1
|
Liang J, Yuan H, Fei Y, Wang H, Qu C, Bai W, Liu G. Effects of Saccharomyces cerevisiae and Cyberlindnera fabianii Inoculation on Rice-Flavor Baijiu Fermentation. Foods 2024; 13:3175. [PMID: 39410210 PMCID: PMC11476301 DOI: 10.3390/foods13193175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Rice-flavor baijiu is a distilled Chinese spirit prepared from Xiaoqu culture. However, its dull taste may be a market limitation. In order to enhance the flavor profile of rice-flavor baijiu, two ester-producing yeast strains (Saccharomyces cerevisiae and Cyberlindnera fabianii) were inoculated for fermentation. At the end of the fermentation, the total alcohol and ester contents had also increased by 43.3% and 29.8%, respectively, and the number of ester species had increased by eight. Additionally, eleven flavor substances had significant contributions in the inoculated fermentation process, including several different esters and alcohols. A macrogenomic analysis revealed that the majority of the gene abundances associated with the alcohol, acid, and ester pathways were elevated by the third day of inoculated fermentation, and greater abundances of Saccharomyces cerevisiae, Cyberlindnera fabianii, Lichtheimia ramosa, Rhizopus delemar, and Rhizopus oryzaefive, annotated with these genes, were observed from either the pre-fermentation stage or post-fermentation stage. The results demonstrate that two added strains are associated with an increase in the content of the flavor substances. These findings may prove beneficial in enhancing the quality of rice-flavor baijiu through using inoculated fermentation with ester-producing yeast.
Collapse
Affiliation(s)
- Jinglong Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haishan Yuan
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunyun Qu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
2
|
Wang H, Wang Y, Ruan Y, Ma D, Wang H, Yang S, Lyu L, Yang F, Wu X, Chen Y. Core microbes identification and synthetic microbiota construction for the production of Xiaoqu light-aroma Baijiu. Food Res Int 2024; 183:114196. [PMID: 38760131 DOI: 10.1016/j.foodres.2024.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 05/19/2024]
Abstract
Baijiu production has relied on natural inoculated Qu as a starter culture, causing the unstable microbiota of fermentation grains, which resulted in inconsistent product quality across batches. Therefore, revealing the core microbes and constructing a synthetic microbiota during the fermentation process was extremely important for stabilizing product quality. In this study, the succession of the microbial community was analyzed by high-throughput sequencing technology, and ten core microbes of Xiaoqu light-aroma Baijiu were obtained by mathematical statistics, including Acetobacter, Bacillus, Lactobacillus, Weissella, Pichia,Rhizopus, Wickerhamomyces, Issatchenkia, Saccharomyces, and Kazachstania. Model verification showed that the core microbiota significantly affected the composition of non-core microbiota (P < 0.01) and key flavor-producing enzymes (R > 0.8, P < 0.01), thus significantly affecting the flavor of base Baijiu. Simulated fermentation validated that the core microbiota can reproduce the fermentation process and quality of Xiaoqu light-aroma Baijiu. The succession of bacteria was mainly regulated by acidity and ethanol, while the fungi, especially non-Saccharomyces cerevisiae, were mainly regulated by the initial dominant bacteria (Acetobacter, Bacillus, and Weissella). This study will play an important role in the transformation of Xiaoqu light-aroma Baijiu fermentation from natural fermentation to controlled fermentation and the identification of core microbes in other fermented foods.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yumei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yulei Ruan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Dan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Han Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | - Linjie Lyu
- Jing Brand Co., Ltd, HuangShi, HuBei 435100, China.
