1
|
Almutairy B. Extensively and multidrug-resistant bacterial strains: case studies of antibiotics resistance. Front Microbiol 2024; 15:1381511. [PMID: 39027098 PMCID: PMC11256239 DOI: 10.3389/fmicb.2024.1381511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
The development of antibiotic resistance compromises the effectiveness of our most effective defenses against bacterial infections, presenting a threat to global health. To date, a large number of research articles exist in the literature describing the case reports associated with extensively drug-resistant (XDR) and multidrug-resistant (MDR) bacterial strains. However, these findings are scattered, making it time-consuming for researchers to locate promising results and there remains a need for a comparative study to compile these case reports from various geographical regions including the Kingdom of Saudi Arabia. Additionally, no study has yet been published that compares the genetic variations and case reports of MDR and XDR strains identified from Saudi Arabia, the Middle East, Central Europe, and Asian countries. This study attempts to provide a comparative analysis of several MDR and XDR case reports from Saudi Arabia alongside other countries. Furthermore, the purpose of this work is to demonstrate the genetic variations in the genes underlying the resistance mechanisms seen in MDR and XDR bacterial strains that have been reported in Saudi Arabia and other countries. To cover the gap, this comprehensive review explores the complex trends in antibiotic resistance and the growing risk posed by superbugs. We provide context on the concerning spread of drug-resistant bacteria by analyzing the fundamental mechanisms of antibiotic resistance and looking into individual case reports. In this article, we compiled various cases and stories associated with XDR and MDR strains from Saudi Arabia and various other countries including China, Egypt, India, Poland, Pakistan, and Taiwan. This review will serve as basis for highlighting the growing threat of MDR, XDR bacterial strains in Saudi Arabia, and poses the urgent need for national action plans, stewardship programs, preventive measures, and novel antibiotics research in the Kingdom.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
2
|
Al-Otibi F. The Antifungal Activities of Silver Nano-Aggregates Biosynthesized from the Aqueous Extract and the Alkaline Aqueous Fraction of Rhazya stricta against Some Fusarium Species. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:88. [PMID: 38202544 PMCID: PMC10780319 DOI: 10.3390/nano14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Rhazya stricta is a major medicinal species used in indigenous medicinal herbal medications in South Asia, the Middle East, Iran, and Iraq to treat a variety of ailments. The current study aimed to investigate the antifungal properties of biosynthesized silver nanoparticles (AgNPs) made from R. stricta aqueous extract and its alkaline aqueous fraction. Fourier transform infrared spectroscopy (FTIR), UV-vis spectrophotometry, dynamic light scattering (DLS), and transmitted electron microscopy (TEM) were used to characterize AgNPs. The produced extracts and AgNPs were tested for their antifungal efficacy against four Fusarium spp. All of the characterization experiments proved the biosynthesis of targeted AgNPs. FTIR showed a wide distribution of hydroxyl, amino, carboxyl, and alkyl functional groups among all preparations. The DLS results showed that the produced Aq-AgNPs and the Alk-AgNPs had an average size of 95.9 nm and 54.04 nm, respectively. On the other hand, TEM results showed that the Aq-AgNPs and Alk-AgNPs had average diameters ranging from 21 to 90 nm and 7.25 to 25.32 nm. Both AgNPs absorbed UV light on average at 405 nm and 415 nm, respectively. Regarding the fungicidal activity, the highest doses of Aq-extract and Aq-AgNPs inhibited the mycelial growth of F. incarnatum (19.8%, 87.5%), F. solani (28.1%, 72.3%), F. proliferatum (37.5%, 75%), and F. verticillioides (27.1%, 62.5%), respectively (p < 0.001). Interestingly, the Alk-fraction had stronger inhibition than the biosynthesized AgNPs, which resulted in complete inhibition at the doses of 10% and 20% (p < 0.001). Furthermore, microscopic analysis demonstrated that both AgNPs caused obvious morphological alterations in the treated organisms when compared to the control. In conclusion, R. stricta's Aq-extract, alkaline fraction, and their biosynthesized AgNPs show substantial antifungal efficacy against several Fusarium spp. It is the first study to highlight the prospective biological activities of R. stricta Aq-extract and its alkaline fraction against F. incarnatum, F. proliferatum, and F. verticillioides. In addition, it is the first opportunity to deeply investigate the ultrastructural changes induced in the Fusarium species treated with R. stricta crude Aq-extract and its biosynthesized AgNPs. More studies are required to investigate their biological effect against other Fusarium or fungal species.
