1
|
Herath HMUL, Park M, Piao MJ, Kang KA, Fernando PDSM, Senavirathna HMMM, Kim HS, Chae S, Kim YR, Hyun JW. The protective impact of myricetin against PM 2.5-induced cellular apoptosis by inhibiting endoplasmic reticulum stress. Toxicol In Vitro 2024; 104:106002. [PMID: 39719177 DOI: 10.1016/j.tiv.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Particulate matter 2.5 (PM2.5) exposure is responsible for skin inflammation, aging, and disruption of skin homeostasis. The objective of this investigation was to assess the potential of myricetin in protecting against skin damage caused by PM2.5. Human keratinocytes (HaCaT) were pretreated with myricetin and subsequently exposed to PM2.5. Cell viability, reactive oxygen species (ROS) generation, oxidized cellular components, mitochondrial damage, cellular apoptosis, and endoplasmic reticulum (ER) stress were assessed. A mitogen-activated protein kinase (MAPK) signaling network was constructed, and the action site of myricetin was explored through docking analysis. PM2.5 induced oxidative stress, resulting in DNA damage, lipid peroxidation, protein carbonylation, and cellular apoptosis. Myricetin counteracted these effects by reducing the PM2.5-induced ROS levels. Additionally, myricetin mitigated the PM2.5-induced cytochrome c release into the cytoplasm and caspase activation, thereby ameliorating cellular apoptosis. Myricetin reduced PM2.5-induced cytosolic Ca2+ level and ER-related signaling molecules. Furthermore, myricetin inhibited cellular cytotoxicity by downregulating the MAPK signaling pathway. Docking and network analyses identified 12 major MAPK proteins targeted by myricetin, and these proteins primarily affected the classical MAPK pathway. These findings suggest that myricetin mitigates skin impairments caused by PM2.5 exposure by reducing ROS, mitochondrial damage, ER stress, and apoptosis via downregulating the MAPK signaling pathway.
Collapse
Affiliation(s)
| | - Musun Park
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Sungwook Chae
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea.
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
2
|
Zheng S, Zhao N, Lin X, Qiu L. Impacts and potential mechanisms of fine particulate matter (PM 2.5) on male testosterone biosynthesis disruption. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:777-789. [PMID: 37651650 DOI: 10.1515/reveh-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Exposure to PM2.5 is the most significant air pollutant for health risk. The testosterone level in male is vulnerable to environmental toxicants. In the past, researchers focused more attention on the impacts of PM2.5 on respiratory system, cardiovascular system, and nervous system, and few researchers focused attention on the reproductive system. Recent studies have reported that PM2.5 involved in male testosterone biosynthesis disruption, which is closely associated with male reproductive health. However, the underlying mechanisms by which PM2.5 causes testosterone biosynthesis disruption are still not clear. To better understand its potential mechanisms, we based on the existing scientific publications to critically and comprehensively reviewed the role and potential mechanisms of PM2.5 that are participated in testosterone biosynthesis in male. In this review, we summarized the potential mechanisms of PM2.5 triggering the change of testosterone level in male, which involve in oxidative stress, inflammatory response, ferroptosis, pyroptosis, autophagy and mitophagy, microRNAs (miRNAs), endoplasmic reticulum (ER) stress, and N6-methyladenosine (m6A) modification. It will provide new suggestions and ideas for prevention and treatment of testosterone biosynthesis disruption caused by PM2.5 for future research.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Nannan Zhao
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Xiaojun Lin
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P.R. China
| |
Collapse
|
3
|
Zhao J, Gao S, Zhou L, Rong K, Zuo F, Tang W, Zhu L. Trolox derivatives: Synthesis, structure-activity relationship and promote wound healing by regulating oxidative stress and inflammation. Bioorg Chem 2024; 154:108045. [PMID: 39672078 DOI: 10.1016/j.bioorg.2024.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
To find new antioxidants, 13 Trolox amides (2a-2m) and 7 Trolox esters (3a-3g) were synthesized and evaluated for their anti-inflammatory and antioxidant activity. Compounds 2e, 2i, 3b and 3d showed potent anti-inflammatory and antioxidant activity, amongst them, 3d demonstrated the most photoprotective effects on UVB-irradiated human skin keratinocyte (HaCaT) cells (IC50 = 5.13 µM) through efficiently scavenging free radicals and dose-dependently reducing reactive oxygen species (ROS) and apoptosis generation, as well as effectively promoting wound healing. 3d protected HaCaT cells against oxidative stress, inflammation and cellular damage by the activation of Nrf2/HO-1 signaling and inhibition of NF-κB pathway, further significantly improving wound healing. In acute UVB-induced skin injury mouse model, 3d significantly reduced the level of pro-inflammatory factors, improved the effect of UVB radiation on the activity of antioxidant enzymes, and maintained normal metabolic capacity. In conclusion, 3d may be a potential candidate for developing cosmetics with UVB protective effect.
Collapse
Affiliation(s)
- Jie Zhao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Long Zhou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Kuanrong Rong
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Fangfang Zuo
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Wenjian Tang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| | - Lili Zhu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Zhu Y, Zhang J, Liu Q, Xin X, Dong L, Wang B, Li H, Li D, Wang J, Guan S, Ye Y. Semen Cuscutae-Fructus Lycii attenuates tripterygium glycosides-induced spermatogenesis dysfunction by inhibiting oxidative stress-mediated ferroptosis via the Nrf2/HO-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156221. [PMID: 39556988 DOI: 10.1016/j.phymed.2024.156221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Semen Cuscutae and Fructus Lycii (SC-FL) is known for its potential therapeutic effects on spermatogenesis dysfunction. However, the underlying mechanisms of SC-FL in alleviating spermatogenesis dysfunction is still being elucidated. PURPOSE This study aimed to explore the effects of SC-FL on spermatogenesis dysfunction and investigate the involved mechanisms, specifically focusing on the modulation of oxidative stress and ferroptosis. METHODS A mouse model of spermatogenesis dysfunction was induced by tripterygium glycosides, followed by treatment with SC-FL. Assessment of testicular spermatogenic function in the mice was performed alongside lipidomics analysis to investigate the metabolic mechanisms of SC-FL. The effects on oxidative stress and ferroptosis-related markers were evaluated, the chemical constituents of SC-FL were identified using liquid chromatography-mass spectrometry, and network pharmacology analysis was carried out. Additionally, an in vitro model of spermatogenesis dysfunction was established using triptolide-induced GC-1 cells, which were treated with Lycium barbarum polysaccharides (LBP) and flavonoids from Semen Cuscutae (FSC) to explore their impact on cell damage, oxidative stress-mediated damage, and ferroptosis. RESULTS SC-FL improved the mouse model of spermatogenesis dysfunction by inhibiting oxidative stress-mediated ferroptosis. In vitro experiments demonstrated that LBP and FSC relieved GC-1 cell damage, with their mechanisms also associated with the inhibition of oxidative stress-mediated ferroptosis. CONCLUSION SC-FL alleviates spermatogenesis dysfunction in animal and cell models, potentially through the modulation of the Nrf2/HO-1 signaling pathway, which consequently inhibits oxidative stress-mediated ferroptosis in spermatogonial cells.
Collapse
Affiliation(s)
- Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Qiuning Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Lei Dong
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haisong Li
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Siqi Guan
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Shilnikova K, Kang KA, Piao MJ, Herath HMUL, Fernando PDSM, Boo HJ, Yoon SP, Hyun JW. Shikonin protects skin cells against oxidative stress and cellular dysfunction induced by fine particulate matter. Cell Biol Int 2024; 48:1836-1848. [PMID: 39169545 DOI: 10.1002/cbin.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM2.5). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM2.5, leading to recovering PM2.5-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM2.5-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM2.5-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM2.5 through direct ROS scavenging and modulation of cellular antioxidant system.
Collapse
Affiliation(s)
- Kristina Shilnikova
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Herath Mudiyanselage Udari Lakmini Herath
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Sang Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| |
Collapse
|
6
|
Zheng W, Ning K, Shi C, Zhou YF, Meng Y, Pan T, Chen Y, Xie Q, Xiang H. Xiaobugan decoction prevents CCl 4-induced acute liver injury by modulating gut microbiota and hepatic metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156113. [PMID: 39388924 DOI: 10.1016/j.phymed.2024.156113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The liver plays a crucial role in detoxification and metabolism. When its capacity to metabolize foreign substances is exceeded, it can lead to acute liver injury (ALI). Therefore, preventing liver disease and maintaining daily liver health are of utmost importance. Xiaobugan Decoction (XBGD), a traditional Chinese medicine (TCM) formula, is recorded in 'Fuxingjue', is used in folk practice to promote liver health and regulate respiration. However, the hepatoprotective mechanisms of XBGD remained unclear. PURPOSE We investigated the prophylactic and hepatoprotective effects of XBGD and explored its related molecular mechanisms using a mouse model of carbon tetrachloride (CCl4)-induced ALI. STUDY DESIGN AND METHODS XBGD composition was determined using analytical methods, and the main compounds were identified using ultra-high-performance liquid chromatography coupled with Q-Exactive focus mass spectrum (UHPLC-QE-MS) and high-performance liquid chromatography (HPLC). A CCl4-induced L02 cell injury model was employed to explore the protective effects of XBGD on liver cells, and a CCl4-induced ALI mouse model was used to investigate the hepatoprotective effects of XBGD. RESULTS Cellular experiments demonstrated that XBGD had a protective function against L02 cell damage by increasing cell viability, restoring alanine aminotransferase (ALT), aspartate aminotransferase (AST), and superoxide dismutase (SOD) levels, reducing malondialdehyde (MDA) content, and improving mitochondrial membrane potential (ΔΨm). In the mouse ALI model, XBGD prevented ALI by reducing ALT, AST, and alkaline phosphatase (ALP) levels and inhibiting oxidative stress. Quantitative real-time polymerase chain reaction (qPCR), immumohistochemical staining and western blotting results revealed that XBGD exerted hepatoprotective effects by reducing inflammatory responses and inhibiting cell apoptosis. Furthermore, 1H-NMR metabolomics indicated that XBGD regulates hepatic and intestinal metabolism, whereas 16S rDNA sequencing demonstrated the regulatory effects of XBGD on the gut microbiota. Correlation analysis highlighted the close relationship among gut microbiota, metabolites, and ALI indicators. CONCLUSIONS XBGD is a promising TCM for the prevention of CCl4-induced ALI via regulation of microbiota and metabolism. This study provides a new perspective on the development of hepatoprotective measures and the prevention of liver disease in daily life.
