1
|
Chiou SC, Schack T. Working memory for movement rhythms given spatial relevance: Effects of sequence length and maintenance delay. VISUAL COGNITION 2023. [DOI: 10.1080/13506285.2022.2162173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shiau-Chuen Chiou
- Neurocognition and Action Research Group, Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action Research Group, Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Wang C, Zhou Y, Li C, Tian W, He Y, Fang P, Li Y, Yuan H, Li X, Li B, Luo X, Zhang Y, Liu X, Wu S. Working Memory Capacity of Biological Motion's Basic Unit: Decomposing Biological Motion From the Perspective of Systematic Anatomy. Front Psychol 2022; 13:830555. [PMID: 35391972 PMCID: PMC8980279 DOI: 10.3389/fpsyg.2022.830555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have shown that about three biological motions (BMs) can be maintained in working memory. However, no study has yet analyzed the difficulties of experiment materials used, which partially affect the ecological validity of the experiment results. We use the perspective of system anatomy to decompose BM, and thoroughly explore the influencing factors of difficulties of BMs, including presentation duration, joints to execute motions, limbs to execute motions, type of articulation interference tasks, and number of joints and planes involved in the BM. We apply the change detection paradigm supplemented by the articulation interference task to measure the BM working memory capacity (WMC) of participants. Findings show the following: the shorter the presentation duration, the less participants remembered; the more their wrist moved, the less accurate their memory was; repeating verbs provided better results than did repeating numerals to suppress verbal encoding; the more complex the BM, the less participants remembered; and whether the action was executed by the handed limbs did not affect the WMC. These results indicate that there are many factors that can be used to adjust BM memory load. These factors can help sports psychology professionals to better evaluate the difficulty of BMs, and can also partially explain the differences in estimations of BM WMC in previous studies.
Collapse
Affiliation(s)
- Chaoxian Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Yue Zhou
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Congchong Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Wenqing Tian
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Yang He
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Yijun Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Huiling Yuan
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Xiuxiu Li
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
| | - Bin Li
- School of Information Technology, Northwest University, Xi'an, China
| | - Xuelin Luo
- School of Martial Arts, Xi'an Physical Education University, Xi'an, China
| | - Yun Zhang
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xufeng Liu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Shengjun Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Cross-modal involvement of the primary somatosensory cortex in visual working memory: A repetitive TMS study. Neurobiol Learn Mem 2020; 175:107325. [PMID: 33059033 DOI: 10.1016/j.nlm.2020.107325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Recent literature suggests that the primary somatosensory cortex (S1), once thought to be a low-level area only modality-specific, is also involved in higher-level, cross-modal, cognitive functions. In particular, electrophysiological studies have highlighted that the cross-modal activation of this area may also extend to visual Working Memory (WM), being part of a mnemonic network specific for the temporary storage and manipulation of visual information concerning bodies and body-related actions. However, the causal recruitment of S1 in the WM network remains speculation. In the present study, by taking advantage of repetitive Transcranial Magnetic Stimulation (rTMS), we look for causal evidence that S1 is implicated in the retention of visual stimuli that are salient for this cortical area. To this purpose, in a first experiment, high-frequency (10 Hz) rTMS was delivered over S1 of the right hemisphere, and over two control sites, the right lateral occipital cortex (LOC) and the right dorsolateral prefrontal cortex (dlPFC), during the maintenance phase of a high-load delayed match-to-sample task in which body-related visual stimuli (non-symbolic hand gestures) have to be retained. In a second experiment, the specificity of S1 recruitment was deepened by using a version of the delayed match-to-sample task in which visual stimuli depict geometrical shapes (non-body related stimuli). Results show that rTMS perturbation of S1 activity leads to an enhancement of participants' performance that is selective for body-related visual stimuli; instead, the stimulation of the right LOC and dlPFC does not affect the temporary storage of body-related visual stimuli. These findings suggest that S1 may be recruited in visual WM when information to store (and recall) is salient for this area, corroborating models which suggest the existence of a dedicated mnemonic system for body-related information in which also somatosensory cortices play a key role, likely thanks to their cross-modal (visuo-tactile) properties.
