1
|
Thanh Luan NN, Okada T, Yokoyama T, Suzuki M, Nabeshima Y, Mizuguchi M, Toyooka N. Divergent Total Synthesis of Isoflavone Natural Products and Their Potential as Therapeutic Agents for TTR Amyloidosis. JOURNAL OF NATURAL PRODUCTS 2024. [PMID: 39462254 DOI: 10.1021/acs.jnatprod.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We have achieved the divergent total synthesis of nine isoflavone natural products 1-9 starting from commercially available 2,4,6-trihydroxyacetophenone as a starting material. The isoflavone skeleton of 1-9 was constructed by the Suzuki-Miyaura coupling reaction as the key reaction. Investigation of the potential of 1-9 as therapeutic agents for transthyretin (TTR) amyloidosis revealed that millexatin F (3) showed the best efficacy in ex vivo competitive binding experiments and thioflavin-T fluorescence studies. Therefore, millexatin F (3) is promising as a seed compound for a novel TTR amyloidosis therapeutic agent.
Collapse
Affiliation(s)
- Nguyen Ngoc Thanh Luan
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Mie Suzuki
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
2
|
Priyanka, Raymandal B, Mondal S. Native State Stabilization of Amyloidogenic Proteins by Kinetic Stabilizers: Inhibition of Protein Aggregation and Clinical Relevance. ChemMedChem 2024; 19:e202400244. [PMID: 38863235 DOI: 10.1002/cmdc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Proteinopathies or amyloidoses are a group of life-threatening disorders that result from misfolding of proteins and aggregation into toxic insoluble amyloid aggregates. Amyloid aggregates have low clearance from the body due to the insoluble nature, leading to their deposition in various organs and consequent organ dysfunction. While amyloid deposition in the central nervous system leads to neurodegenerative diseases that mostly cause dementia and difficulty in movement, several other organs, including heart, liver and kidney are also affected by systemic amyloidoses. Regardless of the site of amyloid deposition, misfolding and structural alteration of the precursor proteins play the central role in amyloid formation. Kinetic stabilizers are an emerging class of drugs, which act like pharmacological chaperones to stabilize the native state structure of amyloidogenic proteins and to increase the activation energy barrier that is required for adopting a misfolded structure or conformation, ultimately leading to the inhibition of protein aggregation. In this review, we discuss the kinetic stabilizers that stabilize the native quaternary structure of transthyretin, immunoglobulin light chain and superoxide dismutase 1 that cause transthyretin amyloidoses, light chain amyloidosis and familial amyotrophic lateral sclerosis, respectively.
Collapse
Affiliation(s)
- Priyanka
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Bitta Raymandal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Santanu Mondal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| |
Collapse
|
3
|
Marotta C, Ciccone L, Orlandini E, Rossello A, Nencetti S. A Snapshot of the Most Recent Transthyretin Stabilizers. Int J Mol Sci 2024; 25:9969. [PMID: 39337457 PMCID: PMC11432176 DOI: 10.3390/ijms25189969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, several strategies have been developed for the treatment of transthyretin-related amyloidosis, whose complex clinical manifestations involve cardiomyopathy and polyneuropathy. In view of this, transthyretin stabilizers represent a major cornerstone in treatment thanks to the introduction of tafamidis into therapy and the entry of acoramidis into clinical trials. However, the clinical treatment of transthyretin-related amyloidosis still presents several challenges, urging the development of new and improved therapeutics. Bearing this in mind, in this paper, the most promising among the recently published transthyretin stabilizers were reviewed. Their activity was described to provide some insights into their clinical potential, and crystallographic data were provided to explain their modes of action. Finally, structure-activity relationship studies were performed to give some guidance to future researchers aiming to synthesize new transthyretin stabilizers. Interestingly, some new details emerged with respect to the previously known general rules that guided the design of new compounds.
Collapse
Affiliation(s)
- Carlo Marotta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53-55, 56100 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
4
|
Mizuguchi M, Nakagawa Y, Yokoyama T, Okada T, Fujii K, Takahashi K, Luan NNT, Nabeshima Y, Kanamitsu K, Nakagawa S, Yamakawa S, Ueda M, Ando Y, Toyooka N. Development of Benziodarone Analogues with Enhanced Potency for Selective Binding to Transthyretin in Human Plasma. J Med Chem 2024; 67:6987-7005. [PMID: 38670538 PMCID: PMC11089511 DOI: 10.1021/acs.jmedchem.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Transthyretin amyloidosis is a fatal disorder caused by transthyretin amyloid aggregation. Stabilizing the native structure of transthyretin is an effective approach to inhibit amyloid aggregation. To develop kinetic stabilizers of transthyretin, it is crucial to explore compounds that selectively bind to transthyretin in plasma. Our recent findings demonstrated that the uricosuric agent benziodarone selectively binds to transthyretin in plasma. Here, we report the development of benziodarone analogues with enhanced potency for selective binding to transthyretin in plasma compared to benziodarone. These analogues featured substituents of chlorine, bromine, iodine, a methyl group, or a trifluoromethyl group, at the 4-position of the benzofuran ring. X-ray crystal structure analysis revealed that CH···O hydrogen bonds and a halogen bond are important for the binding of the compounds to the thyroxine-binding sites. The bioavailability of benziodarone analogues with 4-Br, 4-Cl, or 4-CH3 was comparable to that of tafamidis, a current therapeutic agent for transthyretin amyloidosis.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty
of Pharmaceutical Sciences, University of
Toyama, Toyama 930-0194, Japan
| | - Yusuke Nakagawa
- Graduate
School of Innovative Life Science, University
of Toyama, Toyama 930-8555, Japan
| | - Takeshi Yokoyama
- Faculty
of Pharmaceutical Sciences, University of
Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Graduate
School of Innovative Life Science, University
of Toyama, Toyama 930-8555, Japan
- Faculty
of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Kanako Fujii
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Kanoko Takahashi
- Graduate
School of Pharma-Medical Sciences, University
of Toyama, Toyama 930-8555, Japan
| | - Nguyen Ngoc Thanh Luan
- Graduate
School of Innovative Life Science, University
of Toyama, Toyama 930-8555, Japan
| | - Yuko Nabeshima
- Faculty
of Pharmaceutical Sciences, University of
Toyama, Toyama 930-0194, Japan
| | - Kayoko Kanamitsu
- Graduate
School of Pharmaceutical Sciences, the University
of Tokyo, Tokyo 113-0033, Japan
| | - Shinsaku Nakagawa
- Graduate
School of Pharmaceutical Sciences, Osaka
University, Osaka 565-0871, Japan
| | - Shiori Yamakawa
- Department
of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mitsuharu Ueda
- Department
of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yukio Ando
- Faculty
of Pharmaceutical Sciences, Nagasaki International
University, Sasebo 859-3298, Japan
| | - Naoki Toyooka
- Graduate
School of Innovative Life Science, University
of Toyama, Toyama 930-8555, Japan
- Faculty
of Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
5
|
Brownell D, Pillai AJ, Nair N. Cardiac Amyloidosis: A Contemporary Review of Medical and Surgical Therapy. Curr Cardiol Rev 2024; 20:72-81. [PMID: 38682372 PMCID: PMC11107466 DOI: 10.2174/011573403x240302230925043500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 05/01/2024] Open
Abstract
Amyloidosis is a systemic disease initiated by deposition of misfolded proteins in the extracellular space, due to which multiple organs may be affected concomitantly. Cardiac amyloidosis, however, remains a major cause of morbidity and mortality in this population due to infiltrative /restrictive cardiomyopathy. This review attempts to focus on contemporary medical and surgical therapies for the different types of cardiac amyloidosis. Amyloidosis affecting the heart are predominantly of the transthyretin type (acquired in the older or genetic in the younger patients), and the monoclonal immunoglobulin light chain (AL) type which is solely acquired. A rare form of secondary amyloidosis AA type can also affect the heart due to excessive production and accumulation of the acute-phase protein called Serum Amyloid A" (SAA) in the setting of chronic inflammation, cancers or autoinflammatory disease. More commonly AA amyloidosis is seen in the liver and kidney. Other rare types are Apo A1 and Isolated Atrial Amyloidosis (AANF). Medical therapies have made important strides in the clinical management of the two common types of cardiac amyloidosis. Surgical therapies such as mechanical circulatory support and cardiac transplantation should be considered in appropriate patients. Future research using AI driven algorithms for early diagnosis and treatment as well as development of newer genetic engineering technologies will drive improvements in diagnosis, treatment and patient outcomes.
