1
|
Abou-Hamdan A, Mahler R, Grossenbacher P, Biner O, Sjöstrand D, Lochner M, Högbom M, von Ballmoos C. Functional design of bacterial superoxide:quinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148583. [PMID: 35671795 DOI: 10.1016/j.bbabio.2022.148583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The superoxide anion - molecular oxygen reduced by a single electron - is produced in large amounts by enzymatic and adventitious reactions. It can perform a range of cellular functions, including bacterial warfare and iron uptake, signalling and host immune response in eukaryotes. However, it also serves as precursor for more deleterious species such as the hydroxyl anion or peroxynitrite and defense mechanisms to neutralize superoxide are important for cellular health. In addition to the soluble proteins superoxide dismutase and superoxide reductase, recently the membrane embedded diheme cytochrome b561 (CybB) from E. coli has been proposed to act as a superoxide:quinone oxidoreductase. Here, we confirm superoxide and cellular ubiquinones or menaquinones as natural substrates and show that quinone binding to the enzyme accelerates the reaction with superoxide. The reactivity of the substrates is in accordance with the here determined midpoint potentials of the two b hemes (+48 and -23 mV / NHE). Our data suggest that the enzyme can work near the diffusion limit in the forward direction and can also catalyse the reverse reaction efficiently under physiological conditions. The data is discussed in the context of described cytochrome b561 proteins and potential physiological roles of CybB.
Collapse
Affiliation(s)
- Abbas Abou-Hamdan
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Roman Mahler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Philipp Grossenbacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Olivier Biner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Dan Sjöstrand
- Stockholm center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Martin Högbom
- Stockholm center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
2
|
Landino LM, Shuckrow ZT, Mooney AS, Lauderback CO, Lorenzi KE. Photo-oxidation and Photoreduction of Catechols by Chlorophyll Metabolites and Methylene Blue. Chem Res Toxicol 2022; 35:1851-1862. [PMID: 36044382 DOI: 10.1021/acs.chemrestox.2c00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While plant-derived oxidants can protect cells from oxidative damage, limited research has examined the role of dietary chlorophyll. Photoreduction of ubiquinone by chlorophyll metabolites and red light has been reported in vitro and in animal models. Herein we examined photo-oxidation and photoreduction reactions of catechols, dopamine and hydrocaffeic acid. Photo-oxidation of dopamine by methylene blue and the chlorophyll metabolites pheophorbide A, chlorin e6 and sodium copper chlorophyllin was studied by monitoring aminochrome, the cyclized product of the dopamine o-quinone with its amine. Singlet oxygen scavengers including sodium azide, ascorbate and glutathione decreased aminochrome formation by methylene blue and pheophorbide A. Addition of EDTA, a tertiary amine electron donor, to the reaction of dopamine, photosensitizer and red light decreased aminochrome formation. Photoreduction of the dopamine o-quinone produced by mushroom tyrosinase was achieved by both methylene blue and pheophorbide A only when an electron donor was included. Due to limited solubility, photo-oxidation and photoreduction reactions by pheophorbide A required 5-7.5% dimethylformamide for optimal reactivity. Catalytic photoreduction of 2,3-dimethoxy-5-methyl-p-benzoquinone by methylene blue or pheophorbide A and tertiary amine electron donors was observed. Among the chlorophyll metabolites, pheophorbide A was more effective than chlorin e6 or sodium copper chlorophyllin in photo-oxidation of dopamine and photoreduction reactions. Singlet oxygen inhibited lactate dehydrogenase A activity, and higher molecular weight protein cross-links were observed on SDS-PAGE. Hydrocaffeic acid competed with lactate dehydrogenase A for reaction with singlet oxygen produced by methylene blue; however, no protection by hydrocaffeic acid (HCA) was observed when pheophorbide A was used. Cysteine modification of lactate dehydrogenase A by the o-quinone of hydrocaffeic acid was detected using a redox cycling stain. Inclusion of an electron donor decreased protein labeling.
