonal Complex (CC) 155 and two singletons of ST641-CC86 and ST410-CC23, respectively. Clonotyping revealed CH4-32 (n = 3), CH6-53 (n = 1) and CH4-24 (n = 1). In all isolates, the mcr-1 gene was located on a large IncX4 replicon type plasmid. Eight virulence-associated genes (VAGs) typical of avian pathogenic E. coli (APEC) (fyuA, fimH, hlyF, iss, ompT, sitA, traT, iroN) were detected in four isolates. These isolates were investigated for susceptibility to four biocides and revealed MIC values of 0.125% for glutardialdehyde, of 0.00003-0.00006% for chlorohexidine, of 4-6% for isopropanol and of 0.001-0.002% for benzalkonium chloride. All obtained MIC values of the tested biocides were comparable to the reference strain, with no indication of possible resistance. This is the first report of mcr-1.1-carrying E. coli from Serbia. Although only samples from turkeys were mcr-positive in this study, continuous monitoring of livestock samples is advised to prevent a spill-over from animals to humans.
Collapse
Affiliation(s)
- Dušan Mišić
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); (M.K.)
| | - Ferenc Kiskaroly
- Department of Bacteriology, Veterinary Specialistic Institute “Subotica”, 24000 Subotica, Serbia;
| | - Michael P. Szostak
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
| | - Adriana Cabal
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Tanja Bernreiter-Hofer
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Viktoria Milovanovic
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
| | - Andrea T. Feßler
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (S.S.)
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Schwarz
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (S.S.)
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maciej Korus
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); (M.K.)
| | - Damir Benković
- Department of Molecular Diagnostics, Veterinary Specialized Institute “Sombor”, 25000 Sombor, Serbia;
| | - Malgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); (M.K.)
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
| |
Collapse
|
5
|
Janssen AB, van Hout D, Bonten MJM, Willems RJL, van Schaik W. Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J Antimicrob Chemother 2021; 75:3135-3143. [PMID: 32712659 DOI: 10.1093/jac/dkaa305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colistin is an antibiotic that targets the LPS molecules present in the membranes of Gram-negative bacteria. It is used as a last-resort drug to treat infections with MDR strains. Colistin is also used in selective decontamination of the digestive tract (SDD), a prophylactic therapy used in patients hospitalized in ICUs to selectively eradicate opportunistic pathogens in the oropharyngeal and gut microbiota. OBJECTIVES To unravel the mechanisms of acquired colistin resistance in Gram-negative opportunistic pathogens obtained from SDD-treated patients. RESULTS Routine surveillance of 428 SDD-treated patients resulted in 13 strains with acquired colistin resistance (Escherichia coli, n = 9; Klebsiella aerogenes, n = 3; Enterobacter asburiae, n = 1) from 5 patients. Genome sequence analysis showed that these isolates represented multiple distinct colistin-resistant clones but that colistin-resistant strains within the same patient were clonally related. We identified previously described mechanisms that lead to colistin resistance, i.e. a G53 substitution in the response regulator PmrA/BasR and the acquisition of the mobile colistin resistance gene mcr-1.1, but we also observed novel variants of basR with an 18 bp deletion and a G19E substitution in the sensor histidine kinase BasS. We experimentally confirmed that these variants contribute to reduced colistin susceptibility. In a single patient, we observed that colistin resistance in a single E. coli clone evolved through two unique variants in basRS. CONCLUSIONS We show that prophylactic use of colistin during SDD can select for colistin resistance in species that are not intrinsically colistin resistant. This highlights the importance of continued surveillance for strains with acquired colistin resistance in patients treated with SDD.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Denise van Hout
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