Collapse
Affiliation(s)
- Weiwei Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Ke Ning
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Chao Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yong-Fei Zhou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yao Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Tong Pan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yue Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong Jilin 134504, PR China.
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong Jilin 134504, PR China.
| |
Collapse
|
7
|
Jiang D, Cai X, Fang H, Li Y, Zhang Z, Chen H, Zheng Z, Wang W, Sun Y. Coexposure to ambient air pollution and temperature and its associations with birth outcomes in women undergoing assisted reproductive technology in Fujian, China: A retrospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 481:136539. [PMID: 39561545 DOI: 10.1016/j.jhazmat.2024.136539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The interactions between pollutants and temperature coexposure, the mixing effects and their potential mechanisms remain uncertain. METHODS This retrospective cohort study included 11,766 women with infertility who received treatment at Fujian Hospital between 2015 and 2024. The daily mean concentrations of the six pollutants and the relative humidity and temperature data were acquired from the Fujian region. Data on genes were obtained from the Comparative Toxicogenomics Database. RESULTS O3 (aOR=0.80, 95 % CI=0.725--0.891) and temperature (aOR=0.936, 95 % CI=0.916--0.957) were negatively correlated with live birth rates. Moreover, PM10 (aOR=1.135, 95 % CI=1.028--1.252) and PM2.5 (aOR=1.146, 95 % CI=1.03--1.274) were positively associated with preterm birth. Among the effects on live births, PM2.5, PM10, NO2, CO, and SO2 had significant synergistic effects with temperature; in addition, O3 had significant antagonistic effects with temperature. A notable trend toward declining live birth rates with elevated concentrations of mixed pollutants was observed. Different infertility patients have different sensitivities to coexposure. Gene enrichment and cell experiments are associated mainly with cellular life activities. CONCLUSIONS Individual effects, interactions, and mixed effects between temperature and air pollutants and birth outcomes persist when air pollutant levels are relatively low. AAP may trigger miscarriage through cytotoxic effects.
Collapse
Affiliation(s)
- Dongdong Jiang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuefen Cai
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Hua Fang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuehong Li
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Ziqi Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Meng T, He J, Huo Q, Wang Y, Ren Q, Kang Y. Association of Stress Defense System With Fine Particulate Matter Exposure: Mechanism Analysis and Application Prospects. J Appl Toxicol 2024. [PMID: 39538419 DOI: 10.1002/jat.4724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The association between the stress defense system and exposure to fine particulate matter (PM2.5) is a hot topic in the field of environmental health. PM2.5 pollution is an increasingly serious issue, and its impact on health cannot be ignored. The stress defense system is an important biological mechanism for maintaining cell and internal environment homeostasis, playing a crucial role in PM2.5-induced damage and diseases. The association between PM2.5 exposure and activation of the stress defense system has been reported. Moderate PM2.5 exposure rapidly mobilizes the stress defense system, while excessive PM2.5 exposure may exceed its compensatory and coping abilities, resulting in system imbalance and dysfunction that triggers pathological changes in cells and tissues, thereby increasing the risk of chronic diseases, such as respiratory diseases, cardiovascular diseases, and cancer. This detailed review focuses on the composition, function, and regulatory mechanisms of the antioxidant defense system, autophagy system, ubiquitin-proteasome system, and inflammatory response system, which are all components of the stress defiance system. In particular, the influence of PM2.5 exposure on each of these defense systems and their roles in responding to PM2.5-induced damage was investigated to provide an in-depth understanding of the pathogenesis of PM2.5 exposure, accurately assess potential hazards, and formulate prevention and intervention strategies for health damage caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Tao Meng
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
- Doctoral Innovation Station of Shanxi Province, Key Laboratory of TCM Prevention and Treatment of Dementia Disease, The Fifth People's Hospital of Datong, Datong, China
| | - Jing He
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| | - Qianru Huo
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| | - Yajie Wang
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| | - Qingchun Ren
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| | - Yihui Kang
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| |
Collapse
|
9
|
Li CH, Yang TM, Fitriana I, Fang TC, Wu LH, Hsiao G, Cheng YW. Maintaining KEAP1 levels in retinal pigment epithelial cells preserves their viability during prolonged exposure to artificial blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113037. [PMID: 39332313 DOI: 10.1016/j.jphotobiol.2024.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Exposure to artificial blue light, one of the most energetic forms of visible light, can increase oxidative stress in retinal cells, potentially enhancing the risk of macular degeneration. Retinal pigment epithelial (RPE) cells play a crucial role in this process; the loss of RPE cells is the primary pathway through which retinal degeneration occurs. In RPE cells, Kelch-like ECH-associated protein 1 (KEAP1) is located in both the nucleus and cytosol, where it binds to nuclear factor erythroid 2-related factor 2 (NRF2) and p62 (sequestosome-1), respectively. Blue light exposure activates the NRF2-heme oxygenase 1 (HMOX1) axis through both canonical and noncanonical p62 pathways thereby reducing oxidative damage, and initiates autophagy, which helps remove damaged proteins. These protective responses may support the survival of RPE cells. However, extended exposure to blue light drastically decreases the viability of RPE cells. This exposure diminishes the ability of KEAP1 to bind to p62 and reduces the level of KEAP1. Inhibition of autophagy does not prevent KEAP1 degradation, the NRF2-HMOX1 axis, or blue-light-induced cytotoxicity. However, proteasome inhibitor along with a transient increase in the amount of KEAP1 in RPE cells, partially restores the p62-KEAP1 complex and reduces blue-light-induced cytotoxicity. In vivo studies confirmed the downregulation of KEAP1 in damaged RPE cells. Mice subjected to periodic blue light exposure exhibited significant atrophy in the outer retina, particularly in the peripheral areas. Additionally, there was a significant decrease in c-wave electroretinography and pupillary light reflex, indicating functional impairments in both visual and nonvisual physiological processes. These data underscore the essential role of KEAP1 in managing oxidative defense and autophagy pathways triggered by blue light exposure in RPE cells.
Collapse
Affiliation(s)
- Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Min Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ida Fitriana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Liang-Huan Wu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
10
|
Jin L, Gan D, He W, Wu N, Xiang S, Wei Y, Eriani G, Ji Y, Guan M, Wang M. Mitochondrial tRNA Glu 14693A > G Mutation, an "Enhancer" to the Phenotypic Expression of Leber's Hereditary Optic Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401856. [PMID: 39264244 PMCID: PMC11538713 DOI: 10.1002/advs.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Leber's hereditary optic neuropathy (LHON), a maternally inherited ocular disease, is predominantly caused by mitochondrial DNA (mtDNA) mutations. Mitochondrial tRNA variants are hypothesized to amplify the pathogenic impact of three primary mutations. However, the exact mechanisms remained unclear. In the present study, the synergistic effect of the tRNAGlu 14693A > G and ND6 14484T > C mutations in three Chinese families affected by LHON is investigated. The m.14693A > G mutation nearly abolishes the pseudouridinylation at position 55 of tRNAGlu, leading to structural abnormalities, decreased stability, aberrant mitochondrial protein synthesis, and increased autophagy. In contrast, the ND6 14484T > C mutation predominantly impairs complex I function, resulting in heightened apoptosis and virtually no induction of mitochondrial autophagy compared to control cell lines. The presence of dual mutations in the same cell lines exhibited a coexistence of both upregulated cellular stress responses to mitochondrial damage, indicating a scenario of autophagy and mutation dysregulation within these dual-mutant cell lines. The data proposes a novel hypothesis that mitochondrial tRNA gene mutations generally lead to increased mitochondrial autophagy, while mutations in genes encoding mitochondrial proteins typically induce apoptosis, shedding light on the intricate interplay between different genetic factors in the manifestation of LHON.
Collapse
Affiliation(s)
- Lihao Jin
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Dingyi Gan
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Wentao He
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Na Wu
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Shuchenlu Xiang
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Yinsheng Wei
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARNUPR9002 Centre National de la Recherche ScientifiqueUniversité de StrasbourgInstitut de Biologie Moléculaire et Cellulaire2 allée Konrad RoentgenStrasbourg67084France
| | - Yanchun Ji
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Min‐Xin Guan
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Meng Wang
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| |
Collapse
|
11
|
Wei Y, Jiang Y, Tong L, Fu H, Wang M, Bai G, Guo S, Su S, Pan Y, Zhang X, Duan JA, Zhang F. Valorizing Lycii fructus waste residue into polysaccharide-rich extracts: Extraction methodologies, physicochemical characterization, in vitro activities and economic feasibility. Int J Biol Macromol 2024; 279:135204. [PMID: 39218182 DOI: 10.1016/j.ijbiomac.2024.135204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The high polysaccharide content of Lycii fructus agri-food waste should be reclaimed for value liberation from both environmental and economic perspectives. In this study, waste from L. fructus pigment products was valorized on a bench scale by upcycling into active polysaccharide-rich extracts. The methodological feasibility of polysaccharide recovery from L. fructus waste was evaluated using sequential extraction techniques. Three fractions LFP-30, LFP-100, and LFP-121, were obtained under stepwise increases in temperature and pressure. Highly heterogeneous xyloglucan (XG)-pectin macromolecules composed of linear homogalacturonan (HG) and alternating intra-RG-I-linkers, with topological neutral branches and XG participation, were predominant among the L. fructus polysaccharides (LFPs). Antioxidant activities in LFPs were unaffected by waste resources and severe extraction methodology conditions. Additionally, the direct investment potential of polysaccharide recovery was evaluated for full-scale implementation. This study demonstrated the necessity and feasibility of extracting bioactive polysaccharides with potential applications from L. fructus waste, and provided a sustainable strategy for transforming L. fructus waste disposal problems into value-added products using cost-effective methodologies.