| | - Fengjun Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaole Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Cheng W, Chen X, Xue X, Lan W, Zeng H, Li R, Pan T, Li N, Gong Z, Yang H. Comparison of the Correlations of Microbial Community and Volatile Compounds between Pit-Mud and Fermented Grains of Compound-Flavor Baijiu. Foods 2024; 13:203. [PMID: 38254504 PMCID: PMC10814010 DOI: 10.3390/foods13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The microbial composition and volatile components of fermented grains (FG) and pit mud (PM) are crucial for the quality and flavor of compound-flavor baijiu (CFB). The physicochemical indices, culturable microorganisms, microbial communities, and volatile components of FG and PM were analyzed and correlated in our research. Considering FG and PM, amplicon sequencing was used to analyze the microbial community and the volatile components were detected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME). For FG, redundancy analysis and correlation perfume Circos were used to clarify the correlations between the dominant microbial community and volatile components. The results showed that Aspergillus, Pichia, and Rhizopus were the main fungal microflora in FG and PM, whereas Lactobacillus and Bacillus were the dominant bacteria in FG, and Methanosarcina and Clostridium sensu stricto 12 were the dominant bacteria in the PM. The microbial community and volatile compounds in the CB sampled from the bottom layers of the FG were greatly affected by those in the PM. There were 32 common volatile components in CB and PM. For FG, most of the volatile components were highly correlated with Lactobacillus, Bacillus, Aspergillus, Pichia, and Monascus, which includes alcohols, acids and esters. This study reveals correlations between microbial composition, volatile components, and the interplay of FG and PM, which are conducive to optimizing the fermentation process and improving the quality of CFB base.
Collapse
Affiliation(s)
- Wei Cheng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Xijia Xue
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China;
| | - Huawei Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China;
| | - Ruilong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China;
| | - Tianquan Pan
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Na Li
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Zilu Gong
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Hongwen Yang
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| |
Collapse
|
4
|
Wei Y, Zhang S, Guan G, Wan Z, Wang R, Li P, Liu Y, Wang J, Jiao G, Wang H, Sun C. A specific and rapid method for detecting Bacillus and Acinetobacter species in Daqu. Front Bioeng Biotechnol 2023; 11:1261563. [PMID: 37818237 PMCID: PMC10561003 DOI: 10.3389/fbioe.2023.1261563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Daqu is a spontaneous, solid-state cereal fermentation product used for saccharification and as a starter culture for Chinese Baijiu production. Bacillus and Acinetobacter, two dominant microbial genera in Daqu, produce enzymes and organic acids that influence the Daqu quality. However, there are no rapid analytical methods for detecting Bacillus and Acinetobacter. We designed primers specific to the genera Bacillus and Acinetobacter to perform genetic comparisons using the 16 S rRNA. After amplification of polymerase chain reaction using specific primers, high-throughput sequencing was performed to detect strains of Bacillus and Acinetobacter. The results showed that the effective amplification rates for Bacillus and Acinetobacter in Daqu were 86.92% and 79.75%, respectively. Thus, we have devised and assessed a method to accurately identify the species associated with Bacillus and Acinetobacter in Daqu, which can also hold significance for bacterial typing and identification.
Collapse
Affiliation(s)
- Yanwei Wei
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Shuyue Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guikun Guan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ziran Wan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Yu Liu
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guanhua Jiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Hao Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuying Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
5
|
Ren T, Su W, Mu Y, Qi Q, Zhang D. Study on the correlation between microbial communities with physicochemical properties and flavor substances in the Xiasha round of cave-brewed sauce-flavor Baijiu. Front Microbiol 2023; 14:1124817. [PMID: 36937267 PMCID: PMC10014610 DOI: 10.3389/fmicb.2023.1124817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023] Open
Abstract
The Chishui River basin is the main production area of the sauce-flavor Baijiu. Due to the particularity of sauce-flavor Baijiu technology, a large site of workshops needs to be built for brewing and storage. Therefore, used the natural karst caves of Guizhou province to manufacture the sauce-flavor Baijiu, which has enriched the connotation of sauce-flavor Baijiu and saved valuable land resources. In this study, the fermentation grains in the seven stages during the Xiasha round of the cave-brewed sauce-flavor Baijiu (CBSB) were detected using a combination of physicochemical analysis, Headspace solid-phase microextraction gas chromatography-mass detection, and Illumina HiSeq sequencing methods. The results showed Unspecified_Leuconostocaceae, Weissella, Unspecified_Bacillaceae, Saccharomycopsis, Thermomyces, and Unspecified_Phaffomycetaceae were the main bacterial and fungal genera in the stacking fermentation (SF). In the cellar fermentation (CF), the Lactobacillus, Unspecified_Lactobacillaceae, Thermoactinomyces, Saccharomycopsis, Unspecified_Phaffomycetaceae, and Wickerhamomyces were the main bacterial and fungal genera. A total of 72 volatiles were detected in the fermented grains. Linear discriminant analysis Effect Size (LEfSe) identified 23 significantly different volatile metabolites in the fermentation process, including 7 esters, 6 alcohols, 4 acids, 3 phenols, 1 hydrocarbon, and 2 other compounds. Redundancy analysis was used to explore the correlation between dominant microbial genera and physicochemical properties. Starch was the main physicochemical property affecting microbial succession in the SF. Acidity, moisture, and reducing sugar were the main driving factors of microbial succession in the CF. The Pearson correlation coefficient revealed the correlation between dominant microbial genera and significantly different volatile flavor substances. A total of 18 dominant microbial genera were associated with significantly different volatile metabolites, Lactobacillus, Weissella, Wickerhamomyces, and Aspergillus were shown to play crucial roles in metabolite synthesis. On this basis, a metabolic map of the dominant microbial genera was established. This study provides a theoretical basis for the production and quality control of sauce-flavor Baijiu brewed in natural karst caves and lays a foundation for studying the link between flavor formation and microorganisms.
