1
|
Cherian A, Vadivel V, Thiruganasambandham S, Madhavankutty S. Phytocompounds and their molecular targets in immunomodulation: a review. J Basic Clin Physiol Pharmacol 2023; 34:577-590. [PMID: 34786892 DOI: 10.1515/jbcpp-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/24/2021] [Indexed: 11/15/2022]
Abstract
Immune cells are important for the healthy function of every organ. The homeostasis of the immune system is selfregulated by T-cells, B-cells, and natural killer cells. The immunomodulation process of immune cells is part of the immunotherapy. According to therapeutic methods of immune responses are categorized as inducing (immunostimulant), amplification (immune booster), attenuation (immunomodulation), and prevention (immunosuppressive) actions. The prevalence of chronic immunological diseases like viral infections, allergies, and cancer is mainly due to the over-activation of the immune system. Further, immunomodulators are reported to manage the severity of chronic immunological disorders. Moreover, these immunomodulator-acting proteins are identified as potential molecular targets for the regulation of the immune system. Moreover, natural compound like phytocompounds are known to bind these targets and modulates the immune system. The specialized phytocompounds like curcumin, quercetin, stilbenes, flavonoids, and lignans are shown the immunomodulatory actions and ameliorate the immunological disorders. The present scenario of a COVID-19 pandemic situation has taught us the need to focus on strengthening the immune system and the development of the most promising immunotherapeutics. This review is focused on an overview of various phytocompounds and their molecular targets for the management of immunological disorders via immunosuppressants and immunostimulants actions.
Collapse
Affiliation(s)
- Ayda Cherian
- Pharmaceutical Chemistry, SRM College of Pharmacy, Kattankulathur, Tamil Nadu, India
| | - Velmurugan Vadivel
- Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Uwishema O, Nchasi G, Goodluck Nnko G, Mtawala E, Boniphace Bulimbe D, Haidari Kassim G, Mushi J, Nazir A, Angeline Peñamante C. The insight through the current immunotherapeutic guidelines for infectious diseases. Int J Surg 2023; 109:71-72. [PMID: 36799800 PMCID: PMC10389434 DOI: 10.1097/js9.0000000000000152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Olivier Uwishema
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- Clinton Global Initiative University, New York, New York, USA
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Goodluck Nchasi
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- Catholic University of Health and Allied Science, Mwanza
| | - Glorian Goodluck Nnko
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- Catholic University of Health and Allied Science, Mwanza
| | - Elias Mtawala
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- Catholic University of Health and Allied Science, Mwanza
| | - Deusdedith Boniphace Bulimbe
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- University of Dodoma, Dodoma
| | - Ghalib Haidari Kassim
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - James Mushi
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Abubakar Nazir
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- King Edward Medical University, Lahore, Pakistan
| | - Criselle Angeline Peñamante
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- Department of Clinical Epidemiology, Faculty of Medicine and Surgery
- Department of Psychology, College of Science, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
3
|
Woranam K, Mootsikapun P, Senawong G, Prompipak J, Promdee L, Pintaraks K, Ketterman AJ, Senawong T. Safety and immunomodulatory activity of Houttuynia cordata fermentation product in healthy volunteers and its effect on antiretroviral-drug level in rats. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2024152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Khanutsanan Woranam
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Piroon Mootsikapun
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Gulsiri Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jeerati Prompipak
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Limthong Promdee
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ketsarin Pintaraks
- Diagnostic Clinical Microscopy Unit, Medicine, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Albert J. Ketterman
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Ranaweera BVLR, Edward D, Abeysekera AM, Weerasena OVDSJ, Handunnetti SM. Increased expression of co-stimulatory molecules and enhancement of the IgG response in rats orally administered with a polyherbal formulation. J Ayurveda Integr Med 2022; 13:100528. [PMID: 35063357 PMCID: PMC8814394 DOI: 10.1016/j.jaim.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
Background Link Samahan® (LS) is a standardized modern formulation of a polyherbal preparation used in the indigenous system of medicine in Sri Lanka. Objective Evaluation of the immunostimulatory activity of LS and the molecular mechanisms that modulate the humoral immune response. Material and methods Immunostimulatory activity of LS was tested in rats following oral administration on days 1-5 and 15-19 and immunization with bovine serum albumin (BSA) on day 1 and 15. Anti-BSA IgM and IgG response in rats treated with LS, water and sugar (as controls) were compared on days 0-35, using ELISA. The expression of co-stimulatory molecules on lymphocytes was assessed on days 0-8 and days 14-22 using RT-qPCR. Results IgM and IgG levels of LS-treated rats were increased significantly by day 7 and 21 respectively compared to controls (p < 0.05). IgG response of LS-treated group reached a higher magnitude compared to its IgM response. Gene expression of CD28 and CD40L on T cells (4.9-5.1 fold) and CD80, CD86 and CD40 on APCs (2.4-3.1 fold) were induced significantly by day 2 compared to their expression on day 0 (p < 0.05). The expression levels of CD28 and CD40L on day 2-4 and 16-18 were similar while the expression of CD80, CD86 and CD40 on day 16-18 was higher (3.7-5.1 folds) compared to their levels on day 2-4 (2.4-3.2). Conclusions These findings support an adjuvant effect of LS contributing to its immunostimulatory activity and increased expression of co-stimulatory molecules that contribute to boosting immune response.
