1
|
Cao K, Chen J, Lu X, Yao Y, Huang R, Li L. Matrine-producing endophytic fungus Galactomyces candidum TRP-7: screening, identification, and fermentation conditions optimization for Matrine production. Biotechnol Lett 2023; 45:209-223. [PMID: 36504268 DOI: 10.1007/s10529-022-03331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Matrine (MA) is an alkaloid extracted from the root of genus Sophora with various pharmacological activities. Production of MA by endophytic fungi offers an alternative challenge to reduce the massive consumption to meet the increasing demand of MA. In the current study, the positive strains with MA producing ability were screened from endophytic fungal isolated from the root of Sophora tonkinensis Gagnep. Chromatographic analyses verified the identity of the produced MA. Among these fungi, Galactomyces candidum strain TRP-7 was the most valuable strain for MA production with the initial yield 8.26 mg L-1. The MA production was efficiently maximized up to 17.57 mg L-1 of fermentation broth, after optimization of eight process parameters using Plackett-Burman and Box-Behnken designs. The statistical optimization resulted in a 1.127 times increase in MA production as compared to the initial yield of TRP-7. This is the first report to isolate endophytic fungi with MA-producing activity from S. tonkinensis Gagnep., and to identify an endophytic fungus G. candidum TRP-7 as a new promising start strain for a higher MA yield.
Collapse
Affiliation(s)
- Kexin Cao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.,College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jianhua Chen
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xuan Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Yuqun Yao
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| |
Collapse
|
2
|
Li J, Lu J, Ma Z, Li J, Chen X, Diao M, Xie N. A Green Route for High-Yield Production of Tetramethylpyrazine From Non-Food Raw Materials. Front Bioeng Biotechnol 2022; 9:792023. [PMID: 35145961 PMCID: PMC8823705 DOI: 10.3389/fbioe.2021.792023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
2,3,5,6-Tetramethylpyrazine (TMP) is an active pharmaceutical ingredient originally isolated from Ligusticum wallichii for curing cardiovascular and cerebrovascular diseases and is widely used as a popular flavoring additive in the food industry. Hence, there is a great interest in developing new strategies to produce this high-value compound in an ecological and economical way. Herein, a cost-competitive combinational approach was proposed to accomplish green and high-efficiency production of TMP. First, microbial cell factories were constructed to produce acetoin (3-hydroxy-2-butanone, AC), an endogenous precursor of TMP, by introducing a biosynthesis pathway coupled with an intracellular NAD+ regeneration system to the wild-type Escherichia coli. To further improve the production of (R)-AC, the metabolic pathways of by-products were impaired or blocked stepwise by gene manipulation, resulting in 40.84 g/L (R)-AC with a high optical purity of 99.42% in shake flasks. Thereafter, an optimal strain designated GXASR11 was used to convert the hydrolysates of inexpensive feedstocks into (R)-AC and achieved a titer of 86.04 g/L within 48 h in a 5-L fermenter under optimized fermentation conditions. To the best of our knowledge, this is the highest (R)-AC production with high optical purity (≥98%) produced from non-food raw materials using recombinant E. coli. The supernatant of fermentation broth was mixed with diammonium phosphate (DAP) to make a total volume of 20 ml and transferred to a high-pressure microreactor. Finally, 56.72 g/L TMP was obtained in 3 h via the condensation reaction with a high conversion rate (85.30%) under optimal reaction conditions. These results demonstrated a green and sustainable approach to efficiently produce high-valued TMP, which realized value addition of low-cost renewables.
