1
|
Gautheron O, Nyhan L, Torreiro MG, Tlais AZA, Cappello C, Gobbetti M, Hammer AK, Zannini E, Arendt EK, Sahin AW. Exploring the Impact of Solid-State Fermentation on Fava Bean Flour: A Comparative Study of Aspergillus oryzae and Rhizopus oligosporus. Foods 2024; 13:2922. [PMID: 39335851 PMCID: PMC11431236 DOI: 10.3390/foods13182922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Fava bean (Vicia faba L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. In this study, fava bean flour (FB) was fermented with Aspergillus oryzae and Rhizopus oligosporus to produce FBA and FBR, respectively, ingredients with distinct nutritional, functional, and aroma characteristics. The protein content increased by 20% in FBA and 8% in FBR, while fat levels rose more significantly in FBR (+40%). The overall content of fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) decreased by 47% (FBA) and 57% (FBR), although polyol production by A. oryzae was observed. SSF improved the nutritional profile of FBA and FBR, with a notable increase in the concentration of essential amino acids observed, and a reduction in most antinutrients, with the exception of trypsin inhibitors. SSF resulted in the formation of aggregates, which increased the particle size and reduced protein solubility. Emulsions prepared with the fermented ingredients separated faster, and the foaming capacity of both FBA and FBR was decreased, but an increase in water-holding capacity was observed. SSF resulted in the production of predominantly savoury-associated aroma compounds, with compounds characteristic of metallic and mouldy aromas reduced. These results indicate the potential of SSF to transform FB with enhanced nutritional value and improved sensory and functional properties.
Collapse
Affiliation(s)
- Ophélie Gautheron
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| | - Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| | | | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Claudia Cappello
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Andreas Klaus Hammer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany;
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, 00185 Rome, RM, Italy
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| |
Collapse
|
2
|
Ozdemir MB, Kılıçarslan E, Demir H, Koca E, Salum P, Berktaş S, Çam M, Erbay Z, Aydemir LY. Upgrading the Bioactive Potential of Hazelnut Oil Cake by Aspergillus oryzae under Solid-State Fermentation. Molecules 2024; 29:4237. [PMID: 39275085 PMCID: PMC11397294 DOI: 10.3390/molecules29174237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Hazelnut oil cake (HOC) has the potential to be bioactive component source. Therefore, HOC was processed with a solid-state fermentation (SSF) by Aspergillus oryzae with two steps optimization: Plackett-Burman and Box-Behnken design. The variables were the initial moisture content (X1: 30-50%), incubation temperature (X2: 26-37 °C), and time (X3: 3-5 days), and the response was total peptide content (TPC). The fermented HOC (FHOC) was darker with higher protein, oil, and ash but lower carbohydrate content than HOC. The FHOC had 6.1% more essential amino acid and benzaldehyde comprised 48.8% of determined volatile compounds. Fermentation provided 14 times higher TPC (462.37 mg tryptone/g) and higher phenolic content as 3.5, 48, and 7 times in aqueous, methanolic, and 80% aqueous methanolic extract in FHOC, respectively. FHOC showed higher antioxidant as ABTS+ (75.61 µmol Trolox/g), DPPH (14.09 µmol Trolox/g), and OH (265 mg ascorbic acid/g) radical scavenging, and α-glucosidase inhibition, whereas HOC had more angiotensin converting enzyme inhibition. HOC showed better water absorption while FHOC had better oil absorption activity. Both cakes had similar foaming and emulsifying activity; however, FHOC produced more stable foams and emulsions. SSF at lab-scale yielded more bioactive component with better functionality in FHOC.
