1
|
Boteva E, Doychev K, Kirilov K, Handzhiyski Y, Tsekovska R, Gatev E, Mironova R. Deglycation activity of the Escherichia coli glycolytic enzyme phosphoglucose isomerase. Int J Biol Macromol 2024; 257:128541. [PMID: 38056730 DOI: 10.1016/j.ijbiomac.2023.128541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Glycation is a spontaneous chemical reaction, which affects the structure and function of proteins under normal physiological conditions. Therefore, organisms have evolved diverse mechanisms to combat glycation. In this study, we show that the Escherichia coli glycolytic enzyme phosphoglucose isomerase (Pgi) exhibits deglycation activity. We found that E. coli Pgi catalyzes the breakdown of glucose 6-phosphate (G6P)-derived Amadori products (APs) in chicken lysozyme. The affinity of Pgi to the glycated lysozyme (Km, 1.1 mM) was ten times lower than the affinity to its native substrate, fructose 6-phosphate (Km, 0.1 mM). However, the high kinetic constants of the enzyme with the glycated lysozyme (kcat, 396 s-1 and kcat/Km, 3.6 × 105 M-1 s-1) indicated that the Pgi amadoriase activity may have physiological implications. Indeed, when using total E. coli protein (20 mg/mL) as a substrate in the deglycation reaction, we observed a release of G6P from the bacterial protein at a Pgi specific activity of 33 μmol/min/mg. Further, we detected 11.4 % lower APs concentration in protein extracts from Pgi-proficient vs. deficient cells (p = 0.0006) under conditions where the G6P concentration in Pgi-proficient cells was four times higher than in Pgi-deficient cells (p = 0.0001). Altogether, these data point to physiological relevance of the Pgi deglycation activity.
Collapse
Affiliation(s)
- Elitsa Boteva
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Konstantin Doychev
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kiril Kirilov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Yordan Handzhiyski
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rositsa Tsekovska
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Evan Gatev
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Roumyana Mironova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| |
Collapse
|
2
|
Łupkowska A, Monem S, Dębski J, Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. Protein aggregation and glycation in Escherichia coli exposed to desiccation-rehydration stress. Microbiol Res 2023; 270:127335. [PMID: 36841129 DOI: 10.1016/j.micres.2023.127335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
In natural environments, bacteria often enter a state of anhydrobiosis due to water loss. Multiple studies have demonstrated that desiccation may lead to protein aggregation and glycation both in vivo and in vitro. However, the exact effects of water-loss-induced proteotoxic stress and the interplay between protein glycation and aggregation in bacteria remain elusive. Our studies revealed that protein aggregates formation in Escherichia coli started during desiccation and continued during the rehydration stage. The aggregates were enriched in proteins prone to liquid-liquid phase separation. Although it is known that glycation may induce protein aggregation in vitro, the aggregates formed in E. coli contained low levels of glycation products compared to the soluble protein fraction. Carnosine, glycine betaine and trehalose diminished the formation of protein aggregates and glycation products, resulting in increased E. coli viability. Notably, although high concentrations of glycine-betaine and trehalose significantly enhanced protein aggregation, glycation was still inhibited and E. coli cells survived desiccation better than bacteria grown without osmolytes. Taken together, our results suggest that the aggregates might play protective functions during early desiccation-rehydration stress. Moreover, it seems glycation rather than protein aggregation is the main cause of E. coli death upon desiccation-rehydration stress.
Collapse
Affiliation(s)
- Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Soroosh Monem
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| |
Collapse
|
3
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
4
|
Evaluation of growth and motility in non-photosynthetic Azospirillum brasilense exposed to red, blue, and white light. Arch Microbiol 2020; 202:1193-1201. [PMID: 32078698 DOI: 10.1007/s00203-020-01829-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/28/2019] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Azospirillum brasilense is a non-photosynthetic rhizobacterium that promotes the growth of plants. In this work, we evaluated the effects of different light qualities on the growth, viability, and motility in combination to other culture conditions such as temperature or composition of the culture medium. Exponential cultures of A. brasilense Az39 were inoculated by drop-plate method on nutritionally rich (LB) or chemically defined (MMAB) media in the presence or absence of Congo Red indicator (CR) and exposed continuously to white light (WL), blue light (BL), and red light (RL), or maintained in dark conditions (control). The exposure to BL or WL inhibited growth, mostly in LB medium at 36 °C. By contrast, the exposure to RL showed a similar behavior to the control. Swimming motility was inhibited by exposure to WL and BL, while exposure to RL caused only a slight reduction. The effects of WL and BL on plant growth-promoting rhizobacteria should be considered in the future as deleterious factors that could be manipulated to improve the functionality of foliar inoculants, as well as the bacterial effects on the leaf after inoculation.
