1
|
Wang Y, Ruan YQ, He LJ, Song MK, Olatunji OJ, Wang X, Zuo J. PPARγ Functional Deficiency Expedited Fatty Acid Utilization in the Liver: A Foundation of Inflammatory Adipokine-Induced Hypolipemia in Rheumatoid Arthritis. ACS Pharmacol Transl Sci 2024; 7:3969-3983. [PMID: 39698269 PMCID: PMC11650746 DOI: 10.1021/acsptsci.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Triglyceride (TG) and its derivatives tend to be decreased in rheumatoid arthritis (RA) patients' blood when inflammation progresses. Aside from the role as a lipid buffer, white adipose tissue (WAT) contributes to this abnormality via adipokines, which regulate many metabolic signals. This work investigated adipokine-caused hepatic changes and their involvement in RA-related hypolipemia. Given their immune similarities with RA and pathological representativeness, adjuvant-induced arthritis (AIA) rats and antigen-induced arthritis (AA) mice were adopted. Adipokine levels in the liver were quantified, and their hepatic conditions were assessed by oxidative/enzymatic indicators. Besides kit-based metabolite quantification, fatty acid levels in blood were accurately determined by GC-MS. Metabolic differences between healthy and AIA rats were further characterized by UPLC-MS2. In vitro, preadipocytes were stimulated by RA/AIA blood serum or together with rosiglitazone, a PPARγ agonist. The medium was used to culture HepG2 cells. Some AIA rats were subjected to adipectomy or rosiglitazone therapies. Being WAT-released mediators, IL-1β, IL-6, MCP-1, adiponectin, and visfatin were apparently increased in AIA/AA rodent models' liver, causing oxidative stress escalation, liver injuries, and fatty acid oxidation acceleration. This metabolic change was coincided to expression increase of CD36, FABP1, ATGL, and CPT-1A. PPARγ deficiency occurred both in vivo and in vitro under rheumatic conditions. RA serum reduced PPARγ expression and impaired its inhibition on NF-κB transcription activity in preadipocytes, which then led to excessive secretion of inflammatory adipokines. The corresponding medium down-regulated PPARγ and promoted expression of lipid catabolic enzymes in HepG2 cells. These effects were abrogated by rosiglitazone. Both the therapies impeded inflammatory secretion of WAT and fat catabolism of the liver. These data demonstrate that RA potentiates the capacity of WAT to secrete inflammatory adipokines. The resulting condition represses PPARγ expression and disrupts TG anabolism/catabolism balance in the liver. Because hepatocytes utilize more lipids but synthesize less, hypolipemia develops.
Collapse
Affiliation(s)
- Yan Wang
- Department
of Pharmacy, The Second Affiliated Hospital
of Wannan Medical College, Wuhu 241000, China
- Xin’an
Medicine Research Center, The First Affiliated
Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Yu-Qing Ruan
- Department
of Pharmacy, The Second Affiliated Hospital
of Wannan Medical College, Wuhu 241000, China
- Xin’an
Medicine Research Center, The First Affiliated
Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Lian-Jun He
- Precision
Medicine Centre, The First Affiliated Hospital
of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Meng-Ke Song
- Department
of Pharmacy, The Second Affiliated Hospital
of Wannan Medical College, Wuhu 241000, China
- Xin’an
Medicine Research Center, The First Affiliated
Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | | | - Xiu Wang
- Research
Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, China
| | - Jian Zuo
- Department
of Pharmacy, The Second Affiliated Hospital
of Wannan Medical College, Wuhu 241000, China
- Xin’an
Medicine Research Center, The First Affiliated
Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
- Anhui Province
Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, China
| |
Collapse
|
2
|
Liang X, Xu J, Jiang Y, Yan Y, Wu H, Dai J, Cui Y, Zhang C, Chen W, Zhang Z, Guo R. Concomitant genomic features stratify prognosis to patients with advanced EGFR mutant lung cancer. Mol Carcinog 2024; 63:1643-1653. [PMID: 38860603 DOI: 10.1002/mc.23750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