Collapse
Affiliation(s)
- Lisa M Landino
- Department of Chemistry, William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| | - Zachary T Shuckrow
- Department of Chemistry, William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| | - Alexander S Mooney
- Department of Chemistry, William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| | - Clare O Lauderback
- Department of Chemistry, William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| | - Kristen E Lorenzi
- Department of Chemistry, William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| |
Collapse
|
3
|
|
4
|
González-Aragón D, Burón MI, López-Lluch G, Hermán MD, Gómez-Díaz C, Navas P, Villalba JM. Coenzyme Q and the regulation of intracellular steady-state levels of superoxide in HL-60 cells. Biofactors 2005; 25:31-41. [PMID: 16873928 DOI: 10.1002/biof.5520250105] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present work was set to study how CoQ concentrations affected steady-state levels of superoxide in a cellular model of partial CoQ(10) deficiency in cultured human myeloid leukemia HL-60 cells. Culturing HL-60 cells in the presence of p-aminobenzoate, a competitive inhibitor of polyprenyl-4-hydroxybenzoate transferase (Coq2p), produced a significant decrease of CoQ(10) levels without affecting cell viability. Concomitant decreases in CoQ-dependent electron transport activity and mitochondrial membrane potential were observed under these conditions. Intracellular superoxide was significantly elevated in cells treated with p-aminobenzoate, both under serum-containing and serum-free conditions, and this effect was reversed by exogenous CoQ(10). A slight increase of superoxide was also observed in CoQ(10)-supplemented cells in the absence of serum. Our results support a requirement for CoQ(10) to control superoxide levels in HL-60 cells. The importance of extramitochondrial sources of superoxide in cells with impaired CoQ(10) biosynthesis is discussed.
Collapse
Affiliation(s)
- David González-Aragón
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Guo Q, Packer L. ESR studies of ascorbic acid-dependent recycling of the vitamin E homologue Trolox by coenzyme Q0 in murine skin homogenates. Redox Rep 1999; 4:105-11. [PMID: 10496413 DOI: 10.1179/135100099101534783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The recycling of Trolox, a water-soluble vitamin E homologue, by coenzyme Q0 (CoQ0) during Cu2+-initiated oxidation of ascorbate in mouse skin homogenates was investigated using electron spin resonance (ESR) spectroscopy. In a mixture containing CoQ0, Cu2+ and mouse skin homogenates, the ESR signal of CoQ0 semiquinone radical (CoQ0*-) appeared and declined with time; addition of Trolox accelerated the CoQ0*- signal decay. Only after the disappearance of the CoQ0*- signal was the appearance of the Trolox phenoxyl radical signal observed. In addition, the lifetime of the CoQ0*- signal and the length of the lag period during which the Trolox radical ESR signal could not be detected were dependent on the presence of Trolox, CoQ0 or Cu2+. The results suggest that CoQ0*-, formed by the interaction between CoQ0 and endogenous ascorbic acid (AscH-) in skin homogenates, regenerates Trolox from its phenoxyl radical.
Collapse
Affiliation(s)
- Q Guo
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | |
Collapse
|
6
|
Roginsky VA, Barsukova TK, Stegmann HB. Kinetics of redox interaction between substituted quinones and ascorbate under aerobic conditions. Chem Biol Interact 1999; 121:177-97. [PMID: 10418963 DOI: 10.1016/s0009-2797(99)00099-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-electron reduction of quinones (Q) by ascorbate (AscH ); (1) AscH + Q --> Q*- + Asc*- + H+, followed by the oxidation of semiquinone (Q*-) by molecular oxygen; (2) Q*- + O2 --> Q + O2*-, results in the catalytic oxidation of ascorbate (with Q as a catalyst) and formation of active forms of oxygen. Along with enzymatic redox cycling of Q. this process may be related to Q cytotoxicity and underlie an antitumor activity of some Qs. In this work, the kinetics of oxygen consumption accompanied the interaction of ascorbate with 55 Qs including substituted 1,4- and 1,2-benzoquinones, naphthoquinones and other quinoid compounds were studied in 50 mM sodium phosphate buffer, pH 7.40, at 37 degrees C by using the Clark electrode technique. The capability of Q to catalyze ascorbate oxidation was characterized by the effective value of kEFF calculated from the initial rate of oxygen consumption (R(OX)) by the equation R(OX) = kEFF[Q][AscH-] as well as by a temporary change in R(OX). The correlation of kEFF with one-electron reduction potential, E(Q/Q*-), showed a sigma-like plot, the same for different kinds of Qs. Only the Qs which reduction potential E(Q/Q*-) ranged from nearly -250 to + 50 mV displayed a pronounced catalytic activity, kEFF increased with shifting E(Q/Q*-) to positive values. The following linear correlation between kEFF (in M (-1) s(-1)) and E(Q/Q*-) (in mV) might be suggested for these Qs: lg(kEFF)= 3.91 + 0.0143E(Q/Q*-). In contrast, Qs with E(Q/Q*-) < - 250 mV and E(Q/Q*-) > + 50 mV showed no measurable catalytic activity. The Qs studied displayed a wide variety in the kinetic regularities of oxygen consumption. When E(Q/Q*-) was more negative than - 100 mV, Q displayed a simple ('standard') kinetic behavior--R(OX) was proportional to [AscH-][Q] independently of concentration of individual reagents, [AscH-] and [Q]; R(OX) did not decrease with time if [AscH-] was held constant: Q recycling was almost reversible. Meanwhile, Qs with E(Q/Q*-) > - 100 mV demonstrated a dramatic deviation from the 'standard' behavior that was manifested by the fast decrease in R(OX) with time and non-linear dependence of even starting values of R(OX) on [Q] and [AscH-]. These deviations were caused basically by the participation of Q*- in side reactions different from (2). The above findings were confirmed by kinetic computer simulations. Some biological implications of Q-AscH- interaction were discussed.