Collapse
Affiliation(s)
- Yan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yinxiu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Limei Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huanzhe Fu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Biological Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mingxuan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking 100050, PR China
| | - Gengliang Bai
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yang Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xia Zhang
- School of Pharmacy, Key Laboratory of Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750021, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Xuan W, Wu X, Zheng L, Jia H, Zhang X, Zhang X, Cao B. Gut microbiota-derived acetic acids promoted sepsis-induced acute respiratory distress syndrome by delaying neutrophil apoptosis through FABP4. Cell Mol Life Sci 2024; 81:438. [PMID: 39453486 PMCID: PMC11511807 DOI: 10.1007/s00018-024-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing. Then, the cecal ligation and puncture (CLP) method was applied to induce the mouse sepsis model. After intervention with differential SCFAs sodium acetate, neutrophil apoptosis and FABP4 expression were further analyzed. Then, FABP4 inhibitor BMS309403 was used to treat neutrophils. We found CLP group had increased lung injury score, lung tissue wet/dry ratio, lung vascular permeability, and inflammatory factors IL-1β, TNF-α, IL-6, IFN-γ, and CCL3 levels in both bronchoalveolar lavage fluid and lung tissue. Additionally, FABP4 was lower in neutrophils of ARDS patients and mice. Meanwhile, CLP-induced dysbiosis of gut microbiota and changes in SCFAs levels were observed. Further verification showed that acetic acids reduced neutrophil apoptosis and FABP4 expression via FFAR2. Besides, FABP4 affected neutrophil apoptosis through endoplasmic reticulum (ER) stress, and neutrophil depletion alleviated the promotion of ARDS development by BMS309403. Moreover, FABP4 in neutrophils regulated the injury of RLE-6TN through inflammatory factors. In conclusion, FABP4 affected by gut microbiota-derived SCFAs delayed neutrophil apoptosis through ER stress, leading to increased inflammatory factors mediating lung epithelial cell damage.
Collapse
Affiliation(s)
- Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Longcheng Zheng
- People's Hospital of Henan University, Department of Respiratory and Critical Care Medicine, People's Hospital of Henan Province, Zhengzhou, 450003, China
| | - Huayun Jia
- Hunan Province Center for Disease Control and Prevention, Changsha, 410000, Hunan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Fan L, Luan X, Jia Y, Ma L, Wang Z, Yang Y, Chen Q, Cui X, Luo D. Protective effect and mechanism of lycium barbarum polysaccharide against UVB-induced skin photoaging. Photochem Photobiol Sci 2024; 23:1931-1943. [PMID: 39379645 DOI: 10.1007/s43630-024-00642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Cellular senescence can be categorized into two main types, including exogenous and endogenous aging. Photoaging, which is aging induced by ultraviolet (UV) radiation, significantly contributes to exogenous aging, accounting for approximately 80% of such cases. Superoxide Dismutase (SOD) is a class of antioxidant enzymes, with SOD2 being predominantly localized in the mitochondrial matrix. Ultraviolet radiation (UVR) inhibits SOD2 activity by acetylating the key lysine residues on SOD2. Sirtuin3 (SIRT3), the principal mitochondrial deacetylase, enhances the anti-oxidant capacity of SOD2 by deacetylating. Lycium barbarum polysaccharide (LBP) is the main bioactive component extracted from Lycium barbarum (LB). It has been reported to have numerous potential health benefits, such as anti-oxidation, anti-aging, anti-inflammatory and anti-apoptotic properties. Furthermore, LBP has been shown to regulate hepatic oxidative stress via the SIRT3-SOD2 pathway. The aim of this study was to construct a UVB-Stress-induced Premature Senescence (UVB-SIPS) model to investigate the protective effects and underlying mechanisms of LBP against UVB-induced skin photoaging. METHODS Irradiated with different UVB doses to select the suitable dose for constructing the UVB-SIPS model. Cell morphology was observed using a microscope. The proportion of senescent cells was assessed by senescence-associated β-galactosidase (SA-β-gal) staining. Cell viability was studied using the Cell Counting Kit-8 (CCK-8). Intracellular levels of reactive oxygen species (ROS) were observed using flow cytometry and an inverted fluorescence microscope. Expression of γ-H2AX was investigated using flow cytometry. Western blot (WB) was used to verify the expression of senescence-associated proteins (p21, p53, MMP-1, and MMP-3). Enzyme-Linked Immunosorbnent Assay (ELISA) was used to measure pro-inflammatory cytokines levels (IL-6, TNF-α). WB was also used to analyze the expression of SIRT3, SOD2, and Ac-SOD2, and a specific kit was employed to detect SOD2 activity. RESULTS Our results suggested that the UVB-SIPS group pre-treated with LBP exhibited a reduced proportion of cells positive for SA-β-gal staining, mitigated production of intracellular ROS, an amelioration in γ-H2AX expression, and down-regulated expression of senescence-associated proteins and pro-inflammatory cytokines as compared to the UVB-SIPS group. Moreover, in contrast to the control group, the UVB-SIPS group showed regulated SIRT3 expression and SOD activity, elevated Ac-SOD2 expression and an increased ratio of Ac-SOD2/SOD2. However, the UVB-SIPS group pre-treated with LBP showed an upregulation of SIRT3 expression and enhanced SOD activity, a reduction in AC-SOD2 expression, and a decreased ratio of AC-SOD2/SOD2, compared to the untreated UVB-SIPS group. Additionally, the photo-protective effect of LBP was diminished following treatment with 3-TYP, a SIRT3-specific inhibitor. This study suggested that LBP, a natural component, exhibits anti-oxidant and anti-photoaging properties, potentially mediated through the SIRT3-SOD2 pathway.
Collapse
Affiliation(s)
- Lipan Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Chinese Academy of Sciences Zhong Guan Cun Hospital, Beijing, China
| | - Xingbao Luan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Jia
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liwen Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Dermatology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Zhaopeng Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuting Yang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qian Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaomei Cui
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
14
|
Wang J, Li S, Zhang H, Zhang X. A review of Lycium barbarum polysaccharides: Extraction, purification, structural-property relationships, and bioactive molecular mechanisms. Carbohydr Res 2024; 544:109230. [PMID: 39137472 DOI: 10.1016/j.carres.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Lycium barbarum L. is of great significance medicinal and edible plant, which is native to N. & Central China. The extensive health benefits of L. barbarum have earned it great respect in traditional medicine for centuries. Lycium barbarum polysaccharides (LBPs) being recognized as one of the most crucial bioactive compounds found within this plant, with it exhibit a diverse range of pharmacological activities and nutritional functions, thereby generating substantial market demand and broad application prospects. To gain a more comprehensive understanding of LBPs, the review discussed the extraction, purification and structural-property relationships of these compounds. In addition, this review provides a comprehensive summary of the potential mechanisms underlying various biological activities attributed to LBPs, including immune modulation, antioxidant effects, neuroprotection, hepatoprotection, and antitumor properties. The application status and the future research directions of LBPs were subsequently presented. This review will establish a robust foundation and serve as an invaluable resource for future research and advancements in the field of LBPs.
Collapse
Affiliation(s)
- Jiao Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Shifeng Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hua Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xin Zhang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
15
|
Chen L, Liu J, Rao Z. FTO-overexpressing extracellular vesicles from BM-MSCs reverse cellular senescence and aging to ameliorate osteoarthritis by modulating METTL3/YTHDF2-mediated RNA m6A modifications. Int J Biol Macromol 2024; 278:134600. [PMID: 39122063 DOI: 10.1016/j.ijbiomac.2024.134600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Extracellular vesicles secreted by bone marrow mesenchymal stem cells (BM-MSCs) exert therapeutic effects in osteoarthritis (OA). As an important N6-Methyladenosine (m6A) demethylase, it is reported that fat mass and obesity-associated protein (FTO) involves in regulating OA progression. Here, we generated MSCs-derived FTO-overexpressing EVs (FTO-EVs) to investigate whether FTO-EVs could be used for the potential treatment of OA. Our experiments verify that FTO-EVs suppressed cellular senescence, aging, apoptosis, and enhanced cell autophagy in LPS-treated chondrocytes in vitro and monosodium iodoacetate (MIA)-treated mice tissues in vivo. Also, ROS scavenger NAC reversed LPS-induced detrimental effects in chondrocytes. Mechanical experiments illustrated that FTO-EVs induced m6A-demethylation in autophagy-associated genes (Atg5 and Atg7) and pro-apoptosis gene (BNIP3), subsequently inducing the upregulation of Atg5/Atg7 and downregulation of BNIP3 in a YTHDF2-dependent manner, and the effects of FTO-EVs on the expressions of Atg5/Atg7 and BNIP3 were all reversed by upregulating m6A methyltransferase METTL3. Furthermore, FTO-EVs-induced suppressing effects on LPS-treated chondrocytes senescence and aging were abolished by Atg5/Atg7 knockdown and BNIP3 overexpression. In conclusion, this study evidenced that BM-MSCs-derived FTO-EVs suppressed cellular senescence and apoptosis, and triggered protective autophagy to suppress OA development through demethylating m6A modifications, and the engineering FTO-EVs could be potentially used to treat OA in clinic.
