1
|
Cronin-O'Reilly S, Krispyn KN, Maus C, Standish RJ, Loneragan NR, Tweedley JR. Empirical evidence of alternative stable states in an estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176356. [PMID: 39299323 DOI: 10.1016/j.scitotenv.2024.176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Due to human activity, ecosystems are exceeding their ecological thresholds and shifting into undesired alternative stable states with new ecological configurations. Despite their purported ubiquity, it is uncertain whether estuaries can exist in multiple stable states. We use data from a 3.5-year study of invertebrate communities in an Australian estuary that is usually closed to the ocean to test for their existence. Sampling spanned a 1.5-year period of hypersalinity (>40 ppt) during a prolonged estuary closure, where salinity reached 122 ppt, and for two years during and after the estuary opened to the ocean when salinities were mesohaline (5-19 ppt). Two distinct community states occurred before and after the sandbar breached, with an intermediary period of invertebrate community impoverishment due to sediment scouring. During the closure, the community was simple (average of one taxa 100 cm-2) and dominated by larvae of terrestrial insects, most notably the halotolerant, non-biting midge Tanytarsus barbitarsis. After opening, the richness and abundance of invertebrates increased (average of four taxa and 84 individuals 100 cm-2) as polychaetes, molluscs and crustaceans colonised the estuary, although recovery was incomplete according to previous species records. Duration of estuary closure and salinity were the strongest drivers of composition. This study, together with evidence from the literature, suggests a salinity threshold of 60-65 ppt between states. These empirical data meet key criteria of alternative states, i.e. a clear transition between two distinct self-sustaining communities, indicating a regime shift triggered by an exogenous event. Our findings suggest that temporarily open and closed estuaries can exist in alternative stable states, with prolonged closures, hypersalinity, and sandbar breaching being key determinants of the switch between states. This situation may apply to other low-inflow estuarine systems, particularly in arid, semi-arid, or seasonally arid climates, and may become more frequent with human-induced climate change.
Collapse
Affiliation(s)
- S Cronin-O'Reilly
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia. sorcha.cronin-o'
| | - K N Krispyn
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - C Maus
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - R J Standish
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia; School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - N R Loneragan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia; School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - J R Tweedley
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia; School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
2
|
Song X, Ding J, Zhang Y, Zhu M, Peng Y, Wang Z, Pan G, Zou H. New insights into changes in phosphorus profile at sediment-water interface by microplastics: Role of benthic bioturbation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134047. [PMID: 38492392 DOI: 10.1016/j.jhazmat.2024.134047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Microplastics (MPs) have attracted increasing attention due to their ubiquitous occurrence in freshwater sediments and the detrimental effects on benthic invertebrates. However, a clear understanding of their downstream impacts on ecosystem services is still lacking. This study examines the effects of bio-based polylactic acid (PLA), fuel-based polyethylene terephthalate (PET), and biofilm-covered PET (BPET) MPs on the bioturbator chironomid larvae (Tanypus chinensis), and the influence on phosphorus (P) profiles in microcosms. The changes in biochemical responses and metabolic pathways indicated that MPs disrupted energy synthesis by causing intestinal blockage and oxidative stress in T. chinensis, leading to energy depletion and impaired bioturbation activity. The impairment further resulted in enhanced sedimentary P immobilization. For larval treatments, the internal-P loadings were respectively 11.4%, 8.6%, and 9.0% higher in the PLA, PET, and BPET groups compared to the non-MP control. Furthermore, the influence of bioturbation on P profiles was MP-type dependent. Both BPET and PLA treatments displayed more obvious impacts on P profiles compared to PET due to the changes in MP bioavailability or sediment microenvironment. This study connects individual physiological responses to broader ecosystem services, showing that MPs alter P biogeochemical processes by disrupting the bioturbation activities of chironomid larvae.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Yunbo Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mingda Zhu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yi Peng
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Gang Pan
- School of Humanity, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| | - Hua Zou
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| |
Collapse
|
3
|
Asano T. Multicopper oxidase-2 mediated cuticle formation: Its contribution to evolution and success of insects as terrestrial organisms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104111. [PMID: 38508343 DOI: 10.1016/j.ibmb.2024.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The insect cuticle is a non-cellular matrix composed of polysaccharide chitins and proteins. The cuticle covers most of the body surface, including the trachea, foregut, and hindgut, and it is the body structure that separates the intraluminal environment from the external environment. The cuticle is essential to sustain their lives, both as a physical barrier to maintain homeostasis and as an exoskeleton that mechanically supports body shape and movement. Previously, we proposed a theory about the possibility that the cuticle-forming system contributes to the "evolution and success of insects." The main points of our theory are that 1) insects evolved an insect-specific system of cuticle formation and 2) the presence of this system may have provided insects with a competitive advantage in the early land ecosystems. The key to this theory is that insects utilize molecular oxygen abundant in the atmosphere, which differs from closely related crustaceans that form their cuticles with calcium ions. With newly obtained knowledge, this review revisits the significance of the insect-specific system for insects to adapt to terrestrial environments and also discusses the long-standing question in entomology as to why, despite their great success in terrestrial environments, they poorly adapt to marine environments.