Collapse
Affiliation(s)
- Tingting Ren
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
- *Correspondence: Wei Su
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Qi Qi
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Dangwei Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Zhao W, Liang Z, Qian M, Li X, Dong H, Bai W, Wei Y, He S. Evolution of microbial communities during fermentation of Chi-flavor type Baijiu as determined by high-throughput sequencing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Cheng W, Chen X, Zhou D, Xiong F. Applications and prospects of the automation of compound flavor baijiu production by solid-state fermentation. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Baijiu, the national liquor of China, is produced using traditional solid-state fermentation (SSF). SSF automation during compound flavor baijiu (CFB) production can considerably reduce labor intensity and required manpower, improve the working environment, decrease costs, and increase efficiency. The approaches for SSF automation in CFB production can provide a reference for the automation of SSF in other industries. Therefore, this review compares the traditional and automated processes for jiuqu starter production, SSF, and solid-state distillation during baijiu brewing. Furthermore, specific applications of automation technology and equipment are summarized for each process. The problems and challenges associated with the automation of the process are then detailed and future development directions are proposed. Thus, this review provides an overall introduction to and insight into the developments and challenges in the automation of the CFB brewing process, helping to promote automation in the brewing of other baijiu flavor classes and SSF products.
Collapse
Affiliation(s)
- Wei Cheng
- School of Food Science & Engineering , Shaanxi University of Science & Technology , Xi’an 710021 , P. R. China
- Jinzhongzi Distillery Co., Ltd. , Fuyang 236023 , P. R. China
| | - Xuefeng Chen
- School of Food Science & Engineering , Shaanxi University of Science & Technology , Xi’an 710021 , P. R. China
| | - Duan Zhou
- School of Food Science & Engineering , Shaanxi University of Science & Technology , Xi’an 710021 , P. R. China
| | - Fengkui Xiong
- School of Mechanical & Electrical Engineering , Shaanxi University of Science & Technology , Xi’an 710021 , P. R. China
| |
Collapse
|
8
|
Li Q, Li L, Zhu H, Yang F, Xiao K, Zhang L, Zhang M, Peng Y, Wang C, Li D, Wu Q, Zhou M. Lactobacillus fermentum as a new inhibitor to control advanced glycation end-product formation during vinegar fermentation. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zhu L, Li L, Yang Q, Chen L, Zhang L, Zhang G, Lin B, Tang J, Zhang Z, Chen S. Study on microbial community of "green-covering" Tuqu and the effect of fortified autochthonous Monascus purpureus on the flavor components of light-aroma-type Baijiu. Front Microbiol 2022; 13:973616. [PMID: 36060768 PMCID: PMC9434108 DOI: 10.3389/fmicb.2022.973616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
"Green-covering" Tuqu (TQ), as one of Xiaoqu, is a special fermentative starter (also known as Jiuqu in Chinese) that originated in southern China and is characterized by a layer of green mold covering (Aspergillus clavatus) the surface and (sometimes) with a red heart. It plays a vital role in producing light-aroma-type Baijiu (LATB). However, to date, the microbiota that causes red heart of TQ remain largely unexplored, and it is still unclear how these microbiota influence on the quality of LATB. In this study, two types of TQ, one with a red heart (RH) and another with a non-red heart (NRH), were investigated by high throughput sequencing (HTS) and directional screening of culture-dependent methods. The obtained results revealed the differences in the microbial communities of different TQ and led to the isolation of two species of Monascus. Interestingly, the results of high performance liquid chromatography (HPLC) detection showed that citrinin was not detected, indicating that Monascus isolated from TQ was no safety risk, and the contents of gamma-aminobutyric acid in the fermented grains of RH were higher than that of NRH during the fermentation. Selecting the superior autochthonous Monascus (M1) isolated from the TQ to reinoculate into the TQ-making process, established a stable method for producing the experimental "red heart" Tuqu (ERH), which confirmed that the cause of "red heart" was the growth of Monascus strains. After the lab-scale production test, ERH increased ethyl ester production and reduced higher alcohols production. In addition, Monascus had an inhibitory effect on the growth of Saccharomyces and Aspergillus. This study provides the safe, health-beneficial, and superior fermentation strains and strategies for improving the quality of TQ and LATB.