Collapse
Affiliation(s)
- Drew Brownell
- Division of Cardiology, Department of Medicine, Texas Tech Health Science Center, Lubbock, TX, 79430, USA
| | - Aiswarya J. Pillai
- Division of Cardiology, Department of Medicine, Texas Tech Health Science Center, Lubbock, TX, 79430, USA
| | - Nandini Nair
- Division of Cardiology, Department of Medicine, Texas Tech Health Science Center, Lubbock, TX, 79430, USA
| |
Collapse
|
6
|
Patil MB, Ghode P, Joshi P. A Comprehensive Review on Chemistry and Biology of Tafamidis in Transthyretin Amyloidosis. Mini Rev Med Chem 2024; 24:571-587. [PMID: 37828667 DOI: 10.2174/0113895575241556231003055323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 10/14/2023]
Abstract
Transthyretin amyloid cardiomyopathy and Transthyretin amyloid peripheral neuropathy are progressive disease conditions caused by Transthyretin amyloidosis (ATTR) fibril infiltration in the tissue. Transthyretin (TTR) protein misfolding and amyloid fibril deposits are pathological biomarkers of ATTR-related disorders. There are various treatment strategies targeting different stages in pathophysiology. One such strategy is TTR tetramer stabilization. Recently, a new TTR tetramer stabilizer, tafamidis, has been introduced that reduces the protein misfolding and amyloidosis and, consequently, disease progression in ATTR cardiomyopathy and peripheral neuropathy. This review will provide a comprehensive overview of the literature on tafamidis discovery, development, synthetic methods, pharmacokinetics, analytical methods and clinical trials. Overall, 7 synthetic methods, 5 analytical methods and 23 clinical trials have been summarized from the literature.
Collapse
Affiliation(s)
- Monali B Patil
- SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur, and Maharashtra, India
| | - Piyush Ghode
- SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur, and Maharashtra, India
| | - Prashant Joshi
- SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur, and Maharashtra, India
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| |
Collapse
|
7
|
Pinheiro F, Varejão N, Sánchez-Morales A, Bezerra F, Navarro S, Velázquez-Campoy A, Busqué F, Almeida MR, Alibés R, Reverter D, Pallarès I, Ventura S. PITB: A high affinity transthyretin aggregation inhibitor with optimal pharmacokinetic properties. Eur J Med Chem 2023; 261:115837. [PMID: 37837673 DOI: 10.1016/j.ejmech.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
The aggregation of wild-type transthyretin (TTR) and over 130 genetic TTR variants underlies a group of lethal disorders named TTR amyloidosis (ATTR). TTR chemical chaperones are molecules that hold great promise to modify the course of ATTR progression. In previous studies, we combined rational design and molecular dynamics simulations to generate a series of TTR selective kinetic stabilizers displaying exceptionally high affinities. In an effort to endorse the previously developed molecules with optimal pharmacokinetic properties, we conducted structural design optimization, leading to the development of PITB. PITB binds with high affinity to TTR, effectively inhibiting tetramer dissociation and aggregation of both the wild-type protein and the two most prevalent disease-associated TTR variants. Importantly, PITB selectively binds and stabilizes TTR in plasma, outperforming tolcapone, a drug currently undergoing clinical trials for ATTR. Pharmacokinetic studies conducted on mice confirmed that PITB exhibits encouraging pharmacokinetic properties, as originally intended. Furthermore, PITB demonstrates excellent oral bioavailability and lack of toxicity. These combined attributes position PITB as a lead compound for future clinical trials as a disease-modifying therapy for ATTR.
Collapse
Affiliation(s)
- Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Adrià Sánchez-Morales
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Filipa Bezerra
- Molecular Neurobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain; Aragon Institute for Health Research, Zaragoza (Spain) and Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - David Reverter
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain; ICREA, Passeig Lluis Companys 23, E-08010, Barcelona, Spain.
| |
Collapse
|
8
|
Mizuguchi M, Yokoyama T, Okada T, Nakagawa Y, Fujii K, Nabeshima Y, Toyooka N. Benziodarone and 6-hydroxybenziodarone are potent and selective inhibitors of transthyretin amyloidogenesis. Bioorg Med Chem 2023; 90:117370. [PMID: 37311373 DOI: 10.1016/j.bmc.2023.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Transthyretin amyloidosis is a progressive systemic disorder that is caused by the amyloid deposition of transthyretin in various organs. Stabilization of the native transthyretin is an effective strategy for the treatment of transthyretin amyloidosis. In this study we demonstrate that the clinically used uricosuric agent benziodarone is highly effective to stabilize the tetrameric structure of transthyretin. An acid-induced aggregation assay showed that benziodarone had strong inhibitory activity similar to that of tafamidis, which is currently used as a therapeutic agent for transthyretin amyloidosis. Moreover, a possible metabolite, 6-hydroxybenziodarone, retained the strong amyloid inhibitory activity of benziodarone. An ex vivo competitive binding assay using a fluorogenic probe showed that benziodarone and 6-hydroxybenziodarone were highly potent for selective binding to transthyretin in human plasma. An X-ray crystal structure analysis revealed that the halogenated hydroxyphenyl ring was located at the entrance of the thyroxine binding channel of transthyretin and that the benzofuran ring was located in the inner channel. These studies suggest that benziodarone and 6-hydroxybenziodarone would potentially be effective against transthyretin amyloidosis.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| | - Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Yusuke Nakagawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Kanako Fujii
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
9
|
Morfino P, Aimo A, Vergaro G, Sanguinetti C, Castiglione V, Franzini M, Perrone MA, Emdin M. Transthyretin Stabilizers and Seeding Inhibitors as Therapies for Amyloid Transthyretin Cardiomyopathy. Pharmaceutics 2023; 15:pharmaceutics15041129. [PMID: 37111614 PMCID: PMC10143494 DOI: 10.3390/pharmaceutics15041129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a progressive and increasingly recognized cause of heart failure which is associated with high mortality and morbidity. ATTR-CM is characterized by the misfolding of TTR monomers and their deposition within the myocardium as amyloid fibrils. The standard of care for ATTR-CM consists of TTR-stabilizing ligands, such as tafamidis, which aim at maintaining the native structure of TTR tetramers, thus preventing amyloid aggregation. However, their efficacy in advanced-staged disease and after long-term treatment is still a source of concern, suggesting the existence of other pathogenetic factors. Indeed, pre-formed fibrils present in the tissue can further accelerate amyloid aggregation in a self-propagating process known as “amyloid seeding”. The inhibition of amyloidogenesis through TTR stabilizers combined with anti-seeding peptides may represent a novel strategy with additional benefits over current therapies. Finally, the role of stabilizing ligands needs to be reassessed in view of the promising results derived from trials which have evaluated alternative strategies, such as TTR silencers and immunological amyloid disruptors.
Collapse
Affiliation(s)
- Paolo Morfino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Giuseppe Vergaro
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Chiara Sanguinetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Castiglione
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marco Alfonso Perrone
- Division of Cardiology and CardioLab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| |
Collapse
|
10
|
Jhawar N, Moreno JCL, Chirila R. A review of transthyretin cardiac amyloidosis. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2023; 61:28-34. [PMID: 36278951 DOI: 10.2478/rjim-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Transthyretin cardiac amyloidosis is a progressive disease known to cause heart failure, conduction anomalies, and arrythmias. Due to poor outcomes and mortality from severe cardiomyopathy, prevalence and incident rates are often underreported. As global longevity is increasing and rates of amyloidosis are also increasing, there is a need to improve diagnostic and therapeutic interventions. Previously, symptom management and transplantation were the mainstay of treatment for heart failure symptoms, but studies using RNAi and siRNA technologies have shifted the paradigm of therapeutic strategy in amyloid cardiomyopathy management. Additionally, early detection and clinical monitoring with numerous imaging and non-imaging techniques are being increasingly investigated. Here, we review the epidemiology, pathophysiology, diagnosis, and management of transthyretin amyloid cardiomyopathy.