Collapse
Affiliation(s)
- Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan, Minami-osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
4
|
Dornelas ASP, Pestana JLT, de Souza Saraiva A, Barbosa RS, Cavallini GS, Gravato C, da Maia Soares AMV, Sarmento RA. The combined effects of microbial insecticides and sodium chloride on the development and emergence of Chironomus xanthus. PEST MANAGEMENT SCIENCE 2023; 79:2255-2263. [PMID: 36775861 DOI: 10.1002/ps.7407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Freshwater organisms are facing increasing salinity levels, not only due to natural environmental processes, but also human activities, which can cause several physiological adaptations to osmotic stress. Additionally, these organisms might also have to deal with contamination by microbial insecticides. Our main goal was to use Chironomus xanthus to assess the chronic effects of increasing the salinity and commercial formulations of the microbial insecticides based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) as active ingredients, respectively. RESULTS A significant interaction of growth was observed between the biopesticide based on Bb and NaCl on the larvae of C. xanthus. Single exposure to NaCl and each one of the formulations demonstrated deleterious impacts not only on larval development, but also on the emergence success and emergence time of this nontarget insect, with potential consequences for freshwater ecosystems due to cascading effects. CONCLUSION The chronic effects induced by both bioinsecticides show that these formulations can have environmental impacts on nontarget freshwater insects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | | | - Rone Silva Barbosa
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | | | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| |
Collapse
|
5
|
Castillo Velásquez RM, Huamantinco Araujo AA. VARIABILIDAD DE LA ESTRUCTURA COMUNITARIA DE MACROINVERTEBRADOS ACUÁTICOS EN LAS SALINAS DE CHILCA, LIMA, PERÚ. ACTA BIOLÓGICA COLOMBIANA 2022. [DOI: 10.15446/abc.v27n3.90324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Las Salinas de Chilca están localizadas en el km 65 de la carretera Panamericana Sur, representadas por tres lagunas: La Milagrosa (laguna principal y pozas salinas), La Mellicera y La Encantada. El entorno de estas lagunas pertenece a la zona de vida Desierto Subtropical (d-ST). El objetivo del presente estudio fue determinar la influencia de las variables ambientales en los cambios de la estructura comunitaria de macroinvertebrados en las Salinas de Chilca, Lima, Perú. Se realizaron cuatro campañas de colecta desde enero hasta septiembre del 2018, estableciéndose doce estaciones de muestreo, tres estaciones por cada ambiente léntico. La muestra fue colectada a través de barridos con una red tipo D de 500 µm de apertura de malla en la orilla de cada laguna. Los parámetros fisicoquímicos del agua presentaron valores diferenciados en cada laguna y formaron una gradiente de salinidad descendente desde las pozas salinas (de valores hipersalinos) hacia la laguna La Encantada (de valores mesosalinos). Se recolectaron 42 géneros de macroinvertebrados, siendo los géneros más influyentes en los patrones comunitarios: Heleobia, Larsia, Trichocorixa, Ephydra y Artemia, estos organismos representaron el 83,85 % de la abundancia total. El gradiente ambiental generado por la salinidad determinó dos grupos muy diferenciados, un grupo de especies que no toleran valores elevados de salinidad (lagunas mesosalinas) de otro grupo de especies que soportan valores extremos de salinidad (lagunas hipersalinas); sin embargo, la depredación, alteraciones antrópicas, estructura del hábitat, entre otros factores, también estarían influyendo en los cambios de la estructura comunitaria.