Collapse
Affiliation(s)
- Lei Chen
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, PR China; Clinical Research Center, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, PR China
| | - Jia Liu
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, PR China
| | - Zhitao Rao
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, PR China.
| |
Collapse
|
16
|
Wu YX, Yin S, Song SS, Liu X, Deng YX, Lu XJ. Retinal ischemia-reperfusion injury and pretreatment with Lycium barbarum glycopeptide. Int J Ophthalmol 2024; 17:1599-1605. [PMID: 39296572 PMCID: PMC11367443 DOI: 10.18240/ijo.2024.09.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 09/21/2024] Open
Abstract
AIM To investigate the antioxidant protective effect of Lycium barbarum glycopeptide (LbGP) pretreatment on retinal ischemia-reperfusion (I/R) injury (RIRI) in rats. METHODS RIRI was induced in Sprague Dawley rats through anterior chamber perfusion, and pretreatment involved administering LbGP via gavage for 7d. After 24h of reperfusion, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine (CREA) levels, retinal structure, expression of Caspase-3 and Caspase-8, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) in the retina were measured. RESULTS The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer (GCL) and nerve fiber layer (NFL) of rats subjected to RIRI, as shown by light microscopy and optical coherence tomography (OCT). Serum AST was higher in the model group than in the blank group (P=0.042), but no difference was found in ALT, AST, and CREA across the LbGP groups and model group. Caspase-3 expression was higher in the model group than in the blank group (P=0.006), but no difference was found among LbGP groups and the model group. Caspase-8 expression was higher in the model group than in the blank group (P=0.000), and lower in the 400 mg/kg LbGP group than in the model group (P=0.016). SOD activity was lower in the model group than in the blank group (P=0.001), and the decrease was slower in the 400 mg/kg LbGP group than in the model group (P=0.003). MDA content was higher in the model group than in the blank group (P=0.001), and lower in the 400 mg/kg LbGP group than in the model group (P=0.016). The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model. CONCLUSION LbGP pretreatment exhibits dose-dependent anti-inflammatory, and antioxidative effects by reducing Caspase-8 expression, preventing declines of SOD activity, and decreasing MDA content in the RIRI rat model.
Collapse
Affiliation(s)
- Yan-Xia Wu
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
- Ineye Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610084, Sichuan Province, China
| | - Shuo Yin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
- Ineye Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610084, Sichuan Province, China
| | - Shan-Shan Song
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xiang Liu
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Yu-Xuan Deng
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xue-Jing Lu
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
- Ineye Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610084, Sichuan Province, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu 610075, Sichuan Province, China
| |
Collapse
|
17
|
Paik K, Na JI, Huh CH, Shin JW. Particulate Matter and Its Molecular Effects on Skin: Implications for Various Skin Diseases. Int J Mol Sci 2024; 25:9888. [PMID: 39337376 PMCID: PMC11432173 DOI: 10.3390/ijms25189888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Particulate matter (PM) is a harmful air pollutant composed of chemicals and metals which affects human health by penetrating both the respiratory system and skin, causing oxidative stress and inflammation. This review investigates the association between PM and skin disease, focusing on the underlying molecular mechanisms and specific disease pathways involved. Studies have shown that PM exposure is positively associated with skin diseases such as atopic dermatitis, psoriasis, acne, and skin aging. PM-induced oxidative stress damages lipids, proteins, and DNA, impairing cellular functions and triggering inflammatory responses through pathways like aryl hydrocarbon receptor (AhR), NF-κB, and MAPK. This leads to increased production of inflammatory cytokines and exacerbates skin conditions. PM exposure exacerbates AD by triggering inflammation and barrier disruption. It disrupts keratinocyte differentiation and increases pro-inflammatory cytokines in psoriasis. In acne, it increases sebum production and inflammatory biomarkers. It accelerates skin aging by degrading ECM proteins and increasing MMP-1 and COX2. In conclusion, PM compromises skin health by penetrating skin barriers, inducing oxidative stress and inflammation through mechanisms like ROS generation and activation of key pathways, leading to cellular damage, apoptosis, and autophagy. This highlights the need for protective measures and targeted treatments to mitigate PM-induced skin damage.
Collapse
Affiliation(s)
- Kyungho Paik
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
18
|
Liu X, Guo Y, Wang X, Wang X, Gong T, Wang X, Xia Y, Zheng W, Guo Y, Han M. Preparation of cardamonin and IR780 Co-loaded on Lycium barbarum polysaccharide nanoparticles and anti-tumor efficacy evaluation. J Drug Deliv Sci Technol 2024; 99:106004. [DOI: 10.1016/j.jddst.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Guo Y, Zhao X, Xiao S, Lin Y, Xiao Z, Zhou W, Zhang Y. Impact of molecular weight and gastrointestinal digestion on the immunomodulatory effects of Lycium barbarum polysaccharides. Int J Biol Macromol 2024; 274:133500. [PMID: 38944071 DOI: 10.1016/j.ijbiomac.2024.133500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
In traditional Chinese medicine, Lycium barbarum is of rich medicinal value, and its polysaccharides are particularly interesting due to their significant pharmacological effects and potential health benefits. This study investigated the immunomodulatory effects of Lycium barbarum polysaccharides (LBPs) by examining their interaction with the TLR4/MD-2 complex and the impacts of gastrointestinal digestion on these interactions. We discovered that the affinity binding of LBPs for TLR4/MD-2 and their cytokine induction capability are influenced by molecular weight, with medium-sized LBPs (100-300 kDa) exhibiting stronger binding affinity and induction capability. Conversely, LBPs smaller than 10 kDa showed reduced activity. Additionally, the content of arabinose and galactose within the LBPs fractions was found to correlate positively with both receptor affinity and cytokine secretion. Simulated gastrointestinal digestion resulted in the degradation of LBPs into smaller fragments that are rich in glucose. Although these fragments exhibited decreased binding affinity to the TLR4/MD-2 complex, they maintained their activity to promote cytokine production. Our findings highlight the significance of molecular weight and specific monosaccharide composition in the immunomodulatory function of LBPs and emphasize the influence of gastrointestinal digestion on the effects of LBPs. This research contributes to a better understanding of the mechanisms underlying the immunomodulatory effects of traditional Chinese medicine polysaccharides and their practical application.
Collapse
Affiliation(s)
- Yizhen Guo
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Xueru Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Shiqi Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yanling Lin
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
20
|
Fernando PDSM, Piao MJ, Herath HMUL, Kang KA, Hyun CL, Kim ET, Koh YS, Hyun JW. Hyperoside reduced particulate matter 2.5-induced endoplasmic reticulum stress and senescence in skin cells. Toxicol In Vitro 2024; 99:105870. [PMID: 38848825 DOI: 10.1016/j.tiv.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Particulate matter 2.5 (PM2.5) causes skin aging, inflammation, and impaired skin homeostasis. Hyperoside, a flavanol glycoside, has been proposed to reduce the risk of diseases caused by oxidative stress. This study evaluated the cytoprotective potential of hyperoside against PM2.5-induced skin cell damage. Cultured human HaCaT keratinocytes were pretreated with hyperoside and treated with PM2.5. Initially, the cytoprotective and antioxidant ability of hyperoside against PM2.5 was evaluated. Western blotting was further employed to investigate endoplasmic reticulum (ER) stress and cellular senescence and for evaluation of cell cycle regulation-related proteins. Hyperoside inhibited PM2.5-mediated ER stress as well as mitochondrial damage. Colony formation assessment confirmed that PM2.5-impaired cell proliferation was restored by hyperoside. Moreover, hyperoside reduced the activation of PM2.5-induced ER stress-related proteins, such as protein kinase R-like ER kinase, cleaved activating transcription factor 6, and inositol-requiring enzyme 1. Hyperoside promoted cell cycle progression in the G0/G1 phase by upregulating the PM2.5-impaired cell cycle regulatory proteins. Hyperoside significantly reduced the expression of PM2.5-induced senescence-associated β-galactosidase and matrix metalloproteinases (MMPs), such as MMP-1 and MMP-9. Overall, hyperoside ameliorated PM2.5-impaired cell proliferation, ER stress, and cellular senescence, offering potential therapeutic implications for mitigating the adverse effects of environmental pollutants on skin health.
Collapse
Affiliation(s)
- Pincha Devage Sameera Madushan Fernando
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Kyoung Ah Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang Lim Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eui Tae Kim
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Sang Koh
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
21
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
22
|
Liu Z, Dang B, Li Z, Wang X, Liu Y, Wu F, Cao X, Wang C, Lin C. Baicalin attenuates acute skin damage induced by ultraviolet B via inhibiting pyroptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112937. [PMID: 38743989 DOI: 10.1016/j.jphotobiol.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
As the outermost layer of the human body, the skin suffers from various external factors especially light damage, among which ultraviolet B (UVB) irradiation is common and possesses a relatively high biological damage capacity. Pyroptosis is a newly discovered type of programmed cell death, which can induce cell rupture and induce local inflammatory response. However, the molecular mechanisms of pyroptosis in photodamaged skin is poorly understood. Baicalin, a flavonoid extracted from the desiccated root of Scutellaria baicalensis Georgi (Huang Qin). Despite its antioxidant abilities, whether baicalin protects skin by attenuating UVB-induced pyroptosis remains unclear, which was the aim of this study. The UVB-induced acute skin damage model was established by using human immortalized keratinocytes (HaCaT cells) and Kunming (KM) strain mice. The protective dose selection for baicalin is 50 μM in vitro and 100 mg/kg in vivo. In in vitro study, UVB irradiation significantly decreased cell viability, increased cell death and oxidative stress in HaCaT cells, while pretreatment with baicalin improved these phenomena. Furthermore, the baicalin pretreatment notably suppressed nuclear factor kappa B (NF-κB) translocation, the NLRP3 inflammasome activation and gasdermin D (GSDMD) maturation, thus effectively attenuating UVB-induced pyroptosis. In in vivo study, the baicalin pretreatment mitigated epidermal hyperplasia, collagen fiber fragmentation, oxidative stress and pyroptosis in UVB-irradiated mouse skin. In a nutshell, this study suggests that baicalin could be a potential protective agent to attenuate acute skin damage induced by UVB irradiation through decreasing oxidative stress and suppressing NF-κB/NLRP3/GSDMD-involved pyroptosis.