Collapse
Affiliation(s)
- Nikita Jhawar
- Department of Internal Medicine, Mayo Clinic, 4500 San Pablo Road S Jacksonville, FL 32224
| | - Juan Carlos Leoni Moreno
- Department of Advanced Heart Failure and Transplant, Mayo Clinic 4500 San Pablo Road S Jacksonville, FL 32224
| | - Razvan Chirila
- Department of Internal Medicine, Mayo Clinic, 4500 San Pablo Road S Jacksonville, FL 32224
| |
Collapse
|
11
|
Dardiotis E, Kyriakides T. Drug and Gene Therapy for Treating Variant Transthyretin Amyloidosis (ATTRv) Neuropathy. Curr Neuropharmacol 2023; 21:471-481. [PMID: 36366846 PMCID: PMC10207904 DOI: 10.2174/1570159x21666221108094736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Variant Transthyretin Amyloidosis (ATTRv) neuropathy is an adult-onset, autosomal dominant, lethal, multisystemic disease due to the deposition of mutated transthyretin (TTR) in various organs, commonly involving the peripheral nerves and the heart. Circulating TTR tetramers are unstable due to the presence of mutated TTR and dissociate into monomers, which misfold and form amyloid fibrils. Although there are more than 140 mutations in the TTR gene, the p.Val50Met mutation is by far the commonest. In the typical, early-onset cases, it presents with a small sensory fibre and autonomic, length-dependent, axonal neuropathy, while in late-onset cases, it presents with a lengthdependent sensorimotor axonal neuropathy involving all fibre sizes. Treatment is now available and includes TTR stabilizers, TTR amyloid removal as well as gene silencing, while gene editing therapies are on the way. Its timely diagnosis is of paramount importance for a better prognosis.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, School of Health Sciences, Faculty of Medicine, University Hospital of Larissa, Larissa, Greece
| | - Theodoros Kyriakides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
12
|
Carberry N, Yu S, Fayerman RN, Dugue R, Miller M, Tanji K, Goyal T, Canoll P, Brannagan TH. Leptomeningeal Disease Secondary to Thr60Ala Transthyretin Amyloidosis: Case Report and Review of the Literature. Neurohospitalist 2023; 13:90-95. [PMID: 36531853 PMCID: PMC9755614 DOI: 10.1177/19418744221127849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
A 31-year-old woman with transthyretin (TTR) amyloidosis secondary to a Thr60Ala mutation developed recurrent stroke-like episodes with fluctuating mental status. Evaluation for stroke and seizures was unrevealing. She was found to have leptomeningeal contrast enhancement on magnetic resonance imaging, which was confirmed to be CNS TTR amyloidosis on histopathology following brain and dura biopsy. While leptomeningeal disease has rarely been known to be associated with TTR amyloidosis, this is the first documented case of leptomeningeal disease secondary to a Thr60Ala mutation in the TTR gene. A literature review of TTR amyloidosis is presented with special focus on the treatment of leptomeningeal TTR amyloidosis.
Collapse
Affiliation(s)
- Nathan Carberry
- Department of Neurology, Neuromuscular Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sun Yu
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Raisy N. Fayerman
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Rachelle Dugue
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Michael Miller
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurenai Tanji
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tarini Goyal
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Peter Canoll
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas H. Brannagan
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Mizuguchi M, Nakagawa Y, Inui K, Katayama W, Sawai Y, Shimane A, Kitakami R, Okada T, Nabeshima Y, Yokoyama T, Kanamitsu K, Nakagawa S, Toyooka N. Chlorinated Naringenin Analogues as Potential Inhibitors of Transthyretin Amyloidogenesis. J Med Chem 2022; 65:16218-16233. [PMID: 36472374 DOI: 10.1021/acs.jmedchem.2c00511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Misfolding and aggregation of transthyretin are implicated in the fatal systemic disease known as transthyretin amyloidosis. Here, we report the development of a naringenin derivative bearing two chlorine atoms that will be efficacious for preventing aggregation of transthyretin in the eye. The amyloid inhibitory activity of the naringenin derivative was as strong as that of tafamidis, which is the first therapeutic agent targeting transthyretin in the plasma. X-ray crystal structures of the compounds in complex with transthyretin demonstrated that the naringenin derivative with one chlorine bound to the thyroxine-binding site of transthyretin in the forward mode and that the derivative with two chlorines bound to it in the reverse mode. An ex vivo competitive binding assay showed that naringenin derivatives exhibited more potent binding than tafamidis in the plasma. Furthermore, an in vivo pharmacokinetic study demonstrated that the dichlorinated derivative was significantly delivered to the eye.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Yusuke Nakagawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Kishin Inui
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Wakana Katayama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Yurika Sawai
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Ayaka Shimane
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Ryota Kitakami
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Kayoko Kanamitsu
- Drug Discovery Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinsaku Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
14
|
Vélez-Santamaría V, Nedkova-Hristova V, Morales de la Prida M, Casasnovas C. Hereditary Transthyretin Amyloidosis with Polyneuropathy: Monitoring and Management. Int J Gen Med 2022; 15:8677-8684. [PMID: 36573111 PMCID: PMC9789700 DOI: 10.2147/ijgm.s338430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Our aim in this review is to discuss current treatments and investigational products and their effect on patients with hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) and provide suggestions for monitoring disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Valentina Vélez-Santamaría
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain,Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Correspondence: Valentina Vélez-Santamaría, Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908 L’Hospitalet de Llobregat, Barcelona, Spain, Tel +34 932607343, Fax +34 932607414, Email
| | | | | | - Carlos Casasnovas
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain,Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Quarta CC, Fontana M, Damy T, Catini J, Simoneau D, Mercuri M, Garcia-Pavia P, Maurer MS, Palladini G. Changing paradigm in the treatment of amyloidosis: From disease-modifying drugs to anti-fibril therapy. Front Cardiovasc Med 2022; 9:1073503. [PMID: 36606280 PMCID: PMC9808970 DOI: 10.3389/fcvm.2022.1073503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac amyloidosis is a rare, debilitating, and usually fatal disease increasingly recognized in clinical practice despite patients presenting with non-specific symptoms of cardiomyopathy. The current standard of care (SoC) focuses on preventing further amyloid formation and deposition, either with anti-plasma cell dyscrasia (anti-PCD) therapies in light-chain (AL) amyloidosis or stabilizers of transthyretin (TTR) in transthyretin amyloidosis (ATTR). The SoC is supplemented by therapies to treat the complications arising from organ dysfunction; for example, heart failure, arrhythmia, and proteinuria. Advancements in treatments have improved patient survival, especially for those whose disease is detected and for whom treatment is initiated at an early stage. However, there still are many unmet medical needs, particularly for patients with severe disease for whom morbidity and mortality remain high. There currently are no approved treatments to reverse amyloid infiltration and deplete the amyloid fibrils already deposited in organs, which can continue to cause progressive dysfunction. Anti-fibril therapies aimed at removing the deposited fibrils are being investigated for safety and efficacy in improving outcomes for patients with severe disease. However, there is no clinical evidence yet that removing deposited amyloid fibrils will improve organ function, thereby improving quality of life or extending life. Nevertheless, anti-fibril therapies are actively being investigated in clinical trials to evaluate their ability to complement and synergize with current SoC.
Collapse
Affiliation(s)
| | | | - Thibaud Damy
- University Hospital Henri Mondor, Creteil, France
| | - Julia Catini
- Alexion, AstraZeneca Rare Disease, Boston, MA, United States
| | - Damien Simoneau
- Alexion, AstraZeneca Rare Disease, Boston, MA, United States
| | - Michele Mercuri
- Alexion, AstraZeneca Rare Disease, Boston, MA, United States
| | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), Centro de Investigación Biomédica en Red Enfermedades Cardiovasulares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mathew S. Maurer
- Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, United States
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, and Amyloidosis Research and Treatment Center, Foundation “Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo”, Pavia, Italy
| |
Collapse
|
16
|
Oral Therapy for the Treatment of Transthyretin-Related Amyloid Cardiomyopathy. Int J Mol Sci 2022; 23:ijms232416145. [PMID: 36555787 PMCID: PMC9788438 DOI: 10.3390/ijms232416145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The care of systemic amyloidosis has improved dramatically due to improved awareness, accurate diagnostic tools, the development of powerful prognostic and companion biomarkers, and a continuous flow of innovative drugs, which translated into the blooming of phase 2/3 interventional studies for light chain (AL) and transthyretin (ATTR) amyloidosis. The unprecedented availability of effective drugs ignited great interest across various medical specialties, particularly among cardiologists who are now recognizing cardiac amyloidosis at an extraordinary pace. In all amyloidosis referral centers, we are observing a substantial increase in the prevalence of wild-type transthyretin (ATTRwt) cardiomyopathy, which is now becoming the most common form of cardiac amyloidosis. This review focuses on the oral drugs that have been recently introduced for the treatment of ATTR cardiac amyloidosis, for their ease of use in the clinic. They include both old repurposed drugs or fit-for-purpose designed compounds which bind and stabilize the TTR tetramer, thus reducing the formation of new amyloid fibrils, such as tafamidis, diflunisal, and acoramidis, as well as fibril disruptors which have the potential to promote the clearance of amyloid deposits, such as doxycycline. The development of novel therapies is based on the advances in the understanding of the molecular events underlying amyloid cardiomyopathy.