Collapse
Affiliation(s)
- Melike Beyza Ozdemir
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye
| | - Elif Kılıçarslan
- Graduate School of Natural and Applied Sciences, Osmaniye Korkut Ata University, Osmaniye 80000, Türkiye
| | - Hande Demir
- Department of Food Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Türkiye
| | - Esra Koca
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye
| | - Pelin Salum
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye
| | - Serap Berktaş
- Department of Food Engineering, Erciyes University, Kayseri 38280, Türkiye
| | - Mustafa Çam
- Department of Food Engineering, Erciyes University, Kayseri 38280, Türkiye
| | - Zafer Erbay
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye
| |
Collapse
|
3
|
Wainaina S, Taherzadeh MJ. Automation and artificial intelligence in filamentous fungi-based bioprocesses: A review. BIORESOURCE TECHNOLOGY 2023; 369:128421. [PMID: 36462761 DOI: 10.1016/j.biortech.2022.128421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
By utilizing their powerful metabolic versatility, filamentous fungi can be utilized in bioprocesses aimed at achieving circular economy. With the current digital transformation within the biomanufacturing sector, the interest of automating fungi-based systems has intensified. The purpose of this paper was therefore to review the potentials connected to the use of automation and artificial intelligence in fungi-based systems. Automation is characterized by the substitution of manual tasks with mechanized tools. Artificial intelligence is, on the other hand, a domain within computer science that aims at designing tools and machines with the capacity to execute functions that would usually require human aptitude. Process flexibility, enhanced data reliability and increased productivity are some of the benefits of integrating automation and artificial intelligence in fungi-based bioprocesses. One of the existing gaps that requires further investigation is the use of such data-based technologies in the production of food from fungi.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | | |
Collapse
|
4
|
Kumar G, Lal S, Soni SK, Maurya SK, Shukla PK, Chaudhary P, Bhattacherjee AK, Garg N. Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics. Front Microbiol 2022; 13:891870. [PMID: 35958149 PMCID: PMC9360973 DOI: 10.3389/fmicb.2022.891870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The indiscriminate use of organophosphate insecticide chlorpyrifos in agricultural crops causes significant soil and water pollution and poses a serious threat to the global community. In this study, a microbial consortium ERM C-1 containing bacterial strains Pseudomonas putida T7, Pseudomonas aeruginosa M2, Klebsiella pneumoniae M6, and a fungal strain Aspergillus terreus TF1 was developed for the effective degradation of chlorpyrifos. Results revealed that microbial strains were not only utilizing chlorpyrifos (500 mg L-1) but also coupled with plant growth-promoting characteristics and laccase production. PGP traits, that is, IAA (35.53, 45.53, 25.19, and 25.53 μg mL-1), HCN (19.85, 17.85, 12.18, and 9.85 μg mL-1), and ammonium (14.73, 16.73, 8.05, and 10.87 μg mL-1) production, and potassium (49.53, 66.72, 46.14, and 52.72 μg mL-1), phosphate (52.37, 63.89, 33.33, and 71.89 μg mL-1), and zinc (29.75, 49.75, 49.12, and 57.75 μg mL-1) solubilization tests were positive for microbial strains T7, M2, M6, and TF1, respectively. The laccase activity by ERM C-1 was estimated as 37.53, 57.16, and 87.57 enzyme U mL-1 after 5, 10, and 15 days of incubation, respectively. Chlorpyrifos degradation was associated with ERM C-1 and laccase activity, and the degree of enzyme activity was higher in the consortium than in individual strains. The biodegradation study with developed consortium ERM C-1 showed a decreased chlorpyrifos concentration from the 7th day of incubation (65.77% degradation) followed by complete disappearance (100% degradation) after the 30th day of incubation in the MS medium. First-order degradation kinetics with a linear model revealed a high k -day value and low t 1/2 value in ERM C-1. The results of HPLC and GC-MS analysis proved that consortium ERM C-1 was capable of completely removing chlorpyrifos by co-metabolism mechanism.