Collapse
Affiliation(s)
- Liping Zhu
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Lanqi Li
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Qiang Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Liang Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Lei Zhang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Gang Zhang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Bin Lin
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Jie Tang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| |
Collapse
|
10
|
Microbial succession and its effect on key aroma components during light-aroma-type Xiaoqu Baijiu brewing process. World J Microbiol Biotechnol 2022; 38:166. [PMID: 35861902 DOI: 10.1007/s11274-022-03353-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Light-aroma-type Baijiu is a Chinese distilled alcoholic beverage produced from fermented sorghum. Microbial composition and dynamics during Baijiu production have a great influence on the flavor and quality of Chinese Baijiu. However, the microbial changes that occur during brewing of Xiaoqu Baijiu are poorly understood. In this study, the microbial composition of light-aroma-type Xiaoqu Baijiu at the saccharification and fermentation stages was investigated to explore microbial dynamics and their effects on aroma components using high-throughput sequencing and gas chromatography-flame ionization detection (GC-FID). Rhizopus, Pichia, Wickerhamomyces, Saccharomyces, Acinetobacter, Lactobacillus, and Weissella constituted the core microbes for Xiaoqu Baijiu production. Microbial succession during brewing could be divided into two phases: at the saccharification and early fermentation stages (F-0d to F-4d), Rhizopus and Acinetobacter were identified as the predominant microbes, accounting for 78.2-90.8% and 53.9-89.5% of the fungal and bacterial communities, respectively, whereas at the middle and late stages of fermentation (F-5d to F-14d), the abundance of Pichia, Wickerhamomyces, Saccharomyces, and Lactobacillus increased. Redundancy analysis (RDA) and Mantel tests indicated that the water, amino acid nitrogen, acid, and reducing sugar contents were significantly correlated with the fungal and bacterial communities in grains (p < 0.05). Pichia, Rhizopus, Saccharomyces, and Wickerhamomyces, especially Saccharomyces, were closely related to the contents of major alcohols, esters and aldehydes, and these microbes had an important functional role in the formation of Xiaoqu Baijiu flavor. This work provides insights into the microbial succession that occurs during brewing of light-aroma-type Xiaoqu Baijiu and the microbial contribution to flavor, which have potential for optimizing production and enhancing the flavor of Baijiu.
Collapse
|
11
|
Tu W, Cao X, Cheng J, Li L, Zhang T, Wu Q, Xiang P, Shen C, Li Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front Microbiol 2022; 13:919044. [PMID: 35783408 PMCID: PMC9245514 DOI: 10.3389/fmicb.2022.919044] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Chinese Baijiu is one of the famous distilled liquor series with unique flavors in the world. Under the open environment, Chinese Baijiu was produced by two solid-state fermentation processes: jiuqu making and baijiu making. Chinese Baijiu can be divided into different types according to the production area, production process, starter type, and product flavor. Chinese Baijiu contains rich flavor components, such as esters and organic acids. The formation of these flavor substances is inseparable from the metabolism and interaction of different microorganisms, and thus, microorganisms play a leading role in the fermentation process of Chinese Baijiu. Bacteria, yeasts, and molds are the microorganisms involved in the brewing process of Chinese Baijiu, and they originate from various sources, such as the production environment, production workers, and jiuqu. This article reviews the typical flavor substances of different types of Chinese Baijiu, the types of microorganisms involved in the brewing process, and their functions. Methods that use microbial technology to enhance the flavor of baijiu, and for detecting flavor substances in baijiu were also introduced. This review systematically summarizes the role and application of Chinese Baijiu flavor components and microorganisms in baijiu brewing and provides data support for understanding Chinese Baijiu and further improving its quality.