Collapse
|
17
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Pinheiro F, Pallarès I, Peccati F, Sánchez-Morales A, Varejão N, Bezerra F, Ortega-Alarcon D, Gonzalez D, Osorio M, Navarro S, Velázquez-Campoy A, Almeida MR, Reverter D, Busqué F, Alibés R, Sodupe M, Ventura S. Development of a Highly Potent Transthyretin Amyloidogenesis Inhibitor: Design, Synthesis, and Evaluation. J Med Chem 2022; 65:14673-14691. [PMID: 36306808 PMCID: PMC9661476 DOI: 10.1021/acs.jmedchem.2c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Transthyretin amyloidosis
(ATTR) is a group of fatal diseases described
by the misfolding and amyloid deposition of transthyretin (TTR). Discovering
small molecules that bind and stabilize the TTR tetramer, preventing
its dissociation and subsequent aggregation, is a therapeutic strategy
for these pathologies. Departing from the crystal structure of TTR
in complex with tolcapone, a potent binder in clinical trials for
ATTR, we combined rational design and molecular dynamics (MD) simulations
to generate a series of novel halogenated kinetic stabilizers. Among
them, M-23 displays one of the highest affinities for
TTR described so far. The TTR/M-23 crystal structure
confirmed the formation of unprecedented protein–ligand contacts,
as predicted by MD simulations, leading to an enhanced tetramer stability
both in vitro and in whole serum. We demonstrate
that MD-assisted design of TTR ligands constitutes a new avenue for
discovering molecules that, like M-23, hold the potential
to become highly potent drugs to treat ATTR.
Collapse
Affiliation(s)
- Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francesca Peccati
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Adrià Sánchez-Morales
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Filipa Bezerra
- Molecular Neurobiology Group, i3S−Instituto de Investigação e Inovação em Saúde, IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS−Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - David Ortega-Alarcon
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation eand Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research, 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Danilo Gonzalez
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marcelo Osorio
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation eand Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research, 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, i3S−Instituto de Investigação e Inovação em Saúde, IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS−Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - David Reverter
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- ICREA, Passeig Lluis Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
19
|
Inoue M, Higashi T, Hayashi Y, Onodera R, Fujisawa K, Taharabaru T, Yokoyama R, Ouchi K, Misumi Y, Ueda M, Inoue Y, Mizuguchi M, Saito T, Saido TC, Ando Y, Arima H, Motoyama K, Jono H. Multifunctional Therapeutic Cyclodextrin-Appended Dendrimer Complex for Treatment of Systemic and Localized Amyloidosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40599-40611. [PMID: 36052562 DOI: 10.1021/acsami.2c09913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amyloidosis pathologically proceeds via production of amyloidogenic proteins by organs, formation of protein aggregates through structural changes, and their deposition on tissues. A growing body of evidence demonstrates that amyloidosis generally develops through three critical pathological steps: (1) production of amyloid precursor proteins, (2) amyloid formation, and (3) amyloid deposition. However, no clinically effective therapy that is capable of targeting each pathological step of amyloidosis independently is currently available. Here, we combined therapeutic effects and developed a short hairpin RNA expression vector (shRNA) complex with a cyclodextrin-appended cationic dendrimer (CDE) as a novel multitarget therapeutic drug that is capable of simultaneously suppressing these three steps. We evaluated its therapeutic effects on systemic transthyretin (ATTR) amyloidosis and Alzheimer's disease (AD) as localized amyloidosis, by targeting TTR and amyloid β, respectively. CDE/shRNA exhibited RNAi effects to suppress amyloid protein production and also achieved both inhibition of amyloid formation and disruption of existing amyloid fibrils. The multitarget therapeutic effects of CDE/shRNA were confirmed by evaluating TTR deposition reduction in early- and late-onset human ATTR amyloidosis model rats and amyloid β deposition reduction in AppNL-G-F/NL-G-F AD model mice. Thus, the CDE/shRNA complex exhibits multifunctional therapeutic efficacy and may reveal novel strategies for establishing curative treatments for both systemic and localized amyloidosis.
Collapse
Affiliation(s)
- Masamichi Inoue
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools "Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuya Hayashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kazuya Fujisawa
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Taharabaru
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kenta Ouchi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Amyloidosis Research, Nagasaki International University, 2825-7 Huis Ten Bosch-machi, Sasebo-shi, Nagasaki 859-3298, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511 Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
20
|
Ando Y, Adams D, Benson MD, Berk JL, Planté-Bordeneuve V, Coelho T, Conceição I, Ericzon BG, Obici L, Rapezzi C, Sekijima Y, Ueda M, Palladini G, Merlini G. Guidelines and new directions in the therapy and monitoring of ATTRv amyloidosis. Amyloid 2022; 29:143-155. [PMID: 35652823 DOI: 10.1080/13506129.2022.2052838] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The recent approval of three drugs for the treatment of amyloid transthyretin (ATTR) amyloidosis, both hereditary and wild-type, has opened a new era in the care of these diseases. ATTR amyloidosis is embedded in its pathophysiology, and the drugs target critical steps of the amyloid cascade. In addition to liver transplant, which removes the pathogenic variants, the introduction of gene silencers has allowed the suppression of both wild type and mutant transthyretin (TTR), thus extending the potential therapeutic range to wild-type cardiac amyloidosis. The kinetic stabilisation of TTR using small molecules has proved to be clinically effective both for amyloid neuropathy and cardiomyopathy. Gene silencers and kinetic stabilizers were recently approved on the basis of the outcome of phase III trials; however, comparative trials have not been performed, making it difficult to draw recommendations. Indications for liver transplantation have narrowed considerably. Here, guidelines for therapy are proposed based on expert consensus, acknowledging that the several drugs currently undergoing clinical trials will probably change in the near future the therapeutic armamentarium and, consequently, the therapeutic strategy. Indications for monitoring disease progression and drug efficacy are also provided for the management of these complexes, but now very treatable, diseases.
Collapse
Affiliation(s)
- Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo, Japan
| | - David Adams
- Department of Neurology, French National Reference Centre for Familial Amyloidotic Polyneuropathy, CHU Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Merrill D Benson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,RLR Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - John L Berk
- Amyloidosis Center, Boston Medical Center, Boston University, Boston, MA, USA
| | - Violaine Planté-Bordeneuve
- Department of Neurology and Amyloid Network, Hospital Henri Mondor, APHP, East-Paris University, Créteil, France
| | - Teresa Coelho
- Andrade's Center, Centro Hospitalar Univerisitário do Porto - Hospital de Santo António, Porto, Portugal
| | - Isabel Conceição
- Department of Neurosciences and Mental Health, CHULN - Hospital de Santa Maria and Faculdade de Medicina, Instituto de Fisiologia, Universidade de Lisboa, Lisbon, Portugal
| | - Bo-Göran Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Claudio Rapezzi
- Cardiologic Center, University of Ferrara, and Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Takahashi Y, Ohashi N, Takasone K, Yoshinaga T, Yazaki M, Roberts M, Glidden PF, Sekijima Y. CSF/plasma levels, transthyretin stabilisation and safety of multiple doses of tolcapone in subjects with hereditary ATTR amyloidosis. Amyloid 2022; 29:190-196. [PMID: 35352593 DOI: 10.1080/13506129.2022.2056011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE To investigate the effect of tolcapone on cerebrospinal fluid (CSF) transthyretin (TTR) tetramer stability in patients with hereditary transthyretin (ATTRv) amyloidosis. METHODS A total of 9 patients were enrolled in the study (3 men, 50.3 ± 14.4 years old). Three patients had central nervous system (CNS) involvement. Patients were assigned to receive tolcapone 300 mg/day or 600 mg/day for 7 days. Plasma and CSF were collected at baseline and 2 h after the final tolcapone dose. RESULTS The mean CSF tolcapone and 3-O-Methyltolcapone (3-OMT) concentration were 39.4 ± 36.3 ng/mL and 26.0 ± 4.9 ng/mL, respectively, after 7 days of tolcapone dosing. Tolcapone and 3-OMT were detected in the CSF of patients with or without CNS symptoms. The mean total study drug (tolcapone + 3-OMT) to TTR molar ratio in CSF was 1.15 ± 0.59. Orally administered tolcapone significantly increased CSF TTR concentration and decreased monomer content under semi-denaturing conditions. Eight adverse events (AEs) were reported in 6 patients. All AEs were mild in severity and resolved. CONCLUSIONS Tolcapone was able to cross the blood brain-barrier, highlighting its potential to decrease CNS manifestations of ATTRv amyloidosis. Tolcapone was well tolerated by patients with ATTRv amyloidosis.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Nobuhiko Ohashi
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ken Takasone
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Tsuneaki Yoshinaga
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Masahide Yazaki
- Department of Biomedical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Japan.,Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | | | | | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan.,Department of Biomedical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Japan
| |
Collapse
|
22
|
Treatment of Transthyretin Amyloid Cardiomyopathy: The Current Options, the Future, and the Challenges. J Clin Med 2022; 11:jcm11082148. [PMID: 35456241 PMCID: PMC9031576 DOI: 10.3390/jcm11082148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressively debilitating, rare disease associated with high mortality. ATTR-CM occurs when TTR amyloid protein builds up in the myocardium along with different organs, most commonly the peripheral and the autonomic nervous systems. Managing the cardiac complications with standard heart failure medications is difficult due to the challenge to maintain a balance between the high filling pressure associated with restricted ventricular volume and the low cardiac output. To date, tafamidis is the only agent approved for ATTR-CM treatment. Besides, several agents, including green tea, tolcapone, and diflunisal, are used off-label in ATTR-CM patients. Novel therapies using RNA interference also offer clinical promise. Patisiran and inotersen are currently approved for ATTR-polyneuropathy of hereditary origin and are under investigation for ATTR-CM. Monoclonal antibodies in the early development phases carry hope for amyloid deposit clearance. Despite several drug candidates in the clinical development pipeline, the small ATTR-CM patient population raises several challenges. This review describes current and future therapies for ATTR-CM and sheds light on the clinical development hurdles facing them.