Collapse
|
6
|
Shaikhutdinov N, Gusev O. Chironomid midges (Diptera) provide insights into genome evolution in extreme environments. CURRENT OPINION IN INSECT SCIENCE 2022; 49:101-107. [PMID: 34990872 DOI: 10.1016/j.cois.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Extremophiles often undergo marked changes in genomic architecture, likely as a result of adaptation to the harsh environments they inhabit. These changes can involve gene duplications that affect subsequent gene evolution and the regulation of gene expression. Excellent examples of this are provided by two non-biting chironomid midges (Diptera, Chironomidae): Polypedilum vanderplanki, which in its larval form can withstand almost complete water loss, and Belgica antarctica, which exhibits freeze tolerance. This review presents recent studies on the molecular adaptations and evolutionary features of these and other extremophile chironomid genomes, as well as biotechnological applications of a cell line derived from P. vanderplanki that can survive air-drying. We highlight the importance of genomics in identifying molecular pathways and genomic modifications associated with adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Nurislam Shaikhutdinov
- Extreme Biology Laboratory, Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420012, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Oleg Gusev
- Extreme Biology Laboratory, Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420012, Russia; Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan; RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, 230-004, Japan.
| |
Collapse
|
7
|
Saccò M, White NE, Harrod C, Salazar G, Aguilar P, Cubillos CF, Meredith K, Baxter BK, Oren A, Anufriieva E, Shadrin N, Marambio-Alfaro Y, Bravo-Naranjo V, Allentoft ME. Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems. Biol Rev Camb Philos Soc 2021; 96:2828-2850. [PMID: 34747117 DOI: 10.1111/brv.12780] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/01/2023]
Abstract
When it comes to the investigation of key ecosystems in the world, we often omit salt from the ecological recipe. In fact, despite occupying almost half of the volume of inland waters and providing crucial services to humanity and nature, inland saline ecosystems are often overlooked in discussions regarding the preservation of global aquatic resources of our planet. As a result, our knowledge of the biological and geochemical dynamics shaping these environments remains incomplete and we are hesitant in framing effective protective strategies against the increasing natural and anthropogenic threats faced by such habitats. Hypersaline lakes, water bodies where the concentration of salt exceeds 35 g/l, occur mainly in arid and semiarid areas resulting from hydrological imbalances triggering the accumulation of salts over time. Often considered the 'exotic siblings' within the family of inland waters, these ecosystems host some of the most extremophile communities worldwide and provide essential habitats for waterbirds and many other organisms in already water-stressed regions. These systems are often highlighted as natural laboratories, ideal for addressing central ecological questions due to their relatively low complexity and simple food web structures. However, recent studies on the biogeochemical mechanisms framing hypersaline communities have challenged this archetype, arguing that newly discovered highly diverse communities are characterised by specific trophic interactions shaped by high levels of specialisation. The main goal of this review is to explore our current understanding of the ecological dynamics of hypersaline ecosystems by addressing four main research questions: (i) why are hypersaline lakes unique from a biological and geochemical perspective; (ii) which biota inhabit these ecosystems and how have they adapted to the high salt conditions; (iii) how do we protect biodiversity from increasing natural and anthropogenic threats; and (iv) which scientific tools will help us preserve hypersaline ecosystems in the future? First, we focus on the ecological characterisation of hypersaline ecosystems, illustrate hydrogeochemical dynamics regulating such environments, and outline key ecoregions supporting hypersaline systems across the globe. Second, we depict the diversity and functional aspects of key taxa found in hypersaline lakes, from microorganisms to plants, invertebrates, waterbirds and upper trophic levels. Next, we describe ecosystem services and discuss possible conservation guidelines. Finally, we outline how cutting-edge technologies can provide new insights into the study of hypersaline ecology. Overall, this review sheds further light onto these understudied ecosystems, largely unrecognised as important sources of unique biological and functional diversity. We provide perspectives for key future research avenues, and advocate that the conservation of hypersaline lakes should not be taken with 'a grain of salt'.