Collapse
|
4
|
Gu Q, Wan X, Ma H, Lu X, Guo Y, Shen M, Gao Z. Event-based encoding of biological motion and location in visual working memory. Q J Exp Psychol (Hove) 2020; 73:1261-1277. [DOI: 10.1177/1747021820903042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We make use of discrete yet meaningful events to orient ourselves to the dynamic environment. Among these events, biological motion, referring to the movements of animate entities, is one of the most biologically salient. We usually encounter biological motions of multiple human beings taking place simultaneously at distinct locations. How we encode biological motions into visual working memory (VWM) to form a coherent experience of the external world and guide our social behaviour remains unclear. This study for the first time addressed the VWM encoding mechanism of biological motions and their corresponding locations. We tested an event-based encoding hypothesis for biological motion and location: When one element of an event is required to be memorised, the irrelevant element of an event will also be extracted into VWM. We presented participants with three biological motions at different locations and required them to memorise only the biological motions or their locations while ignoring the other dimension. We examined the event-based encoding by probing a distracting effect: If the event-based encoding took place, the change of irrelevant dimension in the probe would lead to a significant distraction and impair the performance of detecting target dimension. We found significant distracting effects, which lasted for 3 s but vanished at 6 s, regardless of the target dimension (biological motions vs. locations, Experiment 1) and the exposure time of memory array (1 s vs. 3 s, Experiment 2). These results together support an event-based encoding mechanism during VWM encoding of biological motions and their corresponding locations.
Collapse
Affiliation(s)
- Quan Gu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xueyi Wan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hong Ma
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiqian Lu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yang Guo
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Mowei Shen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Zaifeng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
5
|
Gu Q, Li W, Lu X, Chen H, Shen M, Gao Z. Agent identity drives adaptive encoding of biological motion into working memory. J Vis 2019; 19:6. [PMID: 31826251 DOI: 10.1167/19.14.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To engage in normal social interactions, we have to encode human biological motions (BMs, e.g., walking and jumping), which is one of the most salient and biologically significant types of kinetic information encountered in everyday life, into working memory (WM). Critically, each BM in real life is produced by a distinct person, carrying a dynamic motion signature (i.e., identity). Whether agent identity influences the WM processing of BMs remains unknown. Here, we addressed this question by examining whether memorizing BMs with different identities promoted the WM processing of task-irrelevant clothing colors. Two opposing hypotheses were tested: (a) WM only stores the target action (element-based hypothesis) and (b) WM stores both action and irrelevant clothing color (event-based hypothesis), interpreting each BM as an event. We required participants to memorize actions that either performed by one agent or distinct agents, while ignoring clothing colors. Then we examined whether the irrelevant color was also stored in WM by probing a distracting effect: If the color was extracted into WM, the change of irrelevant color in the probe would lead to a significant distracting effect on action performance. We found that WM encoding of BMs was adaptive: Once the memorized actions had different identities, WM adopted an event-based encoding mode regardless of memory load and probe identity (Experiment 1, different-identity group of Experiment 2, and Experiment 3). However, WM used an element-based encoding mode when memorized-actions shared the same identity (same-identity group of Experiment 2) or were inverted (Experiment 4). Overall, these findings imply that agent identity information has a significant effect on the WM processing of BMs.
Collapse
Affiliation(s)
- Quan Gu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenmin Li
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiqian Lu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Mowei Shen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zaifeng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Ye T, Li P, Zhang Q, Gu Q, Lu X, Gao Z, Shen M. Relation Between Working Memory Capacity of Biological Movements and Fluid Intelligence. Front Psychol 2019; 10:2313. [PMID: 31749726 PMCID: PMC6842976 DOI: 10.3389/fpsyg.2019.02313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
Studies have revealed that there is an independent buffer for holding biological movements (BM) in working memory (WM), and this BM-WM has a unique link to our social ability. However, it remains unknown as to whether the BM-WM also correlates to our cognitive abilities, such as fluid intelligence (Gf). Since BM processing has been considered as a hallmark of social cognition, which distinguishes from canonical cognitive abilities in many ways, it has been hypothesized that only canonical object-WM (e.g., memorizing color patches), but not BM-WM, emerges to have an intimate relation with Gf. We tested this prediction by measuring the relationship between WM capacity of BM and Gf. With two Gf measurements, we consistently found moderate correlations between BM-WM capacity, the score of both Raven's advanced progressive matrix (RAPM), and the Cattell culture fair intelligence test (CCFIT). This result revealed, for the first time, a close relation between WM and Gf with a social stimulus, and challenged the double-dissociation hypothesis for distinct functions of different WM buffers.
Collapse
Affiliation(s)
- Tian Ye
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Peng Li
- School of Education and Management, Yunnan Normal University, Kunming, China
| | - Qiong Zhang
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Quan Gu
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Xiqian Lu
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Zaifeng Gao
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Mowei Shen
- Department of Psychology, Zhejiang University, Hangzhou, China
| |
Collapse
|