Collapse
|
23
|
Molecular Mechanisms of Cardiac Amyloidosis. Int J Mol Sci 2021; 23:ijms23010025. [PMID: 35008444 PMCID: PMC8744761 DOI: 10.3390/ijms23010025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiac involvement has a profound effect on the prognosis of patients with systemic amyloidosis. Therapeutic methods for suppressing the production of causative proteins have been developed for ATTR amyloidosis and AL amyloidosis, which show cardiac involvement, and the prognosis has been improved. However, a method for removing deposited amyloid has not been established. Methods for reducing cytotoxicity caused by amyloid deposition and amyloid precursor protein to protect cardiovascular cells are also needed. In this review, we outline the molecular mechanisms and treatments of cardiac amyloidosis.
Collapse
|
24
|
The discovery and development of transthyretin amyloidogenesis inhibitors: what are the lessons? Future Med Chem 2021; 13:2083-2105. [PMID: 34633220 DOI: 10.4155/fmc-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transthyretin (TTR) is associated with several human amyloid diseases. Various kinetic stabilizers have been developed to inhibit the dissociation of TTR tetramer and the formation of amyloid fibrils. Most of them are bisaryl derivatives, natural flavonoids, crown ethers and carborans. In this review article, we focus on TTR tetramer stabilizers, genetic therapeutic approaches and fibril remodelers. The binding modes of typical bisaryl derivatives, natural flavonoids, crown ethers and carborans are discussed. Based on knowledge of the binding of thyroxine to TTR tetramer, many stabilizers have been screened to dock into the thyroxine binding sites, leading to TTR tetramer stabilization. Particularly, those stabilizers with unique binding profiles have shown great potential in developing the therapeutic management of TTR amyloidogenesis.
Collapse
|
25
|
Obici L, Mussinelli R. Current and Emerging Therapies for Hereditary Transthyretin Amyloidosis: Strides Towards a Brighter Future. Neurotherapeutics 2021; 18:2286-2302. [PMID: 34850359 PMCID: PMC8804119 DOI: 10.1007/s13311-021-01154-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
The past few years have witnessed an unprecedented acceleration in the clinical development of novel therapeutic options for hereditary transthyretin amyloidosis. Recently approved agents and drugs currently under investigation not only represent a major breakthrough in this field but also provide validation of the therapeutic potential of innovative approaches, like RNA interference and CRISPR-Cas9-mediated gene editing, in rare inherited disorders. In this review, we describe the evolving therapeutic landscape for hereditary transthyretin amyloidosis and discuss how this highly disabling and fatal condition is turning into a treatable disease. We also provide an overview of the molecular mechanisms involved in transthyretin (TTR) amyloid formation and regression, to highlight how a deeper understanding of these processes has contributed to the identification of novel treatment targets. Finally, we focus on major areas of uncertainty and unmet needs that deserve further efforts to improve long-term patients' outcomes and allow for a brighter future.
Collapse
Affiliation(s)
- Laura Obici
- Amyloidosis Research and Treatment Centre, IRCCS Fondazione Policlinico San Matteo, Viale Golgi, 19, 27100, Pavia, Italy.
| | - Roberta Mussinelli
- Amyloidosis Research and Treatment Centre, IRCCS Fondazione Policlinico San Matteo, Viale Golgi, 19, 27100, Pavia, Italy
| |
Collapse
|
26
|
Rejc L, Gómez-Vallejo V, Rios X, Cossío U, Baz Z, Mujica E, Gião T, Cotrina EY, Jiménez-Barbero J, Quintana J, Arsequell G, Cardoso I, Llop J. Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study1. J Alzheimers Dis 2021; 77:99-112. [PMID: 32804152 DOI: 10.3233/jad-200570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transthyretin (TTR) is a tetrameric, amyloid-β (Aβ)-binding protein, which reduces Aβ toxicity. The TTR/Aβ interaction can be enhanced by a series of small molecules that stabilize its tetrameric form. Hence, TTR stabilizers might act as disease-modifying drugs in Alzheimer's disease. OBJECTIVE We monitored the therapeutic efficacy of two TTR stabilizers, iododiflunisal (IDIF), which acts as small-molecule chaperone of the TTR/Aβ interaction, and tolcapone, which does not behave as a small-molecule chaperone, in an animal model of Alzheimer's disease using positron emission tomography (PET). METHODS Female mice (AβPPswe/PS1A246E/TTR+/-) were divided into 3 groups (n = 7 per group): IDIF-treated, tolcapone-treated, and non-treated. The oral treatment (100 mg/Kg/day) was started at 5 months of age. Treatment efficacy assessment was based on changes in longitudinal deposition of Aβ in the hippocampus (HIP) and the cortex (CTX) and determined using PET-[18F]florbetaben. Immunohistochemical analysis was performed at age = 14 months. RESULTS Standard uptake values relative to the cerebellum (SUVr) of [18F]florbetaben in CTX and HIP of non-treated animals progressively increased from age = 5 to 11 months and stabilized afterwards. In contrast, [18F]florbetaben uptake in HIP of IDIF-treated animals remained constant between ages = 5 and 11 months and significantly increased at 14 months. In the tolcapone-treated group, SUVr progressively increased with time, but at lower rate than in the non-treated group. No significant treatment effect was observed in CTX. Results from immunohistochemistry matched the in vivo data at age = 14 months. CONCLUSION Our work provides encouraging preliminary results on the ability of small-molecule chaperones to ameliorate Aβ deposition in certain brain regions.
Collapse
Affiliation(s)
- Luka Rejc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Xabier Rios
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Edurne Mujica
- Biochemistry and Molecular Biology, EHU-UPV, Leioa, Spain
| | - Tiago Gião
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department Organic Chemistry II, Faculty Science & Technology, EHU-UPV, Leioa, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES)
| |
Collapse
|
27
|
Inhibitory activities of anthraquinone and xanthone derivatives against transthyretin amyloidogenesis. Bioorg Med Chem 2021; 44:116292. [PMID: 34225167 DOI: 10.1016/j.bmc.2021.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022]
Abstract
Transthyretin is a tetrameric protein which functions as a transporter of thyroxine and retinol-binding protein. Misfolding and amyloid aggregation of transthyretin are known to cause wild-type and hereditary transthyretin amyloidosis. Stabilization of the transthyretin tetramer by low molecular weight compounds is an efficacious strategy to inhibit the aggregation pathway in the amyloidosis. Here, we investigated the inhibitory activities of anthraquinone and xanthone derivatives against amyloid aggregation, and found that xanthone-2-carboxylic acid with one chlorine or methyl group has strong inhibitory activity comparable with that of diflunisal, which is one of the best known stabilizers of transthyretin. X-ray crystallographic structures of transthyretin in complex with the compounds revealed that the introduction of chlorine, which is buried in a hydrophobic region, is important for the strong inhibitory effect of the stabilizer against amyloidogenesis. An in vitro absorption, distribution, metabolism and elimination (ADME) study and in vivo pharmacokinetic study demonstrated that the compounds have drug-like features, suggesting that they have potential as therapeutic agents to stabilize transthyretin.