Collapse
Affiliation(s)
- V A Roginsky
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.
| | | | | |
Collapse
|
7
|
Abstract
Substantial evidence implicates oxidative modification of low density lipoprotein (LDL) as an important event contributing to atherogenesis. As a result, the elucidation of the molecular mechanisms by which LDL is oxidized and how such oxidation is prevented by antioxidants has been a significant research focus. Studies on the antioxidation of LDL lipids have focused primarily on alpha-tocopherol (alpha-TOH), biologically and chemically the most active form of vitamin E and quantitatively the major lipid-soluble antioxidant in extracts prepared from human LDL. In addition to alpha-TOH, plasma LDL also contains low levels of ubiquinol-10 (CoQ10H2; the reduced form of coenzyme Q10). Recent studies have shown that in oxidizing plasma lipoproteins alpha-TOH can exhibit anti- or pro-oxidant activities for the lipoprotein's lipids exposed to a vast array of oxidants. This article reviews the molecular action of alpha-TOH in LDL undergoing "mild" radical-initiated lipid peroxidation, and discusses how small levels of CoQ10H2 can represent an efficient antioxidant defence for lipoprotein lipids. We also comment on the levels alpha-TOH, CoQ10H2 and lipid oxidation products in the intima of patients with coronary artery disease and report on preliminary studies examining the effect of coenzyme Q10 supplementation on atherogenesis in apolipoprotein E knockout mice.
Collapse
Affiliation(s)
- S R Thomas
- Biochemistry Group, Heart Research Institute, Camperdown, NSW, Australia
| | | | | |
Collapse
|
8
|
Roginsky VA, Barsukova TK, Bruchelt G, Stegmann HB. Kinetics of redox interaction between substituted 1,4-benzoquinones and ascorbate under aerobic conditions: critical phenomena. Free Radic Res 1998; 29:115-25. [PMID: 9790513 DOI: 10.1080/10715769800300131] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Redox cycling is believed to be the most general molecular mechanism of quinone (Q) cytotoxicity. Along with redox cycling induced by a reductase, a similar process is known to occur via electron transfer from ascorbate (AscH-) to Q with formation of a semiquinone radical (Q.-): (1) Q + AscH- (k1)--> Q.- + Asc.- + H+ (2) Q.- + O2 --> Q + O2.-. The net effect of reactions (1) and (2) provides for the catalytic oxidation of AscH-, with Q serving as a catalyst. In this work, the kinetics of oxygen consumption accompanying this process were studied with several substituted 1,4-benzoquinones (BQ) at 37 degrees C in phosphate buffer, pH 7.40, using the Clark electrode technique. The value of k1 determined from the initial rate of oxygen consumption was typically found to increase when the one-electron reduction potential E(Q/Q.-) shifted to more positive values. With Q, for which E(Q/Q.-) is less than -100 mV, the rate of oxygen uptake (R(OX)) was found to be directly correlated with the [Q][AscH-] value independent of the concentration of individual reagents, remaining constant for a long period. With mono- and dialkyl-substituted 1,4-BQs, for which E(Q/Q.-) is higher than -100 mV, significant deviations from the above simple kinetic regularities were observed. In particular, R(OX) decreased dramatically with time and critical phenomena (the existence of certain concentrations of Q and/or AscH- above or below which the catalytic oxidation of AscH- ceased completely after a non-stationary period of short duration) were observed. These abnormalities can be explained on the basis of the kinetic scheme which contains, in addition to reactions (1) and (2), several side reactions including that between Q.- and AscH-. Implications of critical phenomena discovered in this study for the problems of Q toxicity and vitamin C avitaminosis are discussed.