Collapse
Affiliation(s)
| | - Daniya Edward
- Institute of Biochemistry, Molecular Biology and Biotechnology (IBMBB), University of Colombo, Sri Lanka.
| | | | | | | |
Collapse
|
5
|
SUJATHA T, SUNDER J, DE AK, BHATTACHARYA D, BHOWMICK S, KUNDU A. Serum cytokine concentration in native Nicobari fowl of Andaman and Nicobar Islands. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i7.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Huang W, Yao C, Liu Y, Xu N, Yin Z, Xu W, Miao Y, Mai K, Ai Q. Dietary Allicin Improved the Survival and Growth of Large Yellow Croaker ( Larimichthys crocea) Larvae via Promoting Intestinal Development, Alleviating Inflammation and Enhancing Appetite. Front Physiol 2020; 11:587674. [PMID: 33162901 PMCID: PMC7583326 DOI: 10.3389/fphys.2020.587674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
A 30-day feeding experiment was conducted to investigate effects of dietary allicin on survival, growth, antioxidant capacity, innate immunity and expression of inflammatory and appetite related genes in large yellow croaker larvae. Four iso-nitrogenous (53% crude protein) and iso-lipidic (19% crude lipid) diets were formulated via supplementing graded levels of allicin (0.0 (the control), 0.005, 0.01, and 0.02% dry diet, respectively). Results showed that, among dietary treatments, larvae fed the diet with 0.005% allicin had the highest survival rate (SR) (P < 0.05), while larvae fed the diet with 0.01% allicin had the highest specific growth rate (SGR) (P < 0.05). Activities of α-amylase in both pancreatic (PS) and intestine segments (IS) of larvae fed the diet with 0.01% allicin were significantly lower than that in the control (P < 0.05). On the other hand, the supplementation of 0.01% allicin in diets significantly increased activities of alkaline phosphatase (AKP) and leucine aminopeptidase (LAP) in the intestinal brush border membrane (BBM) of larvae than the control (P < 0.05), indicating the promoting roles of allicin on fish larval intestinal development. Moreover, compared to the control, both the nitric oxide (NO) content and the activity of nitric oxide synthase (NOS) were significantly up-regulated in larvae fed the diet with 0.005% allicin, and catalase (CAT) were significantly upregulated in larvae fed the diet with 0.02% allicin (P < 0.05). Transcriptional levels of pro-inflammatory genes including cyclooxygenase-2 (cox-2), interleukin-1β (il-1β) and interleukin-6 (il-6) significantly decreased with increasing allicin, compared to the control. The expression of appetite genes including npy, ghrelin and leptin significantly increased with the prolonged fasting period, and dietary allicin supplementation significantly increased the transcriptional level of neuropeptide Y (npy) at 0.01%, while increased the transcriptional level of leptin in larvae at 0.02% dosages (P < 0.05). These results showed that the supplementation of 0.005% – 0.01% allicin in diets could improve the survival and growth of large yellow croaker larvae probably by promoting intestinal development, alleviating inflammation and enhancing appetite.
Collapse
Affiliation(s)
- Wenxing Huang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Chuanwei Yao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Zhaoyang Yin
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Youqing Miao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Rudtanatip T, Boonsri B, Praiboon J, Wongprasert K. Bioencapsulation efficacy of sulfated galactans in adult Artemia salina for enhancing immunity in shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 94:90-98. [PMID: 31470138 DOI: 10.1016/j.fsi.2019.08.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Live food organisms like Artemia have been used for delivery of different substances such as nutrients, probiotics and immune-stimulants to aquatic animals. Previously, we reported that sulfated galactans (SG) from the red seaweed Gracilaria fisheri (G. fisheri) increased immune activity in shrimp. In the present study we further investigated the capacity and efficiency of bioencapsulation of SG in adult Artemia for delivery to tissues and potentially boosting the expression of immune genes in post larvae shrimp. SG were labelled with FITC (FITC-SG) for in vivo tracking in shrimp. Bioencapsulation of adult Artemia with FITC-SG (0-100 μg mL-1) was performed and the fluorescence intensity was detected in the gut lumen after enrichment periods of 30 min, 1 h, 2 h, 6 h and 24 h. The results showed the Artemia took up SG over time in a concentration-dependent manner. Shrimp were fed with the bioencapsulated Artemia (FITC-SG, 20 μg mL-1) and the shrimp were evaluated under a stereo-fluorescent microscope. At 24 h after administration, FITC-SG was located in gills and hepatopancreas and also bound with haemocytes. With daily SG administration, the genes IMD, IKKβ were up-regulated (after 1 day) while genes dicer and proPO-I were up-regulated later (after 7 days). Moreover, continued monitoring of shrimp fed for 3 consecutive days only with SG at the dose of 0.5 mg g-1 BW showed increases in the expression of IMD, IKKβ genes on day 1 and which gradually declined to normal levels on day 14, while the expression of dicer and proPO-I was increased on day 3 and remained high on day 14. These results demonstrate that bioencapsulation of SG in adult Artemia successfully delivers SG to shrimp tissues, which then bind with haemocytes and subsequently activate immune genes, and potentially increase immunity in shrimp. In addition, the present study suggests that a 3-consecutive-day regimen of SG supplemented in Artemia (0.5 mg g-1 BW) may boost and sustain the enhanced immune functions in post larvae shrimp.
Collapse
Affiliation(s)
- Tawut Rudtanatip
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mittraphap Road, Muang District, Khon Kaen, 40002, Thailand
| | - Boonyakorn Boonsri
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Jantana Praiboon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Paholyotin Road, Chatujak, Bangkok, 10900, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
Promotion of anti-keyhole limpet hemocyanin IgM and IgG antibody productions in vitro by red bell pepper extract. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|