This study aimed to explore the clinical significance of genomics features including tumor mutation burden (TMB) and copy number alteration (CNA) for advanced EGFR mutant lung cancer. We retrospectively identified 1378 patients with advanced EGFR mutant lung cancer and next-generation sequencing tests from three cohorts. Multiple co-occurring genomics alternations occurred in a large proportion (97%) of patients with advanced EGFR mutant lung cancers. Both TMB and CNA were predictive biomarkers for these patients. A joint analysis of TMB and CNA found that patients with high TMB and high CNA showed worse responses to EGFR-TKIs and predicted worse outcomes. TMBhighCNAhigh, as a high-risk genomic feature, showed predictive ability in most of the subgroups based on clinical characteristics. These patients had larger numbers of metastatic sites, and higher rates of EGFR copy number amplification, TP53 mutations, and cell-cycle gene alterations, which showed more potential survival gain from combination treatment. Furthermore, a nomogram based on genomic features and clinical features was developed to distinguish prognosis. Genomic features could stratify prognosis and guide clinical treatment for patients with advanced EGFR mutant lung cancer.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Jiali Xu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqian Yan
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongshuai Wu
- Department of Central Laboratory, Wuxi Key Laboratory of Biomaterials for Clinical Application, Key Laboratory for Multidisciplinary Intersection of Radiotherapy and Immunology for Gastrointestinal Tumor, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Jiali Dai
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Cui
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing, Jiangsu, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Renhua Guo
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Wang M, Ding X, Fang X, Xu J, Chen Y, Qian Y, Zhang J, Yu D, Zhang X, Ma X, Zhu T, Gu J, Zhang X. Circ6834 suppresses non-small cell lung cancer progression by destabilizing ANHAK and regulating miR-873-5p/TXNIP axis. Mol Cancer 2024; 23:128. [PMID: 38890620 PMCID: PMC11184876 DOI: 10.1186/s12943-024-02038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in cancer progression and metastasis. However, the expression profiles and biological roles of circRNAs in non-small cell lung cancer (NSCLC) remain unclear. METHODS In this study, we identified a novel circRNA, hsa_circ_0006834 (termed circ6834), in NSCLC by RNA-seq and investigated the biological role of circ6834 in NSCLC progression in vitro and in vivo. Finally, the molecular mechanism of circ6834 was revealed by tagged RNA affinity purification (TRAP), western blot, RNA immunoprecipitation, dual luciferase reporter gene assays and rescue experiments. RESULTS Our results showed that circ6834 was downregulated in NSCLC tumor tissues and cell lines. Circ6834 overexpression inhibited NSCLC cell growth and metastasis both in vitro and in vivo, while circ6834 knockdown had the opposite effect. We found that TGF-β treatment decreased circ6834 expression, which was associated with the QKI reduction in NSCLC cells and circ6834 antagonized TGF-β-induced EMT and metastasis in NSCLC cells. Mechanistically, circ6834 bound to AHNAK protein, a key regulator of TGF-β/Smad signaling, and inhibited its stability by enhancing TRIM25-mediated ubiquitination and degradation. In addition, circ6834 acted as a miRNA sponge for miR-873-5p and upregulated TXNIP gene expression, which together inactivated the TGF-β/Smad signaling pathway in NSCLC cells. CONCLUSION In conclusion, circ6834 is a tumor-suppressive circRNA that inhibits NSCLC progression by forming a negative regulatory feedback loop with the TGF-β/Smad signaling pathway and represents a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoge Ding
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xinjian Fang
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Jing Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yanke Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiuqin Ma
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing, 214200, China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing, 214200, China.