Collapse
Affiliation(s)
- Govind Kumar
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Shatrohan Lal
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Sumit K. Soni
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Shailendra K. Maurya
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Pradeep K. Shukla
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Parul Chaudhary
- Department of Animal Biotechnology, Indian Council of Agricultural Research (ICAR)–National Dairy Research Institute, Karnal, Haryana, India
| | - A. K. Bhattacherjee
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Neelima Garg
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Barbieri GS, Bento HBS, de Oliveira F, Picheli FP, Dias LM, Masarin F, Santos-Ebinuma VC. Xylanase Production by Talaromyces amestolkiae Valuing Agroindustrial Byproducts. BIOTECH 2022; 11:biotech11020015. [PMID: 35822788 PMCID: PMC9264394 DOI: 10.3390/biotech11020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
In general, agroindustrial byproducts can be easily assimilated by several microorganisms due to their composition, which is rich in carbohydrates. Therefore, they could be appropriate for use as raw materials in a sustainable refinery concept, including the production of hydrolytic enzymes with industrial applicability. In this work, xylanase production by the filamentous fungi Talaromyces amestolkiae in submerged culture was evaluated using five agroindustrial byproducts, namely, wheat bran, citrus pulp, rice bran, peanut skin, and peanut shell. Firstly, the aforementioned byproducts were characterized in terms of cellulose, xylan, lignin, and extractives. Next, production studies were performed, and wheat bran generated the highest enzymatic activity (5.4 U·mL−1), probably because of its large amount of xylan. Subsequently, a factorial design was performed to evaluate the independent variables yeast extract, wheat bran, K2HPO4, and pH, aiming to improve the variable response, xylanase activity. The condition that promoted the highest production, 13.02 U·mL−1 (141% higher than the initial condition), was 20 g·L−1 wheat bran, 2.5 g·L−1 yeast extract, 3 g·L−1 K2HPO4, and pH 7. Thus, industrial byproducts with a high content of xylan can be used as a culture medium to produce xylanase enzymes with a Talaromyces strain through an economical and sustainable approach.
Collapse
|
6
|
Lee SK, Lee JH, Kim HR, Chun Y, Lee JH, Park C, Yoo HY, Kim SW. Rapid and concise quantification of mycelial growth by microscopic image intensity model and application to mass cultivation of fungi. Sci Rep 2021; 11:24157. [PMID: 34921189 PMCID: PMC8683468 DOI: 10.1038/s41598-021-03512-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The microbial food fermentation industry requires real-time monitoring and accurate quantification of cells. However, filamentous fungi are difficult to quantify as they have complex cell types such as pellet, spores, and dispersed hyphae. In this study, numerous data of microscopic image intensity (MII) were used to develop a simple and accurate quantification method of Cordyceps mycelium. The dry cell weight (DCW) of the sample collected during the fermentation was measured. In addition, the intensity values were obtained through the ImageJ program after converting the microscopic images. The prediction model obtained by analyzing the correlation between MII and DCW was evaluated through a simple linear regression method and found to be statistically significant (R2 = 0.941, p < 0.001). In addition, validation with randomly selected samples showed significant accuracy, thus, this model is expected to be used as a valuable tool for predicting and quantifying fungal growth in various industries.
Collapse
Affiliation(s)
- Soo Kweon Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Ju Hun Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Hyeong Ryeol Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Youngsang Chun
- Department of Interdisciplinary Bio-Micro System Technology, College of Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Ja Hyun Lee
- Department of Food Science and Engineering, Dongyang Mirae University, 445, Gyeongin-Ro, Guro-Gu, Seoul, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul, 03016, Republic of Korea.
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Kristensen SB, Pedersen TB, Nielsen MR, Wimmer R, Muff J, Sørensen JL. Production and Selectivity of Key Fusarubins from Fusarium solani due to Media Composition. Toxins (Basel) 2021; 13:376. [PMID: 34070644 PMCID: PMC8230112 DOI: 10.3390/toxins13060376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022] Open
Abstract
Natural products display a large structural variation and different uses within a broad spectrum of industries. In this study, we investigate the influence of carbohydrates and nitrogen sources on the production and selectivity of production of four different polyketides produced by Fusarium solani, fusarubin, javanicin, bostrycoidin and anhydrofusarubin. We introduce four different carbohydrates and two types of nitrogen sources. Hereafter, a full factorial design was applied using combinations of three levels of sucrose and three levels of the two types of nitrogen. Each combination displayed different selectivity and production yields for all the compounds of interest. Response surface design was utilized to investigate possible maximum yields for the surrounding combinations of media. It was also shown that the maximum yields were not always the ones illustrating high selectivity, which is an important factor for making purification steps easier. We visualized the production over time for one of the media types, illustrating high yields and selectivity.