Collapse
Affiliation(s)
- Jing Li
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jian Lu
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Zhilin Ma
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jianxiu Li
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xianrui Chen
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Mengxue Diao
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Nengzhong Xie
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
3
|
Xu J, Yu H, Chen X, Liu L, Zhang W. Accelerated Green Process of 2,5-Dimethylpyrazine Production from Glucose by Genetically Modified Escherichia coli. ACS Synth Biol 2020; 9:2576-2587. [PMID: 32841563 DOI: 10.1021/acssynbio.0c00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2,5-Dimethylpyrazine (2,5-DMP) is an indispensable additive for flavoring in the food industry and an important substrate for producing hypoglycemic and antilipolytic drugs. However, 2,5-DMP is produced by chemical synthesis in industry. Herein, a "green" strategy to produce 2,5-DMP has been reported for the first time. To do this, we rewrote the de novo 2,5-DMP biosynthesis pathway and substrate transmembrane transport in an l-threonine high-yielding strain to promote highly efficient 2,5-DMP production from glucose by submerged fermentation. The final strain T6-47-7 could produce 1.43 ± 0.07 g/L of 2,5-DMP with a carbon yield of 6.78% and productivity of 0.715 g/(L·d) in shake-flask fermentation using a phase-wise manner of hypoxia-inducible expression. The design-based strategy for constructing the 2,5-DMP high-yielding strain reported here could serve as a general concept for breeding high-yielding strains that produce some other type of alkylpyrazine.
Collapse
Affiliation(s)
- Jianzhong Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Haibo Yu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Weiguo Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| |
Collapse
|
4
|
Genetic Improvement of Pinus koraiensis in China: Current Situation and Future Prospects. FORESTS 2020. [DOI: 10.3390/f11020148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pinus koraiensis (Sieb.et Zucc) is an economically and ecologically important tree species, naturally distributed in northeastern China. Conservation efforts and genetic improvement for this species began in the 1960s and 1980s, with the establishment of several primary seed orchards based on range-wide provenance evaluations. The original breeding objective was to improve growth and wood yield, but during the recent decade, it was redefined to include other traits, such as an enhancement of wood properties, seed oil content, cone yield, and the development of elite provenance with families, clones, and varieties with good tolerance to biotic and abiotic stresses. However, improvement processes are slow due to a long breeding cycle, and the number of improved varieties is still low. In this review, we summarize the recent progress in the selective improvement of P. koraiensis varieties, such as elite provenance, family, and clones, using various breeding procedures. We collate information on advances in the improvement of P. koraiensis, based on conventional breeding and molecular marker-assisted breeding methods; identify gaps in our understanding of the tree improvement processes; and propose future research directions, which will provide new insight for subsequent genetic breeding research on P. koraiensis.
Collapse
|
5
|
Gao Y, Liang J, Xiao R, Zang P, Zhao Y, Zhang L. Effect of four trace elements on Paenibacillus polymyxa Pp-7250 proliferation, activity and colonization in ginseng. AMB Express 2018; 8:164. [PMID: 30311028 PMCID: PMC6182021 DOI: 10.1186/s13568-018-0694-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023] Open
Abstract
Trace elements are essential nutrients for the growth of microorganisms and play an important role in their proliferation. Hence, the purpose of this paper is to explore the optimal C and N sources for large-scale culture of Paenibacillus polymyxa, and to screen trace elements that can promote their proliferation and improve the activity. First, the concentration of Paenibacillus polymyxa Pp-7250, the number of spores were used as evaluation index. It was found that the four trace elements Cu2+, Fe2+, Mn2+, and Zn2+ could promote the proliferation of Paenibacillus polymyxa at their optimal concentrations. Next, when using wheat starch as carbon source and soybean meal as nitrogen source, it was most suitable for large-scale culture. Finally, field experiments were carried out, and it was discovered that the combination of four trace elements plus the wheat soybean meal group could significantly improve the disease prevention, growth promotion ability of Pp-7250 and its colonization in ginseng. Moreover, the ability of Pp-7250 to transform ginseng roots and leaf saponins were also significantly improved. The group also affected the rhizosphere bacterial community of ginseng and the number showed a significant promotion or inhibition.
Collapse
Affiliation(s)
- Yugang Gao
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Jing Liang
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Ruxue Xiao
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Pu Zang
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Yan Zhao
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Lianxue Zhang
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|