Collapse
|
28
|
Abstract
Amyloidosis is a disorder characterized by misfolded precursor proteins that form depositions of fibrillar aggregates with an abnormal cross-beta-sheet conformation, known as amyloid, in the extracellular space of several tissues. Although there are more than 30 known amyloidogenic proteins, both hereditary and non-hereditary, cardiac amyloidosis (CA) typically arises from either misfolded transthyretin (ATTR amyloidosis) or immunoglobulin light-chain aggregation (AL amyloidosis). Its prevalence is more common than previously thought, especially among patients with heart failure and preserved ejection fraction (HFpEF) and aortic stenosis. If there is a clinical suspicion of CA, focused echocardiography, laboratory screening for the presence of a monoclonal protein (serum and urinary electrophoresis with immunofixation and serum free light-chain ratio), and cardiac scintigraphy with 99mtechnetium-labeled bone-tracers are sensitive and specific initial diagnostic tests. In some cases, more advanced/invasive techniques are necessary and, in the last several years, treatment options for both AL CA and ATTR CA have rapidly expanded. It is important to note that the aims of therapy are different. Systemic AL amyloidosis requires treatment targeted against the abnormal plasma cell clone, whereas therapy for ATTR CA must be targeted to the production and stabilization of the TTR molecule. It is likely that a multistep treatment approach will be optimal for both AL CA and ATTR CA. Additionally, treatment of CA includes the management of restrictive cardiomyopathy with preserved or reduced ejection fraction in addition to treating the amyloid deposition. Future studies are necessary to define optimal management strategies for AL CA and ATTR CA and confirm cardiac response to therapy.
Collapse
Affiliation(s)
- Petra Nijst
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - WH Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
29
|
Yadav JD, Othee H, Chan KA, Man DC, Belliveau PP, Towle J. Transthyretin Amyloid Cardiomyopathy-Current and Future Therapies. Ann Pharmacother 2021; 55:1502-1514. [PMID: 33685242 DOI: 10.1177/10600280211000351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To describe the clinical presentation of transthyretin amyloid cardiomyopathy (ATTR-CM) and discuss current treatments and investigational products and their effect on patient outcomes. DATA SOURCES A literature search was performed in PubMed (September 2018 to December 2020) using the following keywords: transthyretin amyloidosis, cardiomyopathy, polyneuropathy and transthyretin amyloid cardiomyopathy, monoclonal light-chain, tafamidis, cardiac amyloidosis, ATTR cardiomyopathy, green tea and inhibition of cardiac amyloidosis, AG10, tolcapone, tolcapone and leptomeningeal ATTR, PRX004, NI006, patisiran, inotersen, vutrisiran, AKCEA-TTR-LRx, and NTLA-2001. STUDY SELECTION AND DATA EXTRACTION Clinical trials were evaluated for evidence supporting pharmacology, safety, efficacy, and measured outcomes. DATA SYNTHESIS Until 2019, there were no approved treatments for ATTR-CM. Treatment consisted of symptom management and organ transplant. Nonpharmacological and pharmacological treatments focused on the symptoms of heart failure (HF) associated with ATTR-CM. However, there are several emerging therapies recently approved or in development to address the underlying pathophysiology. Treatment classes for ATTR-CM include transthyretin stabilizers, human monoclonal antibodies, gene silencers, and CRISPR/Cas9 gene editing. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE ATTR-CM is a complex disease in which amyloidosis causes cardiomyopathy. Underdiagnosis is attributed to the clinical presentation being heterogeneous, indistinguishable from HF caused by other etiologies, and the need for invasive testing modalities, including endomyocardial biopsy. Improved diagnostic approaches along with targeted therapies can slow disease progression and enhance patient quality of life. CONCLUSION Diagnostic modalities along with biomarker and genetic testing could detect disease earlier and target therapy more accurately. Novel therapies demonstrate potential treatment benefits and can help shape the standard of care for these patients.
Collapse
|
30
|
Nelson LT, Paxman RJ, Xu J, Webb B, Powers ET, Kelly JW. Blinded potency comparison of transthyretin kinetic stabilisers by subunit exchange in human plasma. Amyloid 2021; 28:24-29. [PMID: 32811187 PMCID: PMC7952025 DOI: 10.1080/13506129.2020.1808783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transthyretin (TTR) tetramer dissociation is rate limiting for aggregation and subunit exchange. Slowing of TTR tetramer dissociation via kinetic stabiliser binding slows cardiomyopathy progression. Quadruplicate subunit exchange comparisons of the drug candidate AG10, and the drugs tolcapone, diflunisal, and tafamidis were carried out at 1, 5, 10, 20 and 30 µM concentrations in 4 distinct pooled wild type TTR (TTRwt) human plasma samples. These experiments reveal that the concentration dependence of the efficacy of each compound at inhibiting TTR dissociation was primarily determined by the ratio between the stabiliser's dissociation constants from TTR and albumin, which competes with TTR to bind kinetic stabilisers. The best stabilisers, tafamidis (80 mg QD), AG10 (800 mg BID), and tolcapone (3 x 100 mg over 12 h), exhibit very similar kinetic stabilisation at the plasma concentrations resulting from these doses. At a 10 µM plasma concentration, AG10 is slightly more potent as a kinetic stabiliser vs. tolcapone and tafamidis (which are similar), which are substantially more potent than diflunisal. Dissociation of TTR can be limited to 10% of its normal rate at concentrations of 5.7 µM AG10, 10.3 µM tolcapone, 12.0 µM tafamidis, and 188 µM diflunisal. The potency similarities revealed by our study suggest that differences in safety, adsorption and metabolism, pharmacokinetics, and tissue distribution become important for kinetic stabiliser clinical use decisions.
Collapse
Affiliation(s)
- Luke T Nelson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jin Xu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bill Webb
- Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
31
|
Canadian Guidelines for Hereditary Transthyretin Amyloidosis Polyneuropathy Management. Can J Neurol Sci 2021; 49:7-18. [PMID: 33631091 DOI: 10.1017/cjn.2021.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hereditary transthyretin-mediated (hATTR) amyloidosis is a progressive disease caused by mutations in the TTR gene leading to multisystem organ dysfunction. Pathogenic TTR aggregation, misfolding, and fibrillization lead to deposition of amyloid in multiple body organs and frequently involve the peripheral nerve system and the heart. Common neurologic manifestations include: sensorimotor polyneuropathy (PN), autonomic neuropathy, small-fiber PN, and carpal tunnel syndrome. Many patients have significant progression due to diagnostic delays as hATTR PN is not considered within the differential diagnosis. Recently, two effective novel disease-modifying therapies, inotersen and patisiran, were approved by Health Canada for the treatment of hATTR PN. Early diagnosis is crucial for the timely introduction of these disease-modifying treatments that reduce impairments, improve quality of life, and extend survival. In this guideline, we aim to improve awareness and outcomes of hATTR PN by making recommendations directed to the diagnosis, monitoring, and treatment in Canada.
Collapse
|
32
|
Cotrina EY, Vilà M, Nieto J, Arsequell G, Planas A. Preparative Scale Production of Recombinant Human Transthyretin for Biophysical Studies of Protein-Ligand and Protein-Protein Interactions. Int J Mol Sci 2020; 21:ijms21249640. [PMID: 33348885 PMCID: PMC7766448 DOI: 10.3390/ijms21249640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Human transthyretin (hTTR), a serum protein with a main role in transporting thyroid hormones and retinol through binding to the retinol-binding protein, is an amyloidogenic protein involved in familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy, and central nervous system selective amyloidosis. hTTR also has a neuroprotective role in Alzheimer disease, being the major Aβ binding protein in human cerebrospinal fluid (CSF) that prevents amyloid-β (Aβ) aggregation with consequent abrogation of toxicity. Here we report an optimized preparative expression and purification protocol of hTTR (wt and amyloidogenic mutants) for in vitro screening assays of TTR ligands acting as amyloidogenesis inhibitors or acting as molecular chaperones to enhance the TTR:Aβ interaction. Preparative yields were up to 660 mg of homogenous protein per L of culture in fed-batch bioreactor. The recombinant wt protein is mainly unmodified at Cys10, the single cysteine in the protein sequence, whereas the highly amyloidogenic Y78F variant renders mainly the S-glutathionated form, which has essentially the same amyloidogenic behavior than the reduced protein with free Cys10. The TTR production protocol has shown inter-batch reproducibility of expression and protein quality for in vitro screening assays.