Collapse
Affiliation(s)
- Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Chris Harrod
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile.,Núcleo Milenio INVASAL, Concepción, 3349001, Chile
| | - Gonzalo Salazar
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile.,Núcleo Milenio INVASAL, Concepción, 3349001, Chile
| | - Pablo Aguilar
- Núcleo Milenio INVASAL, Concepción, 3349001, Chile.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
| | - Carolina F Cubillos
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
| | - Karina Meredith
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster College, Salt Lake City, UT, 84105, U.S.A
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, the Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Elena Anufriieva
- A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, 2 Nakhimov Avenue 2, Sevastopol, 299011, Russia
| | - Nickolai Shadrin
- A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, 2 Nakhimov Avenue 2, Sevastopol, 299011, Russia
| | - Yeri Marambio-Alfaro
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
| | - Víctor Bravo-Naranjo
- Facultad de Ciencias, Universidad de La Serena, Benavente 980, La Serena, Coquimbo, Chile
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| |
Collapse
|
8
|
Coram RA, Jarzembowski EA. Immature Insect Assemblages from the Early Cretaceous (Purbeck/Wealden) of Southern England. INSECTS 2021; 12:insects12100942. [PMID: 34680711 PMCID: PMC8538710 DOI: 10.3390/insects12100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
The record of immature insects from the non-marine Purbeck and Wealden groups (Lower Cretaceous) of southern England is reviewed and expanded. Fossils of adult terrestrial insects are locally common, but terrestrial immature remains are restricted to transported hemipterans, most of which are sessile nymphs or puparia resembling those of extant whiteflies (Aleyrodidae). Remains of immature aquatic insects are more diverse and comprise the extant orders Plecoptera, Ephemeroptera, Odonata, Trichoptera, Hemiptera and Diptera. The Trichoptera are represented by larval cases constructed from a variety of materials corresponding to several ichnogenera. The Wealden immature insects were preserved in predominantly freshwater fluvial settings, whereas the Purbeck ones occur in lagoonal palaeoenvironments, ranging in salinity from brackish to hypersaline. The composition of aquatic immature insect faunas in the latter offers potential for palaeosalinity analysis, although there are complicating factors relating to habitat stability. Uncommon trace fossils such as beetle borings in wood provide evidence of immature insects not represented by body fossils.
Collapse
Affiliation(s)
- Robert A. Coram
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
- Correspondence: (R.A.C.); (E.A.J.)
| | - Edmund A. Jarzembowski
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Correspondence: (R.A.C.); (E.A.J.)
| |
Collapse
|
9
|
Abd-El-aziz MF. Entomofauna in Egyptian saltwater habitats. INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE 2021; 41:2297-2311. [DOI: 10.1007/s42690-021-00510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 09/01/2023]
|
10
|
Dornelas ASP, Sarmento RA, Saraiva AS, Barbosa RS, Vieira MM, Gravato C, Soares AMVM. Effects of two biopesticides and salt on behaviour, regeneration and sexual reproduction of the freshwater planarian Girardia tigrina. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124089. [PMID: 33049628 DOI: 10.1016/j.jhazmat.2020.124089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Microbial insecticides are being used as ecologically-friendly alternatives to traditional insecticides. However, their effects have been poorly investigated on non-target freshwater species, with exception of a few insect species. Moreover, combined effects of microbial insecticides with other environmental stressors, such as salinity, have never been investigated. Thus, our goal was to assess the effects of Bac-Control® (based in Bacillus thuringiensis - Btk) and Boveril® (based in Beauveria bassiana - Bb) with increasing salinities (NaCl) on freshwater planarian Girardia tigrina. It has been reported that increased salinity levels affect freshwater organisms compromising their survival by triggering adaptation processes to cope with osmotic stress. Our results showed delayed regeneration, decreased locomotion and feeding on planarians exposed to NaCl, whereas their sexual reproduction was not affected. Both microbial insecticides impaired feeding, locomotor activity, regeneration, and sexual reproduction of planarians. Planarians exposed to microbial insecticides compromised their progeny. Therefore, microbial insecticides might not be ecologically friendly alternatives to chemical insecticides. Interestingly, harmful effects of microbial insecticides with increasing salinities showed an inadequate response of planarians to cope with induction of their immune response and osmoregulation.