Collapse
Affiliation(s)
- V A Roginsky
- N.N.Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
9
|
Roginsky VA, Bruchelt G, Bartuli O. Ubiquinone-0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone) as effective catalyzer of ascorbate and epinephrine oxidation and damager of neuroblastoma cells. Biochem Pharmacol 1998; 55:85-91. [PMID: 9413934 DOI: 10.1016/s0006-2952(97)00434-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The kinetics of ascorbate (AscH ) and epinephrine (EP) oxidation in the presence of 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UQ) were studied in 0.05 M phosphate buffer, pH 7.4, at 37 degrees C by using a Clark electrode and ESR techniques. UQ at nanomolar concentrations displayed a pronounced catalytic effect on AscH oxidation which exceeded that of all reported organic catalysts tested in this system. The process was accompanied by the intensive oxygen consumption and increase in the steady-state concentration of the ascorbyl radical Asc.-. The rate of oxygen consumption (R[OX]) was maximal at the moment of reagent mixing ((R[OX]0) and then reduced over a few minutes until a steady-state level ((R[OX])SS) was achieved. (R[OX])0 was found to be proportional to [UQ][AscH-] without regard to the concentrations of the individual reagents; (R[OX])SS was directly related to [UQ] at a given concentration of AscH-. The difference between (R[OX])0 and (R[OX])SS decreased as [AscH-] decreased. The presence of a lipid phase (sodium dodecylsulphate micelles) only moderately decreased UQ activity as a catalyst of AscH- oxidation. Adding micromolar concentrations of UQ induced the acceleration of EP autoxidation. The capability of UQ to catalyze the oxidation of EP exceeded by approximately 25 times that of adrenochrome, a quinoid product of EP oxidation. These catalytic properties of UQ allowed us to predict its pronounced cytotoxicity, especially in the presence of AscH- and to cells of the sympathetic nervous system which are rich in catecholamines. This possibility was confirmed by experiments with human neuroblastoma cells in culture. The capability of UQ to injure neuroblastoma cell line SK-N-SH exceeded that of well-known neurotoxic agents 6-hydroxydopamine and menadione.
Collapse
Affiliation(s)
- V A Roginsky
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
10
|
Thomas SR, Neuzil J, Stocker R. Inhibition of LDL oxidation by ubiquinol-10. A protective mechanism for coenzyme Q in atherogenesis? Mol Aspects Med 1997; 18 Suppl:S85-103. [PMID: 9266510 DOI: 10.1016/s0098-2997(97)00031-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The oxidation of low density lipoprotein (LDL) is now commonly regarded as an important early event in atherogenesis. As such there is considerable interest in the ability of antioxidant supplementation to attenuate LDL oxidation and hence atherosclerosis. A majority of studies on LDL antioxidation have focused on alpha-tocopherol (alpha-TOH), biologically and chemically the most active form of vitamin E and quantitatively the major lipid-soluble antioxidant in extracts prepared from human LDL. In addition to alpha-TOH, circulating LDL also contains low levels of ubiquinol-10 (CoQ10H2; the reduced form of coenzyme Q). Recent studies have shown that in intact, isolated LDL, alpha-TOH can act as either an anti- or prooxidant for the lipoprotein's lipids. This article reviews the molecular action of alpha-TOH in LDL undergoing radical-initiated oxidation, and how the presence of CoQ10H2 suppresses the pro-oxidant or complements the antioxidant activity of the vitamin. We also comment on the plasma and intimal levels of alpha-TOH and CoQ10H2 in patients suffering from coronary artery disease and discuss the potential implications of these results for atherogenesis.
Collapse
Affiliation(s)
- S R Thomas
- Biochemistry Unit, Heart Research Institute, Sydney, NSW, Australia
| | | | | |
Collapse
|