Collapse
Affiliation(s)
- Ellen Y. Cotrina
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.Y.C.); (M.V.); (J.N.)
- Institut de Química Avançada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain;
| | - Marta Vilà
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.Y.C.); (M.V.); (J.N.)
| | - Joan Nieto
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.Y.C.); (M.V.); (J.N.)
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain;
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.Y.C.); (M.V.); (J.N.)
- Correspondence:
| |
Collapse
|
33
|
Bezerra F, Saraiva MJ, Almeida MR. Modulation of the Mechanisms Driving Transthyretin Amyloidosis. Front Mol Neurosci 2020; 13:592644. [PMID: 33362465 PMCID: PMC7759661 DOI: 10.3389/fnmol.2020.592644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) amyloidoses are systemic diseases associated with TTR aggregation and extracellular deposition in tissues as amyloid. The most frequent and severe forms of the disease are hereditary and associated with amino acid substitutions in the protein due to single point mutations in the TTR gene (ATTRv amyloidosis). However, the wild type TTR (TTR wt) has an intrinsic amyloidogenic potential that, in particular altered physiologic conditions and aging, leads to TTR aggregation in people over 80 years old being responsible for the non-hereditary ATTRwt amyloidosis. In normal physiologic conditions TTR wt occurs as a tetramer of identical subunits forming a central hydrophobic channel where small molecules can bind as is the case of the natural ligand thyroxine (T4). However, the TTR amyloidogenic variants present decreased stability, and in particular conditions, dissociate into partially misfolded monomers that aggregate and polymerize as amyloid fibrils. Therefore, therapeutic strategies for these amyloidoses may target different steps in the disease process such as decrease of variant TTR (TTRv) in plasma, stabilization of TTR, inhibition of TTR aggregation and polymerization or disruption of the preformed fibrils. While strategies aiming decrease of the mutated TTR involve mainly genetic approaches, either by liver transplant or the more recent technologies using specific oligonucleotides or silencing RNA, the other steps of the amyloidogenic cascade might be impaired by pharmacologic compounds, namely, TTR stabilizers, inhibitors of aggregation and amyloid disruptors. Modulation of different steps involved in the mechanism of ATTR amyloidosis and compounds proposed as pharmacologic agents to treat TTR amyloidosis will be reviewed and discussed.
Collapse
Affiliation(s)
- Filipa Bezerra
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria João Saraiva
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
34
|
Advances in Treatment of ATTRv Amyloidosis: State of the Art and Future Prospects. Brain Sci 2020; 10:brainsci10120952. [PMID: 33316911 PMCID: PMC7763612 DOI: 10.3390/brainsci10120952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary amyloid transthyretin (ATTRv) amyloidosis with polyneuropathy is a progressive disease that is transmitted as an autosomal dominant trait and characterized by multiple organ failure, including axonal sensory-motor neuropathy, cardiac involvement, and autonomic dysfunction. Liver transplantation (LT) and combined heart-liver transplantation, introduced in the 1990s, have been the only therapies for almost two decades. In 2011, tafamidis meglumine became the first specific drug approved by regulatory agencies, since then the attention toward this disease has progressively increased and several drugs with different mechanisms of action are now available. This review describes the drugs already on the market, those that have shown interesting results although not yet approved, and those currently being tested.
Collapse
|
35
|
Cotrina EY, Blasi D, Vilà M, Planas A, Abad-Zapatero C, Centeno NB, Quintana J, Arsequell G. Optimization of kinetic stabilizers of tetrameric transthyretin: A prospective ligand efficiency-guided approach. Bioorg Med Chem 2020; 28:115794. [DOI: 10.1016/j.bmc.2020.115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
|
36
|
Yokoyama T, Mizuguchi M. Transthyretin Amyloidogenesis Inhibitors: From Discovery to Current Developments. J Med Chem 2020; 63:14228-14242. [DOI: 10.1021/acs.jmedchem.0c00934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| |
Collapse
|
37
|
Nevone A, Merlini G, Nuvolone M. Treating Protein Misfolding Diseases: Therapeutic Successes Against Systemic Amyloidoses. Front Pharmacol 2020; 11:1024. [PMID: 32754033 PMCID: PMC7366848 DOI: 10.3389/fphar.2020.01024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Misfolding and extracellular deposition of proteins is the hallmark of a heterogeneous group of conditions collectively termed protein misfolding and deposition diseases or amyloidoses. These include both localized (e.g. Alzheimer’s disease, prion diseases, type 2 diabetes mellitus) and systemic amyloidoses. Historically regarded as a group of maladies with limited, even inexistent, therapeutic options, some forms of systemic amyloidoses have recently witnessed a series of unparalleled therapeutic successes, positively impacting on their natural history and sometimes even on their incidence. In this review article we will revisit the most relevant of these accomplishments. Collectively, current evidence converges towards a crucial role of an early and conspicuous reduction or stabilization of the amyloid-forming protein in its native conformation. Such an approach can reduce disease incidence in at risk individuals, limit organ function deterioration, promote organ function recovery, improve quality of life and extend survival in diseased subjects. Therapeutic success achieved in these forms of systemic amyloidoses may guide the research on other protein misfolding and deposition diseases for which effective etiologic therapeutic options are still absent.
Collapse
Affiliation(s)
- Alice Nevone
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Abstract
PURPOSE Amyloidosis represents an increasingly recognized but still frequently missed cause of heart failure. In the light of many effective therapies for light chain (AL) amyloidosis and promising new treatment options for transthyretin (ATTR) amyloidosis, awareness among caregivers needs to be raised to screen for amyloidosis as an important and potentially treatable differential diagnosis. This review outlines the diversity of cardiac amyloidosis, its relation to heart failure, the diagnostic algorithm, and therapeutic considerations that should be applied depending on the underlying type of amyloidosis. RECENT FINDINGS Non-biopsy diagnosis is feasible in ATTR amyloidosis in the absence of a monoclonal component resulting in higher detection rates of cardiac ATTR amyloidosis. Biomarker-guided staging systems have been updated to facilitate risk stratification according to currently available biomarkers independent of regional differences, but have not yet prospectively been tested. Novel therapies for hereditary and wild-type ATTR amyloidosis are increasingly available. The complex treatment options for AL amyloidosis are improving continuously, resulting in better survival and quality of life. Mortality in advanced cardiac amyloidosis remains high, underlining the importance of early diagnosis and treatment initiation. Cardiac amyloidosis is characterized by etiologic and clinical heterogeneity resulting in a frequently delayed diagnosis and an inappropriately high mortality risk. New treatment options for this hitherto partially untreatable condition have become and will become available, but raise challenges regarding their implementation. Referral to specialized centers providing access to extensive and targeted diagnostic investigations and treatment initiation may help to face these challenges.
Collapse
|
39
|
Qiu M, Li Z, Chen Y, Guo J, Xu W, Qi T, Qiu Y, Pang J, Li L, Liu S, Tan S. Tolcapone Potently Inhibits Seminal Amyloid Fibrils Formation and Blocks Entry of Ebola Pseudoviruses. Front Microbiol 2020; 11:504. [PMID: 32425892 PMCID: PMC7203225 DOI: 10.3389/fmicb.2020.00504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
Ebola virus (EBOV), the causative pathogen of the deadly EBOV disease (EVD), can be transmitted via sexual transmission. Seminal amyloid fibrils have been found enhancers of EBOV infection. Currently, limited preventive vaccine or therapeutic is available to block EBOV infection through sexual intercourse. In this study, we repurpose tolcapone, a US Food and Drug Administration (FDA)-approved agent for Parkinson’s disease, as a potent inhibitor of seminal amyloid fibrils, among which semen-derived enhancer of viral infection (SEVI) is the best-characterized. Tolcapone binds to the amyloidogenic region of the SEVI precursor peptide (PAP248–286) and inhibits PAP248–286 aggregation by disrupting PAP248–286 oligomerization. In addition, tolcapone interacts with preformed SEVI fibrils and influences the activity of SEVI in promoting infection of pseudovirus (PsV) carrying the envelope glycoprotein (GP) of the EBOV Zaire or Sudan species (Zaire PsV and Sudan PsV, respectively). Tolcapone significantly antagonizes SEVI-mediated enhancement of both Zaire PsV and Sudan PsV binding to and subsequent internalization in HeLa cells. Of note, tolcapone is also effective in inhibiting the entry of both Zaire PsV and Sudan PsV. Tolcapone inhibits viral entry possibly through binding with critical residues in EBOV GP. Moreover, the combination of tolcapone with two small-molecule entry inhibitors, including bepridil and sertraline, exhibited synergistic anti-EBOV effects in semen. Collectively, as a bifunctional agent targeting the viral infection-enhancing amyloid and the virus itself during sexual intercourse, tolcapone can act as either a prophylactic topical agent to prevent the sexual transmission of EBOV or a therapeutic to treat EBOV infection.