D'Onofrio V, Conzemius R, Varda-Brkić D, Bogdan M, Grisold A, Gyssens IC, Bedenić B, Barišić I. Epidemiology of colistin-resistant, carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Croatia. INFECTION GENETICS AND EVOLUTION 2020; 81:104263. [PMID: 32105865 DOI: 10.1016/j.meegid.2020.104263] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Colistin is a last-resort antibiotic for the treatment of infections caused by multidrug and carbapenem-resistant Gram-negative bacteria. Colistin resistance has been emerging and multiple outbreaks have been reported in Europe and elsewhere. It has been most frequently reported in carbapenem-resistant K. pneumoniae. In this study, 24 multidrug and colistin-resistant clinical isolates (14 K. pneumoniae, one E. aerogenes, one E. cloacae, and eight A. baumannii) were collected from four hospitals in Croatia from 2013 to 2018, in order to analyse the molecular epidemiology and mechanisms of antibiotic resistance. β-lactamase and carbapenemase genes were detected by PCR. Genotyping was done on selected isolates by rep-PCR. Whole genome sequencing (WGS) was performed to discover possible molecular mechanisms for the observed colistin resistance. All isolates, except two K. pneumoniae isolates, were extensively drug resistant. Ten out of 16 (63%) K. pneumoniae isolates possessed blaOXA-48, which is the most common carbapenem resistance gene in Croatia and in other parts of Europe. All A. baumannii isolates possessed the OXA-23-like carbapenem hydrolysing oxacillinase and five turned out to be pandrug-resistant. Colistin resistance was most likely chromosomally mediated. After sequence analysis, none of the isolates were found to possess any of the mcr gene variants. Several previously reported mutations were found in PmrB, PhoP, PhoQ, and MgrB, which are associated with colistin resistance. In the global phylogenetic analysis, DNA mutations causing mutations in the MgrB protein were present mostly in lineages comprising colistin resistant isolates, and the second most prevalent mutation (K3X) was also encountered in our isolates. In addition, based on genotyping by rep-PCR, the spread of colistin resistance is most likely to be clonal. Most importantly, the presence of colistin resistance together with carbapenemase genes in extensively drug resistant isolates poses real threats in the use of carbapenems and colistin to fight infections.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium.; Department of Infectious Diseases and Immunity, Jessa Hospital, 3500 Hasselt, Belgium; Department of Internal Medicine and Center for Infectious Diseases, Radboud University Medical Center, 6663 Nijmegen, The Netherlands
| | - Rick Conzemius
- AIT, Austrian Institute for Technology, 1210 Vienna, Austria
| | | | - Maja Bogdan
- Public Health Institute of Osijek-Baranja County, 31000 Osijek, Croatia; School of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Andrea Grisold
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Inge C Gyssens
- Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium.; Department of Internal Medicine and Center for Infectious Diseases, Radboud University Medical Center, 6663 Nijmegen, The Netherlands
| | - Branka Bedenić
- University Hospital Center Zagreb, 10000 Zagreb, Croatia; School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Barišić
- AIT, Austrian Institute for Technology, 1210 Vienna, Austria.
| |
Collapse
|
7
|
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin Microbiol Rev 2019; 32:e00002-19. [PMID: 31315895 PMCID: PMC6750132 DOI: 10.1128/cmr.00002-19] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Enterobacter is a member of the ESKAPE group, which contains the major resistant bacterial pathogens. First described in 1960, this group member has proven to be more complex as a result of the exponential evolution of phenotypic and genotypic methods. Today, 22 species belong to the Enterobacter genus. These species are described in the environment and have been reported as opportunistic pathogens in plants, animals, and humans. The pathogenicity/virulence of this bacterium remains rather unclear due to the limited amount of work performed to date in this field. In contrast, its resistance against antibacterial agents has been extensively studied. In the face of antibiotic treatment, it is able to manage different mechanisms of resistance via various local and global regulator genes and the modulation of the expression of different proteins, including enzymes (β-lactamases, etc.) or membrane transporters, such as porins and efflux pumps. During various hospital outbreaks, the Enterobacter aerogenes and E. cloacae complex exhibited a multidrug-resistant phenotype, which has stimulated questions about the role of cascade regulation in the emergence of these well-adapted clones.