Collapse
Affiliation(s)
- Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jie Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, China
| |
Collapse
|
12
|
Nguyen NTH, Wang WY, Huang WL, Huang CL, Chiang TY. Metagenomics analyses of microbial dynamics associated with putative flavor development in mash fermentation of sake. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Liu Y, Sun M, Hou P, Wang W, Shen X, Zhang L, Han S, Pan C. Analysis of microbial community structure and volatile compounds in pit mud used for manufacturing Taorong-type Baijiu based on high-throughput sequencing. Sci Rep 2022; 12:7347. [PMID: 35513386 PMCID: PMC9072327 DOI: 10.1038/s41598-022-10412-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
In this study, the pit mud used in manufacturing Taorong-type Baijiu was collected from the upper, middle, lower and bottom layers of pits at Henan Yangshao Liquor Co., LTD. High-throughput sequencing (HTS) technology was used to analyze the microbial community structure of the pit mud. In addition, the volatile compounds in the pit mud were subjected to preliminary qualitative analysis through headspace-solid phase microextraction and gas chromatography-mass spectrometry (GC-MS). The HTS results demonstrated that there were 5, 3, 5 and 5 dominant bacterial phyla (including 11, 11, 9 and 8 dominant bacterial genera) and 3, 3, 3 and 3 dominant fungal phyla (including 4, 7, 7 and 5 dominant fungal genera) in the pit mud from the F-S (upper), G-Z (middle), H-X (lower) and I-D (bottom) layers, respectively. In the qualitative analysis of the volatile compounds, a total of 77types of volatile compounds were detected in the pit mud, including 46, 45, 39 and 49 types in the pit mud from layers F-S, G-Z, H-X and I-D, respectively. Esters and acids were the two main components of the pit mud. The correlation between the microorganisms present and the main volatile compounds in the pit mud was analyzed. Lentimicrobium, Syner-01 and Blvii28_wastewater-sludge groups were found for the first time in pit mud used for manufacturing Taorong-type Baijiu. The findings of this study could provide a theoretical foundation for improving the quality of pit mud and the flavor of Taorong-type Baijiu.
Collapse
Affiliation(s)
- Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Postdoctoral Programme, Henan Yangshao Distillery Co., Ltd., Mianchi, 472400, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Mengxiao Sun
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Pei Hou
- School of Food and Bio-Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Wenya Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Xiangkun Shen
- Henan Food Industry Science Research Institute Co., Ltd., Zhengzhou, 450003, China
| | - Lixin Zhang
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Suna Han
- Postdoctoral Programme, Henan Yangshao Distillery Co., Ltd., Mianchi, 472400, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
14
|
Chen S, Perez-Samper G, Herrera-Malaver B, Zhu L, Liu Y, Steensels J, Yang Q, Verstrepen KJ. Breeding of New Saccharomyces cerevisiae Hybrids with Reduced Higher Alcohol Production for Light-Aroma-Type- Xiaoqu Baijiu Production. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2033608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shenxi Chen
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye, Hubei, People’s Republic of China
| | - Gemma Perez-Samper
- Department M2S, CMPG Laborary for Genetics and Genomics, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- Department M2S, CMPG Laborary for Genetics and Genomics, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Leuven, Belgium
| | - Liping Zhu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye, Hubei, People’s Republic of China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye, Hubei, People’s Republic of China
| | - Jan Steensels
- Department M2S, CMPG Laborary for Genetics and Genomics, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Leuven, Belgium
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye, Hubei, People’s Republic of China
| | - Kevin J. Verstrepen
- Department M2S, CMPG Laborary for Genetics and Genomics, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Leuven, Belgium
| |
Collapse
|
15
|
Tang J, Liu Y, Lin B, Zhu H, Jiang W, Yang Q, Chen S. Effects of ultra-long fermentation time on the microbial community and flavor components of light-flavor Xiaoqu Baijiu based on fermentation tanks. World J Microbiol Biotechnol 2021; 38:3. [PMID: 34817705 PMCID: PMC8611178 DOI: 10.1007/s11274-021-03183-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 01/19/2023]
Abstract