Collapse
Affiliation(s)
- Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
3
|
Herman A, Herman AP. Herbal Products and Their Active Constituents Used Alone and in Combination with Antibiotics against Multidrug-Resistant Bacteria. PLANTA MEDICA 2023; 89:168-182. [PMID: 35995069 DOI: 10.1055/a-1890-5559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The purpose of this review is to summarize the current knowledge acquired on herbal products and their active constituents with antimicrobial activity used alone and in combination with antibiotics against multidrug-resistant bacteria. The most promising herbal products and active constituents used alone against multidrug-resistant bacteria are Piper betle (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, extended-spectrum beta-lactamase, Acinetobacter baumannii, Pseudomonas aeruginosa), Glycyrrhiza glabra (methicillin-resistant S. aureus, vancomycin-resistant Enterococcus, P. aeruginosa), and berberine (methicillin-resistant S. aureus, A. baumannii, P. aeruginosa), respectively. The synergistic effect of the combination of herbal products and their active constituents with antibiotics against multidrug-resistant bacteria are also described. These natural antibacterial agents can be promising sources of inhibitors, which can modulate antibiotic activity against multidrug-resistant bacteria, especially as efflux pump inhibitors. Other possible mechanisms of action of herbal therapy against multidrug-resistant bacteria including modification of the bacterial cell wall and/or membrane, inhibition of the cell division protein filamenting temperature sensitive Z-ring, and inhibition of protein synthesis and gene expression, all of which will also be discussed. Our review suggests that combination herbal therapy and antibiotics can be effectively used to expand the spectrum of their antimicrobial action. Therefore, combination therapy against multidrug-resistant bacteria may enable new choices for the treatment of infectious diseases and represents a potential area for future research.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Warsaw, Poland
| | - Andrzej P Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna near Warsaw, Poland
| |
Collapse
|
4
|
Baeshen MN, Attar R, Bouback TA, Albeshri AO, Baeshen NN, Karkashan A, Abbas B, Aljaddawi AA, Almulaiky YQ, Mahmoud SH, Abo Shama NM, Ali MA, Baadhaim M, Zakri S, Alsayegh K, Mohammed A, Baeshen NA. Assaying for antiviral activity of the folkloric medicinal desert plant Rhazya stricta on coronavirus SARS-CoV-2. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2047107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Mohammed N. Baeshen
- Department of Biology, College of Science, University of Jeddah, Saudi Arabia
| | - Roba Attar
- Department of Biology, College of Science, University of Jeddah, Saudi Arabia
| | - Thamer A. Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Saudi Arabia
| | - Abdulaziz O. Albeshri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Saudi Arabia
| | - Naseebh N. Baeshen
- Department of Biology, College of Sciences and Arts, University of Jeddah, Saudi Arabia
| | - Alaa Karkashan
- Department of Biology, College of Science, University of Jeddah, Saudi Arabia
| | - Basma Abbas
- Department of Biology, College of Science, University of Jeddah, Saudi Arabia
| | - Abdullah A. Aljaddawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Sciences and Arts, University of Jeddah, Saudi Arabia
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Moayad Baadhaim
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard – Health Affairs, Saudi Arabia
| | - Samer Zakri
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard – Health Affairs, Saudi Arabia
| | - Khaled Alsayegh
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard – Health Affairs, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Saudi Arabia
| | - Nabih A. Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
5
|
Arip M, Selvaraja M, R M, Tan LF, Leong MY, Tan PL, Yap VL, Chinnapan S, Tat NC, Abdullah M, K D, Jubair N. Review on Plant-Based Management in Combating Antimicrobial Resistance - Mechanistic Perspective. Front Pharmacol 2022; 13:879495. [PMID: 36249774 PMCID: PMC9557208 DOI: 10.3389/fphar.2022.879495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) occurs when microbes no longer respond to any pharmacological agents, rendering the conventional antimicrobial agents ineffective. AMR has been classified as one of the top 10 life-threatening global health problems needed multilevel attention and global cooperation to attain the Sustainable Development Goals (SDGs) according to the World Health Organization (WHO), making the discovery of a new and effective antimicrobial agent a priority. The recommended treatments for drug-resistant microbes are available but limited. Furthermore, the transformation of microbes over time increases the risk of developing drug resistance. Hence, plant metabolites such as terpenes, phenolic compounds and alkaloids are widely studied due to their antibacterial, antiviral, antifungal and antiparasitic effects. Plant-derived antimicrobials are preferred due to their desirable efficacy and safety profile. Plant metabolites work by targeting microbial cell membranes, interfering with the synthesis of microbial DNA/RNA/enzymes and disrupting quorum sensing and efflux pump expression. They also work synergistically with conventional antibiotics to enhance antimicrobial effects. Accordingly, this review aims to identify currently available pharmacological therapies against microbes and AMR, as well as to discuss the importance of plant and secondary metabolites as a possible solution for AMR together with their mechanisms of action. All the information was obtained from government databases, WHO websites, PubMed, Springer, Google Scholar and Science Direct. Based on the information obtained, AMR is regarded as a significant warning to global healthcare. Plant derivatives such as secondary metabolites may be considered as potential therapeutic targets to mitigate the non-ending AMR.