Collapse
|
5
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
6
|
Boteva E, Mironova R. Maillard reaction and aging: can bacteria shed light on the link? BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Elitsa Boteva
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumyana Mironova
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
7
|
Westphal LL, Lau J, Negro Z, Moreno IJ, Ismail Mohammed W, Lee H, Tang H, Finkel SE, Kram KE. Adaptation of Escherichia coli to long-term batch culture in various rich media. Res Microbiol 2018; 169:145-156. [PMID: 29454026 DOI: 10.1016/j.resmic.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022]
Abstract
Experimental evolution studies have characterized the genetic strategies microbes utilize to adapt to their environments, mainly focusing on how microbes adapt to constant and/or defined environments. Using a system that incubates Escherichia coli in different complex media in long-term batch culture, we have focused on how heterogeneity and environment affects adaptive landscapes. In this system, there is no passaging of cells, and therefore genetic diversity is lost only through negative selection, without the experimentally-imposed bottlenecking common in other platforms. In contrast with other experimental evolution systems, because of cycling of nutrients and waste products, this is a heterogeneous environment, where selective pressures change over time, similar to natural environments. We determined that incubation in each environment leads to different adaptations by observing the growth advantage in stationary phase (GASP) phenotype. Re-sequencing whole genomes of populations identified both mutant alleles in a conserved set of genes and differences in evolutionary trajectories between environments. Reconstructing identified mutations in the parental strain background confirmed the adaptive advantage of some alleles, but also identified a surprising number of neutral or even deleterious mutations. This result indicates that complex epistatic interactions may be under positive selection within these heterogeneous environments.
Collapse
Affiliation(s)
- Lacey L Westphal
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, RRI 303, 1050 Child's Way, Los Angeles, CA, 90089-2910, USA.
| | - Jasmine Lau
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Zuly Negro
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Ivan J Moreno
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Wazim Ismail Mohammed
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN, 47405, USA.
| | - Heewook Lee
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, GHC 7719, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN, 47405, USA.
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, RRI 303, 1050 Child's Way, Los Angeles, CA, 90089-2910, USA.
| | - Karin E Kram
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| |
Collapse
|
8
|
Probing Protein Glycation by Chromatography and Mass Spectrometry: Analysis of Glycation Adducts. Int J Mol Sci 2017; 18:ijms18122557. [PMID: 29182540 PMCID: PMC5751160 DOI: 10.3390/ijms18122557] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Glycation is a non-enzymatic post-translational modification of proteins, formed by the reaction of reducing sugars and α-dicarbonyl products of their degradation with amino and guanidino groups of proteins. Resulted early glycation products are readily involved in further transformation, yielding a heterogeneous group of advanced glycation end products (AGEs). Their formation is associated with ageing, metabolic diseases, and thermal processing of foods. Therefore, individual glycation adducts are often considered as the markers of related pathologies and food quality. In this context, their quantification in biological and food matrices is required for diagnostics and establishment of food preparation technologies. For this, exhaustive protein hydrolysis with subsequent amino acid analysis is the strategy of choice. Thereby, multi-step enzymatic digestion procedures ensure good recoveries for the most of AGEs, whereas tandem mass spectrometry (MS/MS) in the multiple reaction monitoring (MRM) mode with stable isotope dilution or standard addition represents “a gold standard” for their quantification. Although the spectrum of quantitatively assessed AGE structures is continuously increases, application of untargeted profiling techniques for identification of new products is desired, especially for in vivo characterization of anti-glycative systems. Thereby, due to a high glycative potential of plant metabolites, more attention needs to be paid on plant-derived AGEs.
Collapse
|
9
|
Rich Medium Composition Affects Escherichia coli Survival, Glycation, and Mutation Frequency during Long-Term Batch Culture. Appl Environ Microbiol 2015; 81:4442-50. [PMID: 25911475 DOI: 10.1128/aem.00722-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/18/2015] [Indexed: 11/20/2022] Open
Abstract
Bacteria such as Escherichia coli are frequently grown to high density to produce biomolecules for study in the laboratory. To achieve this, cells can be incubated in extremely rich media that increase overall cell yield. In these various media, bacteria may have different metabolic profiles, leading to changes in the amounts of toxic metabolites produced. We have previously shown that stresses experienced during short-term growth can affect the survival of cells during the long-term stationary phase (LTSP). Here, we incubated cells in LB, 2× yeast extract-tryptone (YT), Terrific Broth, or Super Broth medium and monitored survival during the LTSP, as well as other reporters of genetic and physiological change. We observe differential cell yield and survival in all media studied. We propose that differences in long-term survival are the result of changes in the metabolism of components of the media that may lead to increased levels of protein and/or DNA damage. We also show that culture pH and levels of protein glycation, a covalent modification that causes protein damage, affect long-term survival. Further, we measured mutation frequency after overnight incubation and observed a correlation between high mutation frequencies at the end of the log phase and loss of viability after 4 days of LTSP incubation, indicating that mutation frequency is potentially predictive of long-term survival. Since glycation and mutation can be caused by oxidative stress, we measured expression of the oxyR oxidative stress regulator during log-phase growth and found that higher levels of oxyR expression during the log phase are consistent with high mutation frequency and lower cell density during the LTSP. Since these complex rich media are often used when producing large quantities of biomolecules in the laboratory, the observed increase in damage resulting in glycation or mutation may lead to production of a heterogeneous population of plasmids or proteins, which could affect the quality of the end products yielded in some laboratory experiments.