Microbial structure and succession of fermented grains play a significant role in Baijiu's flavor and quality. In this study, high-throughput sequencing (HTS) coupled with headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to analyze the microbial community structures and flavor components in the fermented grains at the end of fermentation from different fermentation time of light-flavor Xiaoqu Baijiu. HTS results showed that Lactobacillus acetotolerans, Lactobacillus helveticus, Lactobacillus buchneri, Wickerhamomyces, Saccharomyces, and Condenascus were identified as the dominant microbes, but Lactobacillus (96.28%) exhibited obvious advantages at the end of ultra-long fermentation time (day 98). HS-SPME-GC-MS analysis revealed that esters and alcohols had the most abundance in fermented grains of day 98, containing high concentrations of ethyl acetate, diethyl succinate, phenylethyl alcohol, isoamyl alcohol, and n-propanol, which were related to the succession of Lactobacillus and yeast communities. Interestingly, the content of n-propanol in the ultra-long fermentation time samples (day 98) was 6 times of that in normal fermented grains (day 14), which may be caused by higher abundance of Lactobacillus in day 98 samples. Monte Carlo permutation test showed residual starch, acidity, and amino nitrogen (p < 0.05) were important factors affecting the microbial community. Together, these results shed light on the physicochemical changes, microbial dynamics, and key flavor components of fermented grains at the end of fermentation from different fermentation time and provide a strategy for further improvement of Baijiu quality.
Collapse
Affiliation(s)
- Jie Tang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Bin Lin
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Hao Zhu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Wei Jiang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China.
| | - Shenxi Chen
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Hu Y, Lei X, Zhang X, Guan T, Wang L, Zhang Z, Yu X, Tu J, Peng N, Liang Y, Zhao S. Characteristics of the Microbial Community in the Production of Chinese Rice-Flavor Baijiu and Comparisons With the Microflora of Other Flavors of Baijiu. Front Microbiol 2021; 12:673670. [PMID: 33995338 PMCID: PMC8116502 DOI: 10.3389/fmicb.2021.673670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rice-flavor baijiu is one of the four basic flavor types of Chinese baijiu. Microbial composition plays a key role in the classification of baijiu flavor types and the formation of flavor substances. In this study, we used high-throughput sequencing technology to study the changes of microbial community in the production of rice-flavor baijiu, and compared the microbial community characteristics during production of rice-, light-, and strong-flavor baijiu. The results showed that the species diversity of bacteria was much higher than that of fungi during the brewing of rice-flavor baijiu. The bacterial diversity index first increased and then decreased, while the diversity of fungi showed an increasing trend. A variety of major microorganisms came from the environment and raw rice materials; the core bacteria were Lactobacillus, Weissella, Pediococcus, Lactococcus, Acetobacter, etc., among which Lactobacillus was dominant (62.88-99.23%). The core fungi were Saccharomyces (7.06-83.50%) and Rhizopus (15.21-90.89%). Temperature and total acid content were the main physicochemical factors affecting the microbial composition. Non-metric multidimensional scaling analysis showed that during the fermentation of rice-, light-, and strong-flavor baijiu, their microbial communities formed their own distinct systems, with considerable differences among different flavor types. Compared with the other two flavor types of baijiu, in the brewing process of rice-flavor baijiu, microbial species were fewer and dominant microorganisms were prominent, which may be the main reason for the small variety of flavor substances in rice-flavor baijiu. This study provides a theoretical basis for the production of rice-flavor baijiu, and lays a foundation for studying the link between baijiu flavor formation and microorganisms.
Collapse
Affiliation(s)
- Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center of Typical Wild Vegetable Breeding and Comprehensive Utilization Technology, Huangshi, China
| | - Xinyi Lei
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Xiaomin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Guangdong Deqing Incomparable Health Wine Co., Ltd., Zhaoqing, China
| | - Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Luyao Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Xiang Yu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|