Collapse
Affiliation(s)
- Masita Arip
- Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Malarvili Selvaraja
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Lee Fang Tan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Mun Yee Leong
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Puay Luan Tan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Vi Lien Yap
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Sasikala Chinnapan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Ng Chin Tat
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maha Abdullah
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Dharmendra K
- Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, India
| | - Najwan Jubair
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| |
Collapse
|
6
|
In silico screening of some compounds derived from the desert medicinal plant Rhazya stricta for the potential treatment of COVID-19. Sci Rep 2022; 12:11120. [PMID: 35778482 PMCID: PMC9247940 DOI: 10.1038/s41598-022-15288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
The latest coronavirus pandemic (SARS-CoV-2) poses an exceptional threat to human health and society worldwide. The coronavirus (SARS-CoV-2) spike (S) protein, which is required for viral–host cell penetration, might be considered a promising and suitable target for treatment. In this study, we utilized the nonalkaloid fraction of the medicinal plant Rhazya stricta to computationally investigate its antiviral activity against SARS-CoV-2. Molecular docking and molecular dynamics simulations were the main tools used to examine the binding interactions of the compounds isolated by HPLC analysis. Ceftazidime was utilized as a reference control, which showed high potency against the SARS-CoV-2 receptor binding domain (RBD) in an in vitro study. The five compounds (CID:1, CID:2, CID:3, CID:4, and CID:5) exhibited remarkable binding affinities (CID:1, − 8.9; CID:2, − 8.7; and CID:3, 4, and 5, − 8.5 kcal/mol) compared to the control compound (− 6.2 kcal/mol). MD simulations over a period of 200 ns further corroborated that certain interactions occurred with the five compounds and the nonalkaloidal compounds retained their positions within the RBD active site. CID:2, CID:4, and CID:5 demonstrated high stability and less variance, while CID:1 and CID:3 were less stable than ceftazidime. The average number of hydrogen bonds formed per timeframe by CID:1, CID:2, CID:3, and CID:5 (0.914, 0.451, 1.566, and 1.755, respectively) were greater than that formed by ceftazidime (0.317). The total binding free energy calculations revealed that the five compounds interacted more strongly within RBD residues (CID:1 = − 68.8, CID:2 = − 71.6, CID:3 = − 74.9, CID:4 = − 75.4, CID:5 = − 60.9 kJ/mol) than ceftazidime (− 34.5 kJ/mol). The drug-like properties of the selected compounds were relatively similar to those of ceftazidime, and the toxicity predictions categorized these compounds into less toxic classes. Structural similarity and functional group analyses suggested that the presence of more H-acceptor atoms, electronegative atoms, acidic oxygen groups, and nitrogen atoms in amide or aromatic groups were common among the compounds with the lowest binding affinities. In conclusion, this in silico work predicts for the first time the potential of using five R. stricta nonalkaloid compounds as a treatment strategy to control SARS-CoV-2 viral entry.
Collapse
|
7
|
Albeshri A, Baeshen NA, Bouback TA, Aljaddawi AA. A Review of Rhazya stricta Decne Phytochemistry, Bioactivities, Pharmacological Activities, Toxicity, and Folkloric Medicinal Uses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112508. [PMID: 34834871 PMCID: PMC8619226 DOI: 10.3390/plants10112508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
The local medicinal plant Rhazya stricta Decne is reviewed for its folkloric medicinal, phytochemical, pharmacological, biological, and toxicological features. R. stricta has been used widely in different cultures for various medical disorders. The phytochemical studies performed on the R. stricta extract revealed many alkaloidal and fatty acid compounds. Moreover, several flavonoid and terpenoid compounds were also detected. Pharmacological activates of R. stricta extracts are approved to possess antimicrobial, antioxidant, anticancer, antidiabetic, and antihypertensive activities. Additionally, R. stricta extract was found to hold biological activates such as larvicidal and phytoremediation activates R. stricta extract was found to be toxic, genotoxic, and mutagenic. R. stricta contains novel phytochemical compounds that have not been investigated pharmacologically. Further research is needed through in vitro and in vivo experiments to pave the road for these compounds for medical, veterinary, and ecological uses.