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226300, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Li Z, Liu J, Wang P, Zhang B, He G, Yang L. The novel miR-873-5p-YWHAE-PI3K/AKT axis is involved in non-small cell lung cancer progression and chemoresistance by mediating autophagy. Funct Integr Genomics 2024; 24:33. [PMID: 38363382 DOI: 10.1007/s10142-024-01295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Non-small cell lung cancer (NSCLC) encompasses approximately 85% of all lung cancer cases and is the foremost cancer type worldwide; it is prevalent in both sexes and known for its high fatality rate. Expanding scientific inquiry underscores the indispensability of microRNAs in NSCLC. Here, we probed the impact of miR-873-5p on NSCLC development and chemoresistance. qRT‒PCR was used to measure the miR-873-5p level in NSCLC cells with or without chemoresistance. A model of miR-873-5p overexpression was constructed. The proliferation and viability of NSCLC cells were evaluated through CCK8 and colony formation experiments. Cell migration and invasion were monitored via Transwell assays. Western blotting was used to determine the levels of YWHAE, PI3K, AKT, EMT, apoptosis, and autophagy-related proteins. The sensitivity of NSCLC cells to the chemotherapeutic agent gefitinib was assessed. Additionally, the correlation of YWHAE with miR-873-5p was validated via a dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Overexpressed miR-873-5p suppressed migration, proliferation, invasion, and EMT while concurrently stimulating apoptotic processes. miR-873-5p was downregulated in NSCLC cells resistant to gefitinib. Upregulating miR-873-5p reversed gefitinib resistance by inducing autophagy. YWHAE was confirmed to be a downstream target of miR-873-5p. YWHAE overexpression promoted the malignant behaviors of NSCLC cells and boosted tumor growth, while these effects were reversed following miR-873-5p overexpression. Subsequent investigations revealed that overexpressing YWHAE promoted PI3K/AKT pathway activation, with miR-873-5p displaying inhibitory effects on the YWHAE-mediated PI3K/AKT signaling cascade. miR-873-5p affects proliferation, invasion, migration, EMT, autophagy, and chemoresistance in NSCLC by controlling the YWHAE/PI3K/AKT axis.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Jinglei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Boyu Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Guanghui He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Liwei Yang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China.
| |
Collapse
|
5
|
Yan T, Tian X, Liu F, Liu Q, Sheng Q, Wu J, Jiang S. The emerging role of circular RNAs in drug resistance of non-small cell lung cancer. Front Oncol 2022; 12:1003230. [PMID: 36303840 PMCID: PMC9592927 DOI: 10.3389/fonc.2022.1003230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the characteristics of aggressiveness and high risk of postoperative recurrence, non-small cell lung cancer (NSCLC) is a serious hazard to human health, accounting for 85% of all lung cancer cases. Drug therapies, including chemotherapy, targeted therapy and immunotherapy, are effective treatments for NSCLC in clinics. However, most patients ultimately develop drug resistance, which is also the leading cause of treatment failure in cancer. To date, the mechanisms of drug resistance have yet to be fully elucidated, thus original strategies are developed to overcome this issue. Emerging studies have illustrated that circular RNAs (circRNAs) participate in the generation of therapeutic resistance in NSCLC. CircRNAs mediate the modulations of immune cells, cytokines, autophagy, ferroptosis and metabolism in the tumor microenvironment (TME), which play essential roles in the generation of drug resistance of NSCLC. More importantly, circRNAs function as miRNAs sponges to affect specific signaling pathways, directly leading to the generation of drug resistance. Consequently, this review highlights the mechanisms underlying the relationship between circRNAs and drug resistance in NSCLC. Additionally, several therapeutic drugs associated with circRNAs are summarized, aiming to provide references for circRNAs serving as potential therapeutic targets in overcoming drug resistance in NSCLC.
Collapse
Affiliation(s)
- Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qing Sheng
- School of Architecture and Fine Art, Dalian University of Technology, Dalian, China
| | - Jianlin Wu
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| |
Collapse
|