Collapse
Affiliation(s)
- Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhen Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xingsheng Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuhan Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinhui Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
23
|
Chen J, Ding W, Zhang Z, Li Q, Wang M, Feng J, Zhang W, Cao L, Ji X, Nie S, Sun Z. Shenfu injection targets the PI3K-AKT pathway to regulate autophagy and apoptosis in acute respiratory distress syndrome caused by sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155627. [PMID: 38696924 DOI: 10.1016/j.phymed.2024.155627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by an exaggerated response to infection. In the lungs, one of the most susceptible organs, this can manifest as acute respiratory distress syndrome (ARDS). Shenfu (SF) injection is a prominent traditional Chinese medicine used to treat sepsis. However, the exact mechanism of its action has rarely been reported in the literature. PURPOSE In the present study, we detected the protective effect of SF injection on sepsis-induced ARDS and explored its underlying mechanism. METHODS We investigated the potential targets and regulatory mechanisms of SF injections using a combination of network pharmacology and RNA sequencing. This study was conducted both in vivo and in vitro using a mouse model of ARDS and lipopolysaccharide (LPS)-stimulated MLE-12 cells, respectively. RESULTS The results showed that SF injection could effectively inhibit inflammation, oxidative stress, and apoptosis to alleviate LPS-induced ARDS. SF inhibited the PI3K-AKT pathway, which controls autophagy and apoptosis. Subsequently, MLE-12 cells were treated with 3-methyladenine to assess its effects on autophagy and apoptosis. Additional experiments were conducted by adding rapamycin, an mTOR antagonist, or SC79, an AKT agonist, to investigate the effects of SF injection on autophagy, apoptosis, and the PI3K-AKT pathway. CONCLUSION Overall, we found that SF administration could enhance autophagic activity, reduce apoptosis, suppress inflammatory responses and oxidative stress, and inhibit the PI3K-AKT pathway, thus ameliorating sepsis-induced ARDS.
Collapse
Affiliation(s)
- Juan Chen
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China; Department of Emergency Medicine, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province 221000, PR China
| | - Weichao Ding
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China; Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Zhe Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Medical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Quan Li
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Jing Feng
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Xiaohang Ji
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China.
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China.
| |
Collapse
|
24
|
Yuan S, Liu J, Yang L, Zhang X, Zhuang K, He S. Knockdown of circ_0044226 promotes endoplasmic reticulum stress-mediated autophagy and apoptosis in hepatic stellate cells via miR-4677-3p/SEC61G axis. J Bioenerg Biomembr 2024; 56:261-271. [PMID: 38421527 DOI: 10.1007/s10863-024-10007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Downregulation of circ_0044226 has been demonstrated to reduce pulmonary fibrosis, but the role of circ_0044226 in liver fibrosis remains to be explored. In this work, we found that circ_0044226 expression was upregulated during liver fibrosis. Knockdown of circ_0044226 inhibited proliferation, promoted autophagy and apoptosis of hepatic stellate cell LX-2. Bioinformatic analysis and dual luciferase reporter assays confirmed the interaction between circ_0044226, miR-4677-3p and SEC61G. Mechanistically, knockdown of circ_0044226 suppressed SEC61G expression by releasing miR-4677-3p, thereby enhancing endoplasmic reticulum stress. Overexpression of SEC61G or endoplasmic reticulum stress inhibitor 4-phenylbutiric acid partially reversed the effect of knockdown circ_0044226 on LX-2 cell function. In vivo experiments showed that inhibition of circ_0044226 attenuated CCL4-induced liver fibrosis in mice. These imply that circ_0044226 may be a potential target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shanshan Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China
| | - Jiaming Liu
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China
| | - Li Yang
- Department of Ultrasonography, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Xin Zhang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China
| | - Kun Zhuang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
25
|
Lin R, Lin Y, Wang J, Peng L. Regulation of mouse digestive function, intestinal mucosal barrier function, and inflammatory reaction by lycium barbarum polysaccharide pathway through myosin light chain kinase. Heliyon 2024; 10:e29795. [PMID: 38765174 PMCID: PMC11098784 DOI: 10.1016/j.heliyon.2024.e29795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
This research investigated the impacts of lycium barbarum polysaccharide (LBP) on the digestive function, intestinal mucosal barrier function, inflammatory response, and myosin light chain kinase (MLCK) signaling pathway in immunosuppressed mice. 70 mg/kg cyclophosphamide was injected into abdomen for the preparation of immune suppression model. Healthy BALB/c mice served as control for the analysis of the differences in gastrointestinal motility and absorptive capacity, intestinal mucosal barrier function, the phagocytic ability of abdominal macrophages, serum immune factor and inflammatory factor levels, and the activation status of the MLCK signaling pathway after continuous gavage with 100 mg/kg LBP. Results revealed a decrease in d-xylose content, phagocytic rate, index of abdominal macrophages, and spleen index in the serum and urine of model mice compared to those of controls. In addition, levels of IgA, IgG, IgM, IL-6 (interleukin-6), IL-12, and interferon-γ (IFN-γ) decreased, while MLCK and myosin light chain (MLC) levels rose (P < 0.01). Versus those in Model group, urine d-xylose content, phagocytic rate, index of abdominal macrophages, spleen index, and the levels of IgA, IgG, IgM, IL-6, IL-12, and IFN-γ of mice undergoing the gavage with LBP increased, while MLCK and p-MLC levels declined (P < 0.05). In conclusion, LBP improved digestive absorption and immune function of immunosuppressed mice and regulated intestinal mucosal barrier immune system by inhibiting MLCK signaling pathway activation.
Collapse
Affiliation(s)
- Runli Lin
- Fuzhou Hushan Medical Research Institute, Hushan Lin's, Fuzhou 350001, Fujian Province, China
| | - Yuehan Lin
- Fuzhou Hushan Medical Research Institute, Hushan Lin's, Fuzhou 350001, Fujian Province, China
| | - Jinhe Wang
- Fuzhou Hushan Medical Research Institute, Hushan Lin's, Fuzhou 350001, Fujian Province, China
| | - LiJuan Peng
- Fuzhou Hushan Medical Research Institute, Hushan Lin's, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
26
|
Herath HMUL, Piao MJ, Kang KA, Fernando PDSM, Hyun JW. Protective effect of 3-bromo-4,5-dihydroxybenzaldehyde against PM 2.5-induced cell cycle arrest and autophagy in keratinocytes. Mol Cells 2024; 47:100066. [PMID: 38679413 PMCID: PMC11126928 DOI: 10.1016/j.mocell.2024.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Particulate matter 2.5 (PM2.5) poses a serious threat to human health and is responsible for respiratory disorders, cardiovascular diseases, and skin disorders. 3-Bromo-4,5-dihydroxybenzaldehyde (3-BDB), abundant in marine red algae, exhibits anti-inflammatory, antioxidant, and antidiabetic activities. In this study, we investigated the protective mechanisms of 3-BDB against PM2.5-induced cell cycle arrest and autophagy in human keratinocytes. Intracellular reactive oxygen species generation, DNA damage, cell cycle arrest, intracellular Ca2+ level, and autophagy activation were tested. 3-BDB was found to restore cell proliferation and viability which were reduced by PM2.5. Furthermore, 3-BDB reduced PM2.5-induced reactive oxygen species levels, DNA damage, and attenuated cell cycle arrest. Moreover, 3-BDB ameliorated the PM2.5-induced increases in cellular Ca2+ level and autophagy activation. While PM2.5 treatment reduced cell growth and viability, these were restored by the treatment with the autophagy inhibitor bafilomycin A1 or 3-BDB. The findings indicate that 3-BDB ameliorates skin cell death caused by PM2.5 via inhibiting cell cycle arrest and autophagy. Hence, 3-BDB can be exploited as a preventive/therapeutic agent for PM2.5-induced skin impairment.