Collapse
Affiliation(s)
- Abdulaziz Albeshri
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
- Correspondence:
| | - Nabih A. Baeshen
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
| | - Thamer A. Bouback
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A. Aljaddawi
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
| |
Collapse
|
8
|
Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima A. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3663315. [PMID: 34447454 PMCID: PMC8384518 DOI: 10.1155/2021/3663315] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.
Collapse
Affiliation(s)
- Najwan Jubair
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
9
|
Mittal RP, Jaitak V. Plant-Derived Natural Alkaloids as New Antimicrobial and Adjuvant Agents in Existing Antimicrobial Therapy. Curr Drug Targets 2020; 20:1409-1433. [PMID: 31215387 DOI: 10.2174/1389450120666190618124224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 11/22/2022]
Abstract
Infectious diseases, instigated by pathogenic microorganisms are the cause of numerous health problems in developing countries. Infectious diseases got a place in the list of top ten death causes worldwide. The reason behind that level of severity is antimicrobial resistance. Antimicrobial resistance makes the antimicrobial agents useless when used in the treatment of infectious diseases. Microbes have very smartly achieved resistance against synthetic and semi-synthetic antimicrobial agents for their survival. Therefore, the handling of these diseases has become challenging. The resistance developing power is the reason for their existence since a million years. Due to their highly dangerous nature, proper treatment of infectious diseases has become a topic of concern. This leads the scientists or researchers to focus their research towards natural agents. Plants synthesize secondary metabolites to cope up with biotic and abiotic changes in the environment. Alkaloids are one of the secondary metabolites, synthesized by plants. Alkaloids protect the plant from predators and help them to fight with pathogens. The protecting nature of alkaloids can be used as a strong weapon in battle with resistant microorganisms. The purpose of this review is to provide information about the antimicrobial activity of alkaloids obtained from different plants and their combination with synthetic antimicrobials. Their mechanism of action against microorganisms is also given in the review.
Collapse
Affiliation(s)
- Rajinder Pal Mittal
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| |
Collapse
|
10
|
Li J, Liu D, Tian X, Koseki S, Chen S, Ye X, Ding T. Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit Rev Food Sci Nutr 2018; 59:S153-S161. [PMID: 30501508 DOI: 10.1080/10408398.2018.1541865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious bacterial pathogen that induces high mortality and morbidity. Due to the emergence of multiple resistance, antibiotic treatments are rapidly becoming ineffective for the related infections. Natural products, especially those derived from plants, have been proven to be effective agents with unique antibacterial properties through different mechanisms. This review interprets the resistance mechanisms of MRSA with the aim to conquer public health threat. Further, recent researches about plant antimicrobials that showed remarkable antibacterial activity against MRSA are recorded, including the crude plant extracts and purified plant-derived bioactive compounds. Novel anti-MRSA modalities of plant antimicrobials such as alteration in efflux pump, inhibition of pyruvate kinase, and disturbance of quorum sensing in MRSA are also summarized which may be promising alternatives to antibacterial drug development in future.
Collapse
Affiliation(s)
- Jiao Li
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Donghong Liu
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xiaojun Tian
- c School of Biological and Health Systems Engineering , Arizona State University , Tempe , AZ , USA
| | - Shigenobu Koseki
- d Graduate School of Agricultural Science , Hokkaido University , Sapporo , Japan
| | - Shiguo Chen
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xingqian Ye
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Tian Ding
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| |
Collapse
|
11
|
Iqbal W, Alkarim S, Kamal T, Choudhry H, Sabir J, Bora RS, Saini KS. Rhazyaminine from Rhazya stricta Inhibits Metastasis and Induces Apoptosis by Downregulating Bcl-2 Gene in MCF7 Cell Line. Integr Cancer Ther 2018; 18:1534735418809901. [PMID: 30373413 PMCID: PMC7240879 DOI: 10.1177/1534735418809901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: The role of alkaloids isolated from Rhazya
stricta Decne (Apocynaceae family) (RS) in targeting genes involved
in cancer and metastasis remains to be elucidated. Objective:
Identify and characterize new compounds from RS, which inhibit gene(s) involved
in the survival, invasion, self-renewal, and metastatic processes of cancer
cells. Methods: Bioinformatics study was performed using HISAT2,
stringtie, and ballgown pipeline to understand expressional differences between
a normal epithelial cell line-MCF10A and MCF7. NMR and ATR-FTIR were performed
to elucidate the structure of rhazyaminine (R.A), isolated from
R stricta. Cell viability assay was performed using 0, 25,
and 50 μg/mL of total extract of R stricta (TERS) and R.A,
respectively, for 0, 24, and 48 hours, followed by scratch assay. In addition,
total RNA was isolated for RNA-seq analysis of MCF7 cell line
treated with R.A followed by qRT-PCR analysis of Bcl-2 gene.