Collapse
Affiliation(s)
- Aline S P Dornelas
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Renato A Sarmento
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Althiéris S Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Campos Belos (Laboratório de Conservação de Agroecossistemas e Ecotoxicologia), Campos Belos, 73840-000 Goiás, Brazil
| | - Rone S Barbosa
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Mayane M Vieira
- Curso de Química Ambiental, Universidade Federal do Tocantins, 77410-530 Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Amadeu M V M Soares
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil; Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Dornelas ASP, Sarmento RA, Cavallini GS, da Silva Barbosa R, Vieira MM, de Souza Saraiva A, Bordalo MD, Soares AMVM, Pestana JLT. Lethal and sublethal effects of the saline stressor sodium chloride on Chironomus xanthus and Girardia tigrina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34223-34233. [PMID: 32557035 DOI: 10.1007/s11356-020-09556-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Salinization in freshwaters is gradually increasing as a result of human activities and climatic changes. Higher salt content causes stress for freshwater organisms. Sodium chloride (NaCl) is among the most frequently occurring salts in freshwater ecosystems. The objective of the present study was to investigate the lethal and sublethal effects of NaCl on freshwater ecosystems, using as test organism the dipteran Chironomus xanthus and the planarian Girardia tigrina. Acute tests showed that C. xanthus was more sensitive (48-h LC50 (median lethal concentration) of 2.97 g NaCl L-1) than G. tigrina (48-h LC50 of 7.77 g NaCl L-1). C. xanthus larvae growth rate (larvae length and head capsule width) was significantly reduced under exposure to concentrations as low as 0.19 g L-1 NaCl and higher. A delay in the emergence time (EmT50) was also demonstrated for the same concentration. Sublethal NaCl effects in G. tigrina included feeding inhibition (LOEC (lowest observed effect concentration) of 0.4 g L-1), reduced locomotion (LOEC = 0.2 g L-1), and 24-48-h blastema regeneration (LOEC = 0.2 g L-1 and 0.1 g L-1, respectively). The results demonstrated the toxicity of NaCl to C. xanthus and G. tigrina including sublethal effects that can result in negative consequences for populations in natural freshwaters under salinization.
Collapse
Affiliation(s)
- Aline Silvestre Pereira Dornelas
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil.
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins (UFT), Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Rone da Silva Barbosa
- Curso de Engenharia Florestal, Universidade Federal do Tocantins, 77410-530, Gurupi, Tocantins, Brazil
| | - Mayane Marques Vieira
- Curso de Química Ambiental, Universidade Federal do Tocantins, 77410-530, Gurupi, Tocantins, Brazil
| | - Althiéris de Souza Saraiva
- Departamento de Agropecuaria (Conservacao de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educacao, Ciência e Tecnologia Goiano - Campus Campos Belos, Campos Belos, Goias, 73840-000, Brazil
| | - Maria D Bordalo
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
12
|
Does Salinity Affect the Distribution of the Artificial Radionuclides 90Sr and 137Cs in Water of the Saline Lakes? A Case of the Crimean Peninsula. WATER 2020. [DOI: 10.3390/w12020349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the framework of radioecological monitoring, the features of the distribution of the post-Chernobyl nuclear power plant (NPP) accident artificial radionuclides of 137Cs and 90Sr in the Crimean saline lakes were studied. Samples were collected from 12 Crimean lakes with a salinity range from 2 to 400 g/L in 2014–2017. Concentration of 90Sr varied from 5.9 to 313.6 Bq/m3, and 137Cs from 0.8 to 106.7 Bq/m3. Closing of the North Crimean Canal resulted in a decrease in radionuclide concentration in the lakes. About 61% of the total variability of 90Sr and 33% of 137Cs in lake water can be explained by salinity changes. The salinity affects the behavior of radionuclides in water, mainly influencing their solubility, on isotope exchange between the solution and bottom sediments, and also, probably, through its influence on accumulation of isotopes by aquatic organisms. Salinity is not the alone factor determining the behavior of radionuclides in the lakes, it only acts by interacting with other factors.