Collapse
Affiliation(s)
- Herath Mudiyanselage Udari Lakmini Herath
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
27
|
Liu XM, Shi H, Li W. Review on the potential roles of traditional Chinese medicines in the prevention, treatment, and postoperative recovery of age-related cataract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117786. [PMID: 38253273 DOI: 10.1016/j.jep.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Cataract is the most common cause of blindness worldwide, a visual disorder caused by a clouded lens that seriously affects People's Daily lives. Age-related cataract (ARC) is the most common type of cataract due to long-term combined effects of many factors, and its pathogenesis is varied. At present, the surgery is the main treatment for cataracts, but it is still limited to the prevention, treatment of early cataracts and the postoperative complications care. While, its drug treatments are still in the stage of exploration and research. Traditional Chinese Medicine (TCM), a unique resource in China, is conceived under the guidance of traditional Chinese medicine theory and has little toxicity and side effects, but it has made great progress in the treatment and prevention of ARC. AIM OF THIS REVIEW This review presents an overview of the pathogenesis of ARC in both traditional and modern medicines and summarizes the history and therapeutic effect of TCM on ARC including their formula, crude drugs and active components, and also the other auxiliary methods. METHODS A number of recognized databases like SciFinder, PubMed, Science Direct, Google Scholar, and China National Knowledge Infrastructure (CNKI) were extensively explored by using keywords and phrases such as "cataract", "age-related cataract", "traditional medicine", "ethnopharmacology", "herbs", "medicinal plants", or other relevant terms, and the plants/phytoconstituents that are evaluated in the models of age-related cataract. As well as the current TCM adjuvant therapy used in the clinical treatment were summarized. RESULTS TCM revealed to plays an active role in treating age-related cataract, via multi-pathway and multi-target, and can treat or delay ARC by inhibiting abnormal glucose metabolism, antioxidant damage, inhibiting LEC apoptosis, and so on, which is in concordance with the good effects of the global use of TCM in clinical application. Concerning the early prevention and treatment of cataract and postoperative complications, TCM and auxiliary methods remain to achieve better clinical effects. CONCLUSION ARC belongs to the category of "Yuan Yi Nei Zhang" in TCM theory, showing that there are many causes of ARC including aging, and kidney-yang, spleen, sperm and blood deficiencies. At the same time, the viscera gradually decline, as well as yin or yang progressively become weak, especially in the elder people. So, TCM could be mainly based on liver, kidney, and spleen syndrome differentiation, personalizing diagnosis and treatment, following multiple targets, regulating fundamentally yin and yang, and thus justifying the advantages of Chinese medicine in the prevention and treatment of ARC.
Collapse
Affiliation(s)
- Xiao-Min Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic, China
| | - Hui Shi
- The First Hospital, Jilin University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic, China.
| |
Collapse
|
28
|
Xu B, Cheng F, Xue X. Klotho-mediated activation of the anti-oxidant Nrf2/ARE signal pathway affects cell apoptosis, senescence and mobility in hypoxic human trophoblasts: involvement of Klotho in the pathogenesis of preeclampsia. Cell Div 2024; 19:13. [PMID: 38632651 PMCID: PMC11025225 DOI: 10.1186/s13008-024-00120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
The anti-aging gene Klotho is implicated in the pathogenesis of preeclampsia (PE), which is a pregnancy disease characterized by hypertension and proteinuria. Oxidative stress is closely associated with the worse outcomes in PE, and Klotho can eliminate Reactive Oxygen Species (ROS), but it is still unclear whether Klotho regulates PE pathogenesis through modulating oxidative damages. Here, by analyzing the clinical data, we found that Klotho was aberrantly downregulated in PE umbilical cord serum and placental tissues, compared to their normal counterparts. In in vitro experiments, the human trophoblasts were subjected to hypoxic pressure to establish the PE models, and we confirmed that hypoxia also decreased the expression levels of Klotho in those trophoblasts. In addition, through performing functional experiments, we confirmed that hypoxia promoted oxidative damages, cell apoptosis and senescence, whereas suppressed cell invasion in human trophoblasts, which were all reversed overexpressing Klotho. The following mechanical experiments verified that Klotho increased the levels of nuclear Nrf2, total Nrf2, SOD2 and NQO1 to activate the anti-oxidant Nrf2/ARE signal pathway, and silencing of Nrf2 abrogated the protective effects of Klotho overexpression on hypoxic human trophoblasts. Consistently, in in vivo experiments, Klotho overexpression restrained oxidative damages and facilitated cell mitosis in PE rats' placental tissues. In conclusion, this study validated that Klotho activated the Nrf2/ARE signal pathway to eliminate hypoxia-induced oxidative damages, cell apoptosis and senescence to recover normal cellular functions in human trophoblasts, and our data supported that Klotho could be used as novel biomarker for PE diagnosis and treatment.
Collapse
Affiliation(s)
- Baomei Xu
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China
| | - Fang Cheng
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China
| | - Xiaolei Xue
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
29
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Yi JM, Choi YH, Hyun YM, Zhang K, Park CO, Hyun JW. Particulate matter stimulates the NADPH oxidase system via AhR-mediated epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123675. [PMID: 38447650 DOI: 10.1016/j.envpol.2024.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Stimulation of human keratinocytes with particulate matter 2.5 (PM2.5) elicits complex signaling events, including a rise in the generation of reactive oxygen species (ROS). However, the mechanisms underlying PM2.5-induced ROS production remain unknown. Here, we show that PM2.5-induced ROS production in human keratinocytes is mediated via the NADPH oxidase (NOXs) system and the Ca2+ signaling pathway. PM2.5 treatment increased the expression of NOX1, NOX4, and a calcium-sensitive NOX, dual oxidase 1 (DUOX1), in human epidermal keratinocyte cell line. PM2.5 bound to aryl hydrocarbon receptor (AhR), and this complex bound to promoter regions of NOX1 and DUOX1, suggesting that AhR acted as a transcription factor of NOX1 and DUOX1. PM2.5 increased the transcription of DUOX1 via epigenetic modification. Moreover, a link between DNA demethylase and histone methyltransferase with the promoter regions of DUOX1 led to an elevation in the expression of DUOX1 mRNA. Interestingly, PM2.5 increased NOX4 expression and promoted the interaction of NOX4 and Ca2+ channels within the cytoplasmic membrane or endoplasmic reticulum, leading to Ca2+ release. The increase in intracellular Ca2+ concentration activated DUOX1, responsible for ROS production. Our findings provide evidence for a PM2.5-mediated ROS-generating system network, in which increased NOX1, NOX4, and DUOX1 expression serves as a ROS signal through AhR and Ca2+ activation.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea
| | | | | | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, 47392, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, 47340, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kelun Zhang
- Department of Dermatology, and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chang Ook Park
- Department of Dermatology, and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
30
|
李 淑, 于 淑, 穆 亚, 王 凯, 刘 玉, 张 美. [Metformin ameliorates PM2.5-induced functional impairment of placental trophoblasts by inhibiting ferroptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:437-446. [PMID: 38597434 PMCID: PMC11006689 DOI: 10.12122/j.issn.1673-4254.2024.03.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the protective effect of metformin against PM2.5-induced functional impairment of placental trophoblasts and explore the underlying mechanism. METHODS Sixteen pregnant Kunming mice were randomly assigned into two groups (n=8) for intratracheal instillation of PBS or PM2.5 suspension at 1.5, 7.5, and 12.5 days of gestation. The pregnancy outcome of the mice was observed, and placental zonal structure and vascular density of the labyrinth area were examined with HE staining, followed by detection of ferroptosis-related indexes in the placenta. In cultured human trophoblasts (HTR8/SVneo cells), the effects of PM2.5 exposure and treatment with metformin on cell viability, proliferation, migration, invasion, and tube formation ability were evaluated using CCK8 assay, EDU staining, wound healing assay, Transwell experiment, and tube formation experiment; the cellular expressions of ferroptosis-related proteins were analyzed using ELISA and Western blotting. RESULTS M2.5 exposure of the mice during pregnancy resulted in significantly decreased weight and number of the fetuses and increased fetal mortality with a reduced placental weight (all P<0.001). PM2.5 exposure also caused obvious impairment of the placental structure and trophoblast ferroptosis. In cultured HTR8/SVneo cells, PM2.5 significantly inhibited proliferation, migration, invasion, and angiogenesis of the cells by causing ferroptosis. Metformin treatment obviously attenuated PM2.5-induced inhibition of proliferation, migration, invasion, and angiogenesis of the cells, and effectively reversed PM2.5-induced ferroptosis in the trophoblasts as shown by significantly increased intracellular GSH level and SOD activity, reduced MDA and Fe2+ levels, and upregulated GPX4 and SLC7A11 protein expression (P<0.05 or 0.01). CONCLUSION PM2.5 exposure during pregnancy causes adverse pregnancy outcomes and ferroptosis and functional impairment of placental trophoblasts in mice, and metformin can effectively alleviate PM2.5-induced trophoblast impairment.
Collapse
Affiliation(s)
- 淑贤 李
- 青岛大学附属山东省妇幼保健院,国家卫生健康委母胎医学重点实验室,山东 济南 250014Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - 淑平 于
- 山东第二医科大学,山东 潍坊 261053Shandong Second Medical University, Weifang 261053, China
| | - 亚铭 穆
- 山东第二医科大学,山东 潍坊 261053Shandong Second Medical University, Weifang 261053, China
| | - 凯 王
- 山东第二医科大学,山东 潍坊 261053Shandong Second Medical University, Weifang 261053, China
| | - 玉 刘
- 青岛大学附属山东省妇幼保健院,国家卫生健康委母胎医学重点实验室,山东 济南 250014Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - 美华 张
- 青岛大学附属山东省妇幼保健院,国家卫生健康委母胎医学重点实验室,山东 济南 250014Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| |
Collapse
|
31
|
Shen H, Gong M, Hu J, Yan Q, Zhang M, Zheng R, Wu J, Cao Y. Lycium barbarum polysaccharide's protective effects against PM 2.5-induced cellular senescence in HUVECs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116232. [PMID: 38493701 DOI: 10.1016/j.ecoenv.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.