Collapse
Affiliation(s)
- Mengjie Qiu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhaofeng Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuliu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Qi
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yurong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Suiyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Pinheiro F, Varejão N, Esperante S, Santos J, Velázquez-Campoy A, Reverter D, Pallarès I, Ventura S. Tolcapone, a potent aggregation inhibitor for the treatment of familial leptomeningeal amyloidosis. FEBS J 2020; 288:310-324. [PMID: 32324953 DOI: 10.1111/febs.15339] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
Hereditary transthyretin amyloidosis (ATTR) is a disease characterized by the extracellular deposition of transthyretin (TTR) amyloid fibrils. Highly destabilizing TTR mutations cause leptomeningeal amyloidosis, a rare, but fatal, disorder in which TTR aggregates in the brain. The disease remains intractable, since liver transplantation, the reference therapy for systemic ATTR, does not stop mutant TTR production in the brain. In addition, despite current pharmacological strategies have shown to be effective against in vivo TTR aggregation by stabilizing the tetramer native structure and precluding its dissociation, they display low brain permeability. Recently, we have repurposed tolcapone as a molecule to treat systemic ATTR. Crystal structures and biophysical analysis converge to demonstrate that tolcapone binds with high affinity and specificity to three unstable leptomeningeal TTR variants, stabilizing them and, consequently, inhibiting their aggregation. Because tolcapone is an FDA-approved drug that crosses the blood-brain barrier, our results suggest that it can translate into a first disease-modifying therapy for leptomeningeal amyloidosis. DATABASES: PDB codes for A25T-TTR, V30G-TTR, and Y114C-TTR bound to tolcapone are 6TXV, 6TXW, and 6XTK, respectively.
Collapse
Affiliation(s)
- Francisca Pinheiro
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Nathalia Varejão
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain
| | | | - Jaime Santos
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular & Cellular Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain.,Aragon Institute for Health Research, Zaragoza, Spain.,Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain.,ARAID Foundation, Gobierno de Aragón, Zaragoza, Spain
| | - David Reverter
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Irantzu Pallarès
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
41
|
Cotrina EY, Gimeno A, Llop J, Jiménez-Barbero J, Quintana J, Valencia G, Cardoso I, Prohens R, Arsequell G. Calorimetric Studies of Binary and Ternary Molecular Interactions between Transthyretin, Aβ Peptides, and Small-Molecule Chaperones toward an Alternative Strategy for Alzheimer's Disease Drug Discovery. J Med Chem 2020; 63:3205-3214. [PMID: 32124607 PMCID: PMC7115756 DOI: 10.1021/acs.jmedchem.9b01970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Transthyretin
(TTR) modulates the deposition, processing, and toxicity
of Abeta (Aβ) peptides. We have shown that this effect is enhanced
in mice by treatment with small molecules such as iododiflunisal (IDIF, 4), a good TTR stabilizer. Here, we describe the thermodynamics
of the formation of binary and ternary complexes among TTR, Aβ(1–42)
peptide, and TTR stabilizers using isothermal titration calorimetry
(ITC). A TTR/Aβ(1–42) (1:1)
complex with a dissociation constant of Kd = 0.94 μM is formed; with IDIF
(4), this constant improves up to Kd = 0.32 μM, indicating
the presence of a ternary complex TTR/IDIF/Aβ(1–42).
However, with the drugs diflunisal (1) or Tafamidis (2), an analogous chaperoning effect could not be observed.
Similar phenomena could be recorded with the shorter peptide Aβ(12–28)
(7). We propose the design of a simple assay system for
the search of other chaperones that behave like IDIF and may become
potential candidate drugs for Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003 Barcelona, Spain
| | - Gregorio Valencia
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Isabel Cardoso
- IBMC-Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Cientı́fics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Gemma Arsequell
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| |
Collapse
|
42
|
Guo X, Liu Z, Zheng Y, Li Y, Li L, Liu H, Chen Z, Wu L. Review on the Structures and Activities of Transthyretin Amyloidogenesis Inhibitors. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1057-1081. [PMID: 32210536 PMCID: PMC7071892 DOI: 10.2147/dddt.s237252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
Transthyretin (TTR) is a tetrameric protein, and its dissociation, aggregation, deposition, and misfolding are linked to several human amyloid diseases. As the main transporter for thyroxine (T4) in plasma and cerebrospinal fluid, TTR contains two T4-binding sites, which are docked with T4 and subsequently maintain the structural stability of TTR homotetramer. Affected by genetic disorders and detrimental environmental factors, TTR degrades to monomer and/or form amyloid fibrils. Reasonably, stabilization of TTR might be an efficient strategy for the treatment of TTR-related amyloidosis. However, only 10-25% of T4 in the plasma is bound to TTR under physiological conditions. Expectedly, T4 analogs with different structures aiming to bind to T4 pockets may displace the functions of T4. So far, a number of compounds including both natural and synthetic origin have been reported. In this paper, we summarized the potent inhibitors, including bisaryl structure-based compounds, flavonoids, crown ethers, and carboranes, for treating TTR-related amyloid diseases and the combination modes of some compounds binding to TTR protein.
Collapse
Affiliation(s)
- Xiaohua Guo
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zhaowen Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yizhou Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yamei Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
43
|
Ihne S, Morbach C, Sommer C, Geier A, Knop S, Störk S. Amyloidosis-the Diagnosis and Treatment of an Underdiagnosed Disease. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 117:159-166. [PMID: 32295695 DOI: 10.3238/arztebl.2020.0159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 08/25/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Systemic amyloidosis is a multi-system disease caused by fibrillary protein deposition with ensuing dysfunction of the affected organ systems. Its diagnosis is often delayed because the manifestations of the disease are variable and non-specific. Its main forms are light chain (AL) amyloidosis and transthyretinrelated ATTR amyloidosis, which, in turn, has both a sporadic subtype (wildtype, ATTRwt) and a hereditary subtype (mutated, ATTRv). METHODS This review is based on pertinent publications that were retrieved by a selective search in PubMed covering the years 2005 to 2019. RESULTS No robust epidemiological figures are available for Germany to date. Both AL amyloidosis and hereditary ATTR amyloidosis are rare diseases, but the prev - alence of ATTRwt amyloidosis is markedly underestimated. The diagnostic algorithm is complex and generally requires histological confirmation of the diagnosis. Only cardiac ATTR amyloidosis can be diagnosed non-invasively with bone scintigraphy once a monoclonal gammopathy has been excluded. AL amyloidosis can be considered a complication of a plasma cell dyscrasia and treated with reference to patterns applied in multiple myeloma. Despite the availability of causally directed treatment, it has not yet been possible to reduce the mortality of advanced cardiac AL amyloidosis. Three drugs (tafamidis, patisiran, and inotersen) are now available to treat grade 1 or 2 polyneuropathy in ATTRv amyloidosis, and further agents are now being tested in clinical trials. It is expected that tafamidis will soon be approved in Germany for the treatment of cardiac ATTR amyloidosis. CONCLUSION The diagnosis of amyloidosis is difficult because of its highly varied presentation. In case of clinical suspicion, a rapid, targeted diagnostic evaluation and subsequent initiation of treatment should be performed in a specialized center. When the new drugs to treat amyloidosis become commercially available, their use and effects should be documented in nationwide registries.
Collapse
Affiliation(s)
- Sandra Ihne
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital Würzburg, Germany; Medical Clinic and Policlinic II, Dept. of Hemtatology, University Hospital Würzburg, Germany; Comprehensive Heart Failure Center Würzburg, University and University Hospital Würzburg, Germany; Medical Clinic and Policlinic I, Dept. of Cardiology, University Hospital Würzburg, Germany; Department of Neurology, University Hospital Würzburg, Germany; Medical Clinic and Policlinic II, Dept. of Hepatology, University Hospital Würzburg, Germany
| | | | | | | | | | | |
Collapse
|