Collapse
|
13
|
Belyakov VP, Anufriieva EV, Bazhora AI, Shadrin NV. Effect of Salinity on Chironomid Larvae (Diptera, Chironomidae) in Hypersaline Lakes of Crimea. BIOL BULL+ 2019. [DOI: 10.1134/s1062359018100059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Golubkov SM, Shadrin NV, Golubkov MS, Balushkina EV, Litvinchuk LF. Food Chains and Their Dynamics in Ecosystems of Shallow Lakes with Different Water Salinities. RUSS J ECOL+ 2018. [DOI: 10.1134/s1067413618050053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Anufriieva EV, Vdodovich IV, Shadrin NV. First data on predation of Eucypris mareotica (Crustacea, Ostracoda) in hypersaline waters. FOOD WEBS 2018. [DOI: 10.1016/j.fooweb.2018.e00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Preston TM, Borgreen MJ, Ray AM. Effects of brine contamination from energy development on wetland macroinvertebrate community structure in the Prairie Pothole Region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:722-732. [PMID: 29723822 DOI: 10.1016/j.envpol.2018.04.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Wetlands in the Prairie Pothole Region (PPR) of North America support macroinvertebrate communities that are integral to local food webs and important to breeding waterfowl. Macroinvertebrates in PPR wetlands are primarily generalists and well adapted to within and among year changes in water permanence and salinity. The Williston Basin, a major source of U.S. energy production, underlies the southwest portion of the PPR. Development of oil and gas results in the coproduction of large volumes of highly saline, sodium chloride dominated water (brine) and the introduction of brine can alter wetland salinity. To assess potential effects of brine contamination on macroinvertebrate communities, 155 PPR wetlands spanning a range of hydroperiods and salinities were sampled between 2014 and 2016. Brine contamination was documented in 34 wetlands with contaminated wetlands having significantly higher chloride concentrations, specific conductance and percent dominant taxa, and significantly lower taxonomic richness, Shannon diversity, and Pielou evenness scores compared to uncontaminated wetlands. Non-metric multidimensional scaling found significant correlations between several water quality parameters and macroinvertebrate communities. Chloride concentration and specific conductance, which can be elevated in naturally saline wetlands, but are also associated with brine contamination, had the strongest correlations. Five wetland groups were identified from cluster analysis with many of the highly contaminated wetlands located in a single cluster. Low or moderately contaminated wetlands were distributed among the remaining clusters and had macroinvertebrate communities similar to uncontaminated wetlands. While aggregate changes in macroinvertebrate community structure were observed with brine contamination, systematic changes were not evident, likely due to the strong and potentially confounding influence of hydroperiod and natural salinity. Therefore, despite the observed negative response of macroinvertebrate communities to brine contamination, macroinvertebrate community structure alone is likely not the most sensitive indicator of brine contamination in PPR wetlands.
Collapse
Affiliation(s)
- Todd M Preston
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA.
| | - Michael J Borgreen
- U.S. Fish and Wildlife Service, Medicine Lake National Wildlife Refuge, Medicine Lake, MT, USA
| | - Andrew M Ray
- National Park Service, Greater Yellowstone Network, Bozeman, MT, USA
| |
Collapse
|