Collapse
Affiliation(s)
- Anne Davin-Regli
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology, U1047, INSERM, University Montpellier and University Hospital Nîmes, Nîmes, France
| | - Jean-Marie Pagès
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| |
Collapse
|
8
|
Petrosillo N, Taglietti F, Granata G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J Clin Med 2019; 8:E934. [PMID: 31261755 PMCID: PMC6678465 DOI: 10.3390/jcm8070934] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/01/2019] [Accepted: 06/25/2019] [Indexed: 01/17/2023] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae represents an increasing threat to human health, causing difficult-to-treat infections with a high mortality rate. Since colistin is one of the few treatment options for carbapenem-resistant K. pneumoniae infections, colistin resistance represents a challenge due to the limited range of potentially available effective antimicrobials, including tigecycline, gentamicin, fosfomycin and ceftazidime/avibactam. Moreover, the choice of these antimicrobials depends on their pharmacokinetics/pharmacodynamics properties, the site of infection and the susceptibility profile of the isolated strain, and is sometimes hampered by side effects. This review describes the features of colistin resistance in K. pneumoniae and the characteristics of the currently available antimicrobials for colistin-resistant MDR K. pneumoniae, as well as the characteristics of novel antimicrobial options, such as the soon-to-be commercially available plazomicin and cefiderocol. Finally, we consider the future use of innovative therapeutic strategies in development, including bacteriophages therapy and monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Petrosillo
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| | - Fabrizio Taglietti
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| | - Guido Granata
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| |
Collapse
|
9
|
Bedenić B, Slade M, Starčević LŽ, Sardelić S, Vranić-Ladavac M, Benčić A, Zujić Atalić V, Bogdan M, Bubonja-Šonje M, Tomić-Paradžik M, Tot T, Lukić-Grlić A, Drenjančević D, Varda-Brkić D, Bandić-Pavlović D, Mihaljević S, Zarfel G, Gužvinec M, Conzemius R, Barišić I, Tambić-Andraševic A. Epidemic spread of OXA-48 beta-lactamase in Croatia. J Med Microbiol 2018; 67:1031-1041. [PMID: 29927373 DOI: 10.1099/jmm.0.000777] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE A dramatic increase in OXA-48 β-lactamase was observed recently not only in large hospital centres, but also in smaller suburban hospital centres in geographic areas bordering Croatia. The aim of the study was to analyse the epidemiology, the mechanisms of antibiotic resistance and the routes of spread of OXA-48 carbapenemase in Croatia. METHODS Carbapenemase and other β-lactamase and fluoroquinolone resistance genes were detected by PCR and sequencing. Whole-genome sequencing (WGS) was performed on five representative isolates. The isolates were genotyped by PFGE. RESULTS Forty-eight isolates positive for OXA-48, collected from seven hospital centres in Croatia from May 2016 to May 2017, were analysed (40 Klebsiella pneumoniae, 5 Enterobacter cloacae, 2 Escherichia coli and one Citrobacter freundii). Thirty-three isolates were ESBL positive and harboured group 1 CTX-M 1 β-lactamases. In addition to the β-lactam resistance genes detected by PCR (blaSHV-1, blaOXA-48 and blaOXA-1), WGS of five representative isolates revealed the presence of genes encoding aminoglycoside resistance, aadA2 and aph3-Ia, fluoroquinolone resistance determinants aac(6)Ib-c, oqxA and oqxB, the sulfonamide resistance gene sul1, and fosA (fosfomycin resistance). IncL plasmid was found in all isolates. Two K. pneumoniae isolates belonged to ST16, two E. cloacae to ST66 and E. coli to ST354. K. pneumoniae isolates were allocated to five clusters by PFGE which occured in different hospitals, indicating epidemic spread. CONCLUSIONS The OXA-48-positive organisms found in this study showed wide variability in antibiotic susceptibility, β-lactamase content and PFGE banding patterns. This study revealed a switch from the predominance of VIM-1 in 2012-2013 to that of OXA-48 in the 2015 to 2017.
Collapse
Affiliation(s)
- Branka Bedenić
- 1School of Medicine, University of Zagreb, Croatia.,2University Hospital Center Zagreb, Croatia
| | - Mia Slade
- 3Croatian Institute of Transfusion Medicine (CITM), Croatia
| | | | | | | | - Ana Benčić
- 1School of Medicine, University of Zagreb, Croatia
| | - Vlasta Zujić Atalić
- 6Public Health Institute of Osijek-Baranja County, Osijek, Croatia.,7School of Medicine, University of Osijek, University Hospital Center Osijek, Croatia
| | - Maja Bogdan
- 6Public Health Institute of Osijek-Baranja County, Osijek, Croatia.,7School of Medicine, University of Osijek, University Hospital Center Osijek, Croatia
| | | | | | - Tatjana Tot
- 10Department for Microbiology, General Hospital Karlovac, Croatia
| | - Amarela Lukić-Grlić
- 1School of Medicine, University of Zagreb, Croatia.,11Children's Hospital Zagreb, Croatia
| | - Domagoj Drenjančević
- 7School of Medicine, University of Osijek, University Hospital Center Osijek, Croatia
| | | | - Daniela Bandić-Pavlović
- 1School of Medicine, University of Zagreb, Croatia.,2University Hospital Center Zagreb, Croatia
| | - Slobodan Mihaljević
- 1School of Medicine, University of Zagreb, Croatia.,2University Hospital Center Zagreb, Croatia
| | - Gernot Zarfel
- 12Institute for Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Austria
| | - Marija Gužvinec
- 13University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Rick Conzemius
- 14AIT, Austrian Institute for Technology, Vienna, Austria
| | - Ivan Barišić
- 14AIT, Austrian Institute for Technology, Vienna, Austria
| | | |
Collapse
|