Collapse
|
10
|
Culture volume and vessel affect long-term survival, mutation frequency, and oxidative stress of Escherichia coli. Appl Environ Microbiol 2013; 80:1732-8. [PMID: 24375138 DOI: 10.1128/aem.03150-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacteria such as Escherichia coli are frequently studied during exponential- and stationary-phase growth. However, many strains can survive in long-term stationary phase (LTSP), without the addition of nutrients, from days to several years. During LTSP, cells experience a variety of stressors, including reactive oxidative species, nutrient depletion, and metabolic toxin buildup, that lead to physiological responses and changes in genetic stability. In this study, we monitored survival during LTSP, as well as reporters of genetic and physiological change, to determine how the physical environment affects E. coli during long-term batch culture. We demonstrate differences in yield during LTSP in cells incubated in LB medium in test tubes versus Erlenmeyer flasks, as well as growth in different volumes of medium. We determined that these differences are only partially due to differences in oxygen levels by incubating the cells in different volumes of media under anaerobic conditions. Since we hypothesized that differences in long-term survival are the result of changes in physiological outputs during the late log and early stationary phases, we monitored alkalization, mutation frequency, oxidative stress response, and glycation. Although initial cell yields are essentially equivalent under each condition tested, physiological responses vary greatly in response to culture environment. Incubation in lower-volume cultures leads to higher oxyR expression but lower mutation frequency and glycation levels, whereas incubation in high-volume cultures has the opposite effect. We show here that even under commonly used experimental conditions that are frequently treated as equivalent, the stresses experienced by cells can differ greatly, suggesting that culture vessel and incubation conditions should be carefully considered in the planning or analysis of experiments.
Collapse
|
11
|
Enzymatic deglycation of Amadori products in bacteria: mechanisms, occurrence and physiological functions. Appl Microbiol Biotechnol 2011; 90:399-406. [DOI: 10.1007/s00253-010-3083-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/25/2022]
|
12
|
The ubiquitous conserved glycopeptidase Gcp prevents accumulation of toxic glycated proteins. mBio 2010; 1. [PMID: 20824107 PMCID: PMC2932512 DOI: 10.1128/mbio.00195-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/26/2010] [Indexed: 12/03/2022] Open
Abstract
Amadori-modified proteins (AMPs) are the products of nonenzymatic glycation formed by reaction of reducing sugars with primary amine-containing amino acids and can develop into advanced glycated end products (AGEs), highly stable toxic compounds. AGEs are known to participate in many age-related human diseases, including cardiovascular, neurological, and liver diseases. The metabolism of these glycated proteins is not yet understood, and the mechanisms that reduce their accumulation are not known so far. Here, we show for Escherichia coli that a conserved glycopeptidase (Gcp, also called Kae1), which is encoded by nearly every sequenced genome in the three domains of life, prevents the accumulation of Amadori products and AGEs. Using mutants, we show that Gcp depletion results in accumulation of AMPs and eventually leads to the accumulation of AGEs. We demonstrate that Gcp binds to glycated proteins, including pyruvate dehydrogenase, previously shown to be a glycation-prone enzyme. Our experiments also show that the severe phenotype of Gcp depletion can be relieved under conditions of low intracellular glycation. As glycated proteins are ubiquitous, the involvement of Gcp in the metabolism of AMPs and AGEs is likely to have been conserved in evolution, suggesting a universal involvement of Gcp in cellular aging and explaining the essentiality of Gcp in many organisms. Glycated proteins (Amadori-modified proteins [AMPs] and advanced glycated end products [AGEs]) are known to participate in many age-related diseases. Their existence in fast-growing organisms was considered unlikely, as their formation was assumed to be slow. Yet, recent evidence demonstrated their existence in bacteria, and our data suggest a bacterial mechanism that reduced their accumulation. We identify in Escherichia coli a protein, Gcp, which carries out this function. Gcp is conserved in all domains of life and is essential in many organisms. Although it was annotated as a chaperon protease, there were no experimental data to support this function. Our findings are compatible with the annotation and will open up studies of the bacterial metabolism of glycated proteins. Furthermore, the data from the bacterial systems may also be instrumental in understanding the metabolism of glycated proteins, including their toxicity in human health and disease.
Collapse
|