Results: Deptor, which is upregulated in MCF7 compared with
MCF10A as found in our bioinformatics study was downregulated by R.A.
Furthermore, R.A effectively reduced cell viability to around 50%
(P < .05) and restricted cell migration in scratch
assay. Thirteen genes, related to metastasis and cancer stem cells, were
downregulated by R.A according to RNA-seq analysis.
Additionally, qRT-PCR validated the downregulation of Bcl-2
gene in R.A-treated cells by less than 0.5 folds (P < .05).
Conclusion: R.A successfully downregulated key genes involved
in apoptosis, cell survival, epithelial-mesenchymal transition, cancer stem cell
proliferation, and Wnt signal transduction pathway making it an
excellent “lead candidate” molecule for in vivo proof-of-concept studies.
Collapse
Affiliation(s)
- Waqas Iqbal
- 1 Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Alkarim
- 1 Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tahseen Kamal
- 2 Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- 3 Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Sabir
- 1 Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Roop S Bora
- 1 Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kulvinder S Saini
- 1 Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Subramani R, Narayanasamy M, Feussner KD. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 2017; 7:172. [PMID: 28660459 PMCID: PMC5489455 DOI: 10.1007/s13205-017-0848-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
Antibiotic resistance is becoming a pivotal concern for public health that has accelerated the search for new antimicrobial molecules from nature. Numbers of human pathogens have inevitably evolved to become resistant to various currently available drugs causing considerable mortality and morbidity worldwide. It is apparent that novel antibiotics are urgently warranted to combat these life-threatening pathogens. In recent years, there have been an increasing number of studies to discover new bioactive compounds from plant origin with the hope to control antibiotic-resistant bacteria. This review attempts to focus and record the plant-derived compounds and plant extracts against multi-drug-resistant (MDR) pathogens including methicillin-resistant Staphylococcus aureus (MRSA), MDR-Mycobacterium tuberculosis and malarial parasites Plasmodium spp. reported between 2005 and 2015. During this period, a total of 110 purified compounds and 60 plant extracts were obtained from 112 different plants. The plants reviewed in this study belong to 70 different families reported from 36 countries around the world. The present review also discusses the drug resistance in bacteria and emphasizes the urge for new drugs.
Collapse
Affiliation(s)
- Ramesh Subramani
- Department of Biology, School of Sciences, College of Engineering, Science and Technology, Fiji National University, Natabua Campus, Lautoka, Fiji.
| | | | - Klaus-D Feussner
- Centre for Drug Discovery and Conservation, Institute of Applied Sciences, The University of the South Pacific, Laucala Campus, Suva, Fiji
| |
Collapse
|
13
|
Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials-A Review. PLANTS 2017; 6:plants6020016. [PMID: 28394295 PMCID: PMC5489788 DOI: 10.3390/plants6020016] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/16/2022]
Abstract
Indiscriminate and irrational use of antibiotics has created an unprecedented challenge for human civilization due to microbe’s development of antimicrobial resistance. It is difficult to treat bacterial infection due to bacteria’s ability to develop resistance against antimicrobial agents. Antimicrobial agents are categorized according to their mechanism of action, i.e., interference with cell wall synthesis, DNA and RNA synthesis, lysis of the bacterial membrane, inhibition of protein synthesis, inhibition of metabolic pathways, etc. Bacteria may become resistant by antibiotic inactivation, target modification, efflux pump and plasmidic efflux. Currently, the clinically available treatment is not effective against the antibiotic resistance developed by some bacterial species. However, plant-based antimicrobials have immense potential to combat bacterial, fungal, protozoal and viral diseases without any known side effects. Such plant metabolites include quinines, alkaloids, lectins, polypeptides, flavones, flavonoids, flavonols, coumarin, terpenoids, essential oils and tannins. The present review focuses on antibiotic resistance, the resistance mechanism in bacteria against antibiotics and the role of plant-active secondary metabolites against microorganisms, which might be useful as an alternative and effective strategy to break the resistance among microbes.
Collapse
|