Collapse
Affiliation(s)
- Haochong Shen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Meidi Gong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Juan Hu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qing Yan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Minghao Zhang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Rao Zheng
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| | - Yi Cao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
32
|
Herath HMUL, Piao MJ, Kang KA, Fernando PDSM, Hyun JW. Rosmarinic Acid Protects Skin Keratinocytes from Particulate Matter 2.5-Induced Apoptosis. Int J Med Sci 2024; 21:681-689. [PMID: 38464827 PMCID: PMC10920844 DOI: 10.7150/ijms.90814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024] Open
Abstract
Background: The exposure of the human skin to particulate matter 2.5 (PM2.5) results in adverse health outcomes, such as skin aging, wrinkle formation, pigment spots, and atopic dermatitis. It has previously been shown that rosmarinic acid (RA) can protect keratinocytes from ultraviolet B radiation by enhancing cellular antioxidant systems and reducing oxidative damage; however, its protective action against the adverse effects of PM2.5 on skin cells remains unclear. Therefore, in this study, we explored the mechanism underlying the protective effects of RA against PM2.5-mediated oxidative stress in HaCaT keratinocytes. Methods: HaCaT keratinocytes were pretreated with RA and exposed to PM2.5. Thereafter, reactive oxygen species (ROS) production, protein carbonylation, lipid peroxidation, DNA damage, and cellular apoptosis were investigated using various methods, including confocal microscopy, western blot analysis, and flow cytometry. Results: RA significantly inhibited PM2.5-induced lipid peroxidation, protein carbonylation, DNA damage, increases in intracellular Ca2+ level, and mitochondrial depolarization. It also significantly attenuated PM2.5-induced apoptosis by downregulating Bcl-2-associated X, cleaved caspase-9, and cleaved caspase-3 protein levels, while upregulating B-cell lymphoma 2 protein level. Further, our results indicated that PM2.5-induced apoptosis was associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathway and that MAPK inhibitors as well as RA exhibited protective effects against PM2.5-induced apoptosis. Conclusion: RA protected HaCaT cells from PM2.5-induced apoptosis by lowering oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Jin Won Hyun
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
33
|
Yin G, Wang Q, Lv T, Liu Y, Peng X, Zeng X, Huang J. The Radioprotective Effect of LBP on Neurogenesis and Cognition after Acute Radiation Exposure. Curr Radiopharm 2024; 17:257-265. [PMID: 38204264 PMCID: PMC11327742 DOI: 10.2174/0118744710274008231220055033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Radiation exposure has been linked to the development of brain damage and cognitive impairment, but the protective effect and mechanism of Lycium barbarum pills (LBP) on radiation-induced neurological damage remains to be clarified. METHODS Behavioral tests and immunohistochemical studies were conducted to evaluate the protective effects of LBP extract (10 g/kg orally daily for 4 weeks) against radiation-induced damage on neurogenesis and cognitive function in Balb/c mice exposed to 5.5 Gy X-ray acute radiation. RESULTS The results showed that the LBP extract significantly improved body weight loss, locomotor activity and spatial learning and memory. Immunohistochemical tests revealed that the LBP extract prevented the loss of proliferating cells, newly generated neurons and interneurons, especially in the subgranular area of the dentate gyrus. CONCLUSION The findings suggest that LBP is a potential neuroprotective drug for mitigating radiation-induced neuropsychological disorders.
Collapse
Affiliation(s)
- Gang Yin
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Qinqi Wang
- Department of Internal Medicine, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yifan Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xianqin Zeng
- Department of Gynaecology and Obstetrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiangrong Huang
- Department of Integrative Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
34
|
Chao L, Feng B, Liang H, Zhao X, Song J. Particulate matter and inflammatory skin diseases: From epidemiological and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167111. [PMID: 37716690 DOI: 10.1016/j.scitotenv.2023.167111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Epidemiological and toxicological studies have confirmed that exposure to atmospheric particulate matter (PM) could affect our cardiovascular and respiratory systems. Recent studies have shown that PM can penetrate the skin and cause skin inflammation, but the evidence is limited and contradictory. As the largest outermost surface of the human body, the skin is constantly exposed to the environment. The aim of this study was to assess the relationship between PM and inflammatory skin diseases. Most epidemiological studies have provided positive evidence for outdoor, indoor, and wildfire PM and inflammatory skin diseases. The effects of PM exposure during pregnancy and inflammatory skin diseases in offspring are heterogeneous. Skin barrier dysfunction, Oxidative stress, and inflammation may play a critical role in the underlying mechanisms. Finally, we summarize some interventions to alleviate PM-induced inflammatory skin diseases, which may contribute to public health welfare. Overall, PM is related to inflammatory skin diseases via skin barrier dysfunction, oxidative stress, and inflammation. Appropriate government interventions are beneficial.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Bin Feng
- Environmental Health Section, Xinxiang Health Technology Supervision Center, School of Management, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haiyan Liang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
35
|
Yin B, Ren J, Cui Q, Liu X, Wang Z, Pei H, Zuo J, Zhang Y, Wen R, Sun X, Zhang W, Ma Y. Astaxanthin alleviates fine particulate matter (PM 2.5)-induced lung injury in rats by suppressing ferroptosis and apoptosis. Food Funct 2023; 14:10841-10854. [PMID: 37982854 DOI: 10.1039/d3fo03641c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Objectives: Fine particulate matter (PM2.5), a small molecule particulate pollutant, can reach the lungs via respiration and cause lung damage. Currently, effective strategies and measures are lacking to prevent and treat the pulmonary toxicity of PM2.5. Astaxanthin (ASX), a natural xanthophyll carotenoid, has attracted attention due to its unique biological activity. Our research aims to probe into the prevention and treatment of ASX on PM2.5-induced lung injury and clarify its potential mechanism. Methods: Sprague-Dawley (SD) rats were given olive oil and different concentrations of ASX orally daily for 21 days. PM2.5 suspension was instilled into the trachea of rats every two days for one week to successfully develop the PM2.5 exposure model in the PM2.5-exposed and ASX-treated groups of rats. The bronchoalveolar lavage fluid (BALF) was collected, and the content of lung injury-related markers was detected. Histomorphological changes and expression of markers associated with oxidative stress, inflammation, iron death, and apoptosis were detected in lung tissue. Results: PM2.5 exposure can cause changes in lung histochemistry and increase the expression levels of TP, AKP, ALB, and LDH in the BALF. Simultaneously, inflammatory responses and oxidative stress were promoted in rat lung tissue after exposure to particulate matter. Additionally, ASX preconditioning can alleviate histomorphological changes, oxidative stress, and inflammation caused by PM2.5 and reduce PM2.5-related ferroptosis and apoptosis. Conclusion: ASX preconditioning can alleviate lung injury after PM2.5 exposure by inhibiting ferroptosis and apoptosis.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Xiaoya Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Weican Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
36
|
Li X, Li Z, Meng YQ, Qiao H, Zhai KR, Li ZQ, Wei SL, Li B. Melittin kills A549 cells by targeting mitochondria and blocking mitophagy flux. Redox Rep 2023; 28:2284517. [PMID: 38041592 PMCID: PMC11001274 DOI: 10.1080/13510002.2023.2284517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
Melittin, a naturally occurring polypeptide found in bee venom, has been recognized for its potential anti-tumor effects, particularly in the context of lung cancer. Our previous study focused on its impact on human lung adenocarcinoma cells A549, revealing that melittin induces intracellular reactive oxygen species (ROS) burst and oxidative damage, resulting in cell death. Considering the significant role of mitochondria in maintaining intracellular redox levels and ROS, we further examined the involvement of mitochondrial damage in melittin-induced apoptosis in lung cancer cells. Our findings demonstrated that melittin caused changes in mitochondrial membrane potential (MMP), triggered mitochondrial ROS burst (Figure 1), and activated the mitochondria-related apoptosis pathway Bax/Bcl-2 by directly targeting mitochondria in A549 cells (Figure 2). Further, we infected A549 cells using a lentivirus that can express melittin-Myc and confirmed that melittin can directly target binding to mitochondria, causing the biological effects described above (Figure 2). Notably, melittin induced mitochondrial damage while inhibiting autophagy, resulting in abnormal degradation of damaged mitochondria (Figure 5). To summarize, our study unveils that melittin targets mitochondria, causing mitochondrial damage, and inhibits the autophagy-lysosomal degradation pathway. This process triggers mitoROS burst and ultimately activates the mitochondria-associated Bax/Bcl-2 apoptotic signaling pathways in A549 cells.
Collapse
Affiliation(s)
- Xuan Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Zheng Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Yu-Qi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Hui Qiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Ke-Rong Zhai
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Zhen-Qing Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Shi-Lin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| |
Collapse
|
37
|
Yu D, Cai W, Shen T, Wu Y, Ren C, Li T, Hu C, Zhu M, Yu J. PM 2.5 exposure increases dry eye disease risks through corneal epithelial inflammation and mitochondrial dysfunctions. Cell Biol Toxicol 2023; 39:2615-2630. [PMID: 36786954 PMCID: PMC10693534 DOI: 10.1007/s10565-023-09791-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Dry eye disease (DED) is the most common disease affecting vision and quality of life. PM2.5 was a potential risk of DED. Herein, we conducted animal exposure and cell-based studies to evaluate the pathogenic effect of PM2.5 exposure on the ocular surface and DED etiological mechanisms. C57 mice were exposed to filtered air and PM2.5 aerosol. We assessed health conditions and inflammation of the ocular surface by corneal fluorescein staining and immunohistochemistry. In parallel, cultured human corneal epithelial cells (HCETs) were treated with PM2.5, followed by characterization of cell viability, intracellular ATP level, mitochondrial activities, and expression level of DED relevant mRNA and proteins. In mice, PM2.5 exposure induced severe superficial punctate keratopathy and inflammation in their cornea. In HCETs, cell proliferation and ROS generation followed dose-response and time-dependent manner; meanwhile, mitochondrial ROS (mtROS) level increased and mitochondrial membrane potential (MMP) level decreased. Inflammation cascade was triggered even after short-term exposure. The reduction of ATP production was alleviated with Nrf2 overexpression, NF-κB P65 knockdown, or ROS clearance. Nrf2 overexpression and P65 knockdown reduced inflammatory reaction through decreasing expression of P65 and increasing of Nrf2, respectively. They partly alleviated changes of ROS/mtROS/MMP. This research proved that PM2.5 would cause DED-related inflammation reaction on corneal epithelial cells and further explored its mechanism: ROS from mitochondrial dysfunctions of corneal epithelial cells after PM2.5 exposure partly inhibited the expression of anti-inflammatory protein Nrf2 led the activation of inflammatory protein P65 and its downstream molecules, which finally caused inflammation reaction.
