1
|
Faris Abdulkhadum Al-Mamoorı D, Celik Altunoglu Y, Horuz E, Özkan Kök B. Investigation of the expansin gene family in sugar beet (Beta vulgaris) by the genome-wide level and their expression responses under abiotic stresses. Biol Futur 2023; 74:295-307. [PMID: 37642915 DOI: 10.1007/s42977-023-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Sugar beet (Beta vulgaris ssp. vulgaris) is primarily used in sugar production worldwide. Expansins are a gene family of cell wall proteins effective in regulating cell wall structure. They also participate in developmental stages, including cell and leaf growth, root development, and fruit ripening. This study comprehensively characterizes the expansin gene family members found in the sugar beet genome. In addition, in silico expression analysis of sugar beet expansin genes under variable abiotic stress conditions and expression profiles of expansin genes under combined drought and heat stresses by the qRT-PCR method were evaluated in the study. A total of 31 sugar beet expansin genes were identified. BvuEXLA-02 and BvuEXLB-02 genes can have abiotic stress tolerance roles besides their roles in normal development. Determining the properties of sugar beet expansin, family members can help enable the cellulose hydrolysis mechanism and raise plant biomass. Elucidating expression profiles of the sugar beet expansin genes under variable stress conditions can support improving plant productivity. The results of the current study may also contribute to the deep understanding of sugar beet expansin genes in the future.
Collapse
Affiliation(s)
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Büşra Özkan Kök
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
2
|
Li K, Ma B, Shen J, Zhao S, Ma X, Wang Z, Fan Y, Tang Q, Wei D. The evolution of the expansin gene family in Brassica species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:630-638. [PMID: 34479031 DOI: 10.1016/j.plaphy.2021.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Expansin gene (EXP) family plays important roles in plant growth and crop improvement. However, it has not been well studied in the Brassica genus that includes several important agricultural and horticultural crops. To get insight to the evolution and expansion of EXP family in Brassica, Brassica EXPs which are homologues of 35 known AtEXPs of Arabidopsis were comprehensively and systematically analyzed in the present study. In total, 340 Brassica EXPs were clustered into four groups that corresponded multiple alignment to four subfamilies of AtEXPs, with divergent conserved motifs and cis-acting elements among groups. To understand the expansion of EXP family, an integrated genomic block system was constructed among Arabidopsis and Brassica species based on 24 known ancestral karyotype blocks. Obvious gene loss, segmental duplication, tandem duplication and DNA sequence repeat events were found during the expansion of Brassica EXPs, of which the segmental duplication was possibly the major driving force. The divergence time was estimated in 1109 orthologs pairs of EXPs, revealing the divergence of Brassica EXPs from AtEXPs during ~30 MYA, and the divergence of EXPs among Brassica species during 13.50-17.94 MYA. Selective mode analysis revealed that the purifying selection was the major contributor to expansion of Brassica EXPs. This study provides new insights into the evolution and expansion of the EXP family in Brassica genus.
Collapse
Affiliation(s)
- Kui Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Jinjuan Shen
- Chongqing Yudongnan Academy of Agricultural Sciences, Fuling, 408000, China
| | - Sa Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xiao Ma
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yonghong Fan
- Chongqing Yudongnan Academy of Agricultural Sciences, Fuling, 408000, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Mota APZ, Oliveira TN, Vinson CC, Williams TCR, Costa MMDC, Araujo ACG, Danchin EGJ, Grossi-de-Sá MF, Guimaraes PM, Brasileiro ACM. Contrasting Effects of Wild Arachis Dehydrin Under Abiotic and Biotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:497. [PMID: 31057593 PMCID: PMC6482428 DOI: 10.3389/fpls.2019.00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Plant dehydrins (DNHs) belong to the LEA (Late Embryogenesis Abundant) protein family and are involved in responses to multiple abiotic stresses. DHNs are classified into five subclasses according to the organization of three conserved motifs (K-; Y-; and S-segments). In the present study, the DHN protein family was characterized by molecular phylogeny, exon/intron organization, protein structure, and tissue-specificity expression in eight Fabaceae species. We identified 20 DHN genes, encompassing three (YnSKn, SKn, and Kn) subclasses sharing similar gene organization and protein structure. Two additional low conserved DHN Φ-segments specific to the legume SKn-type of proteins were also found. The in silico expression patterns of DHN genes in four legume species (Arachis duranensis, A. ipaënsis, Glycine max, and Medicago truncatula) revealed that their tissue-specific regulation is associated with the presence or absence of the Y-segment. Indeed, DHN genes containing a Y-segment are mainly expressed in seeds, whereas those without the Y-segment are ubiquitously expressed. Further qRT-PCR analysis revealed that, amongst stress responsive dehydrins, a SKn-type DHN gene from A. duranensis (AdDHN1) showed opposite response to biotic and abiotic stress with a positive regulation under water deficit and negative regulation upon nematode infection. Furthermore, transgenic Arabidopsis lines overexpressing (OE) AdDHN1 displayed improved tolerance to multiple abiotic stresses (freezing and drought) but increased susceptibility to the biotrophic root-knot nematode (RKN) Meloidogyne incognita. This contradictory role of AdDHN1 in responses to abiotic and biotic stresses was further investigated by qRT-PCR analysis of transgenic plants using a set of stress-responsive genes involved in the abscisic acid (ABA) and jasmonic acid (JA) signaling pathways and suggested an involvement of DHN overexpression in these stress-signaling pathways.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Nicolini Oliveira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | - Christina Cleo Vinson
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Fonouni-Farde C, Miassod A, Laffont C, Morin H, Bendahmane A, Diet A, Frugier F. Gibberellins negatively regulate the development of Medicago truncatula root system. Sci Rep 2019; 9:2335. [PMID: 30787350 PMCID: PMC6382856 DOI: 10.1038/s41598-019-38876-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
The root system displays a remarkable plasticity that enables plants to adapt to changing environmental conditions. This plasticity is tightly linked to the activity of root apical meristems (RAMs) and to the formation of lateral roots, both controlled by related hormonal crosstalks. In Arabidopsis thaliana, gibberellins (GAs) were shown to positively control RAM growth and the formation of lateral roots. However, we showed in Medicago truncatula that GAs negatively regulate root growth and RAM size as well as the number of lateral roots depending at least on the MtDELLA1 protein. By using confocal microscopy and molecular analyses, we showed that GAs primarily regulate RAM size by affecting cortical cell expansion and additionally negatively regulate a subset of cytokinin-induced root expansin encoding genes. Moreover, GAs reduce the number of cortical cell layers, resulting in the formation of both shorter and thinner roots. These results suggest contrasting effects of GA regulations on the root system architecture depending on plant species.
Collapse
Affiliation(s)
- Camille Fonouni-Farde
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Ambre Miassod
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Halima Morin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Anouck Diet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France.
| |
Collapse
|