Collapse
Affiliation(s)
- Sebastian Birkedal Kristensen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark;
| | - Jens Muff
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| |
Collapse
|
8
|
dos Santos MC, da Silva WS, da Silva BF, Cerri MO, Ribeiro MPDA, Bicas JL. Comparison of Two Methods for Counting Molds in Fermentations Using the Production of Bikaverin by Fusarium oxysporum CCT7620 as a Model. Curr Microbiol 2020; 77:3671-3679. [DOI: 10.1007/s00284-020-02166-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/11/2020] [Indexed: 12/25/2022]
|
9
|
Manan MA, Webb C. Newly designed multi-stacked circular tray solid-state bioreactor: analysis of a distributed parameter gas balance during solid-state fermentation with influence of variable initial moisture content arrangements. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00307-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The growth of Aspergillus awamori and Aspergillus oryzae in a self-designed, multi-stacked circular tray solid-state bioreactor (SSB), operating in solid-state fermentation (SSF) conditions at a laboratory scale, was studied. The bioreactor was divided into six layers by six circular perforated trays. Wheat bran was used as both a carrier of bound mycelia and nutrient medium for the growth of A. awamori and A. oryzae. The new tray SSB is equipped with instrumentation (an oxygen (O2)/carbon dioxide (CO2) gas analyser and a thermocouple) to continuously monitor O2 consumption and CO2 and heat evolved, which can directly be used to monitor the fungal biomass. The integrated Gompertz model was used to describe the accumulated evolution of CO2.
Results
The results from the models strongly suggest that the evolved and accumulated CO2 can be used to excellently describe fungal growth. Another important parameter that can be determined by the gas balance method is the respiratory quotient (RQ). This is the ratio of the CO2 evolution rate (CER) to the O2 uptake rate (OUR). The use of CER and OUR confirmed that correlated measurements of microbial activity are available, and the determination of RQ may propose an explanation for differences from expected levels. The kinetic behaviour of the fungal culture, using raw CO2, which represents an accumulation term, was integrated with respect to time and fitted to a Gompertz model, a log-like equation. The model can be used to generate parameter values that may be used to verify the experimental data, and also to simulate and optimise the process.
Conclusion
Overall, A. awamori and A. oryzae have their own ability to degrade and utilise the complex compositions contained in the solid substrate, and fermentation conditions may lead to possible comparisons. In addition, multi-stacked circular tray SSB systems demonstrated an excellent system for further investigations of mass transfer and possibly for large-scale operation, though considerable optimisation work remains to be done; for example, the height/diameter ratio and total number of trays should be optimised.
Collapse
|
10
|
Marsico G, Ciccone MS, Masi M, Freda F, Cristofaro M, Evidente A, Superchi S, Scafato P. Synthesis and Herbicidal Activity Against Buffelgrass ( Cenchrus ciliaris) of (±)-3-deoxyradicinin. Molecules 2019; 24:molecules24173193. [PMID: 31484319 PMCID: PMC6749313 DOI: 10.3390/molecules24173193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
A novel synthetic strategy for obtainment of (±)-3-deoxyradicinin (2) is reported. This synthetic methodology is more efficient than those previously reported in the literature and also shows higher versatility towards the introduction of different side-chains at both C-7 and C-2. The obtained compound (±)-2 shows phytotoxicity against the grass-weed buffelgrass comparable to that of the natural phytotoxin radicinin (1). Therefore, (±)-2 can constitute a more practical synthetic alternative to 1 as bioherbicide for buffelgrass control.
Collapse
Affiliation(s)
- Giulia Marsico
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Sabrina Ciccone
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | | | - Massimo Cristofaro
- BBCA onlus, Via A. Signorelli 105, 00123 Rome, Italy
- ENEA C.R. Casaccia, SSPT-BIOAG-PROBIO, Via Anguillarese 301, 00123 Rome, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Stefano Superchi
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Patrizia Scafato
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|