Collapse
Affiliation(s)
- Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Xiang XH, Wei J, Wang XF, Xu Q, Yu CL, He CL, Long T, Guo MS, Chen X, Zhou XG, Wu JM, Qin DL, Wu AG, Tang Y, Lv HB. Lychee seed polyphenol ameliorates DR via inhibiting inflammasome/apoptosis and angiogenesis in hRECs and db/db mice. Biomed Pharmacother 2023; 167:115478. [PMID: 37703661 DOI: 10.1016/j.biopha.2023.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Blood retinal barrier (BRB) damage is an important pathogenesis of diabetic retinopathy, and alleviating BRB damage has become a key target for DR treatment. We previously found that Lycopene seed polyphenols (LSP) maintained BRB integrity by inhibiting NLRP3 inflammasome-mediated inflammation. However, it is still unknown whether LSP inhibits retinal neovascularization with abnormal capillaries and its mechanism of action. Here, we employed db/db mice and hRECs to find that LSP increases the level of glycolipid metabolism, maintains the morphology of retinal endothelial cells and inhibits acellular capillary neogenesis. Mechanistic studies revealed that LSP inhibits the NLRP3 inflammasome, reduces cell apoptosis in retinal tissue, increases tight junction protein (TJ) expression, and reduces vascular endothelial growth factor (VEGF) and Ve-Cadherin in vivo and in vitro. Collectively, this study finds that LSP inhibits inflammation and angiogenesis to improve BRB function to ameliorate DR.
Collapse
Affiliation(s)
- Xiao-Hong Xiang
- Department of Ophthalmology in the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing Wei
- Department of Ophthalmology in the Affiliated Hospital of Southwest Medical University, Luzhou, China; Eye School and Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection of Chengdu University of TCM, Chengdu, China.
| | - Xiao-Fang Wang
- Department of Human Anatomy School of Preclinical Medicine Southwest Medical University, Luzhou, China.
| | - Qin Xu
- Department of Ophthalmology in the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Chong-Lin Yu
- Department of Human Anatomy School of Preclinical Medicine Southwest Medical University, Luzhou, China.
| | - Chang-Long He
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, China.
| | - Tao Long
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, China.
| | - Ming-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, China.
| | - Xue Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, China.
| | - Jian-Ming Wu
- Department of Human Anatomy School of Preclinical Medicine Southwest Medical University, Luzhou, China.
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, China.
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, China; State Key Laboratory of Quality Research in Chinese Medicine of Macau University of Science and Technology, Macau, China.
| | - Hong-Bin Lv
- Department of Ophthalmology in the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
39
|
Yang Y, Yu L, Zhu T, Xu S, He J, Mao N, Liu Z, Wang D. Neuroprotective effects of Lycium barbarum polysaccharide on light-induced oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in mouse hippocampal neurons. Int J Biol Macromol 2023; 251:126315. [PMID: 37582438 DOI: 10.1016/j.ijbiomac.2023.126315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Light at night (LAN) induced cognitive impairment associated with oxidative stress in mice has been reported. Lycium barbarum polysaccharide (LBP) exhibits anti-tumor, anti-oxidant and neuroprotective effects, yet the neuroprotective effect on light-induced neuron damage still unclear. Here, mice exposed to LAN displayed cognitive impairment and depressive like behavior, which was reversed by LBP treatment. Meanwhile, LBP alleviated light-induced higher apoptosis and mitochondrial damage in HT-22 cells. Also, LBP prevented the decreased of mitochondrial membrane permeabilization (MMP) level in light-treated cells. Additionally, LBP demonstrated its antioxidant potential by reducing ROS production and malondialdehyde (MDA) level, while simultaneously enhancing the levels of superoxide dismutase (SOD) and glutathione peroxidases (GSH-Px) in both light-treated mice and HT-22 cells. Furthermore, the mRNA and protein expression of Nrf2 (NF-E2-related factor 2), heme oxygenease-1 (HO-1), and NAD(P)H quinone oxidoreductase (NQO1) were decreased in both light-treated mice and cells. Additionally, LBP treatment reversed light-induced the inhibition of Nrf2/HO-1 signaling pathway in both mice and cells. Moreover, Nrf2 antagonist ML385 significantly eliminated the neuroprotection of LBP on cell apoptosis, oxidative stress and mitochondrial damage in light-treated cells. These results indicate that LBP can rescue light-induced neurotoxicity in mice and HT-22 cells by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
40
|
Song L, Zhang S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023; 13:1600. [PMID: 38002283 PMCID: PMC10669485 DOI: 10.3390/biom13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Biomedical Materials of Zhangjiakou, College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China;
| | - Shicui Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, Kashi 844000, China
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
41
|
Zhang S, Wang S, Fan YY, Liu WC, Zheng YN, Wang Z, Ren S, Li W. Preparation of a new resource food-arabinogalactan and its protective effect against enterotoxicity in IEC-6 cells by inhibiting endoplasmic reticulum stress. Int J Biol Macromol 2023; 249:126124. [PMID: 37543271 DOI: 10.1016/j.ijbiomac.2023.126124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Plant polysaccharides can be used as bioactive natural polymers that provide health benefits, however high molecular weight neutral polysaccharides have not shown good bioactivity. In this study, high molecular weight neutral arabinogalactan was isolated and structurally characterized to investigate it antioxidant activity against IEC-6 cells. In this study, a neutral polysaccharide (AG-40-I-II) was obtained from the roots of Larix gmelinii (Rupr.) Kuzen. and purified using ethanol fractional precipitation and purification on a DEAE-52 cellulose column and a Superose 12 gel filtration column. The structural characteristics of AG-40-I-II was detected by chemical and spectroscopic methods. The results showed that the average molecular weight of AG-40-I-II was 18.6 kDa, the main chain was composed of →4)-β-D-Gal-(1, → 4, 6)-β-D-Gal-(1 and →4)-β- D-Glc-(1, the side chain is composed of T-β-L-Araf(1 → 6). The effect of AG-40-I-II on H2O2-induced IEC-6 cell injury was determined by MTT method. Besides, AG-40-I-II could reduce the level of MDA and increase SOD activity on IEC-6 cells, which could significantly inhibit the production of ROS. Importantly, AG-40-I-II inhibited the splicing of XBP1 by IRE1α through the ERS pathway and reduced the cell apoptosis induced by H2O2. In summary, the results of this study indicate that AG-40-I-II, as a natural source of plant polysaccharides, has good antioxidant activity, and is expected to become a safe plant source of natural antioxidants, which has great potential in biomedicine potential.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yu-Ying Fan
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Northeast Normal University, Changchun 130024, China
| | - Wen-Cong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
42
|
Xu F, Ding H, Liu Z, Jiang X, Ma Y, Wang D, Xu S. Polysaccharide extracted from the Sargassum fusiforme induces cell cycle arrest and apoptosis of B16F10 melanoma cells through the PI3K/AKT pathway. Mol Biol Rep 2023; 50:6517-6528. [PMID: 37329481 DOI: 10.1007/s11033-023-08570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND SARGASSUM FUSIFORME: (S. fusiforme) is a brown alga that has been utilized as a medicine for a long time. Polysaccharides extracted from S. fusiforme demonstrate antitumor activities. METHODS The impact of S. fusiforme polysaccharides (SFPS 191,212) on the proliferation, apoptosis, and cell cycle kinetics of B16F10 murine melanoma cells were thoroughly investigated in this work. The anticancer activities of the SFPS 191,212 compounds were assayed in the B16F10 cells at both transcriptional and translational levels. RESULTS The compound exhibited concentration-dependent effects. Moreover, SPFS 191,212 increased the numbers of apoptotic cells and arrested the cell cycle in the S phase of the quantitative real-time PCR. From western blotting, it was verified that the SFPS 191,212 treatment improved the expression of Bax, Caspase-9, and Caspase-3 genes and proteins, while it reduced phosphatidylinositol 3 kinase and Bcl-2 genes and proteins, suggesting the involvement of mitochondria. CONCLUSION Overall, SFPS 191,212 can be further explored as a potential functional food or adjuvant agent for the prevention or treatment of melanoma.
Collapse
Affiliation(s)
- Feng Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Ningbo, 315000, China
| | - Haomiao Ding
- College of Biological and Environmental Sciences, Zhejiang Wanli University, 8 Qianhu South Road, Ningbo, 315100, China
| | - Zhifang Liu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Ningbo, 315000, China
| | - Xinyu Jiang
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Ningbo, 315000, China
| | - Yizhao Ma
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Ningbo, 315000, China
| | - Diancheng Wang
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Ningbo, 315000, China
| | - Suling Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Ningbo, 315000, China.
| |
Collapse
|
43
|
He X, Wan F, Su W, Xie W. Research Progress on Skin Aging and Active Ingredients. Molecules 2023; 28:5556. [PMID: 37513428 PMCID: PMC10385838 DOI: 10.3390/molecules28145556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
With the advancement of living standards in modern society and the emergence of an aging population, an increasing number of people are becoming interested in the topic of aging and anti-aging. An important feature of aging is skin aging, and women are particularly concerned about skin aging. In the field of cosmetics, the market share of anti-aging products is increasing year by year. This article reviews the research and development progress of skin aging and related active compounds both domestically and internationally in recent years. The results show that, in terms of the research on skin aging, the popular theories mainly include free radicals and oxidative stress theory, inflammation theory, photoaging theory, and nonenzymatic glycosyl chemistry theory. In terms of research on the active ingredients with anti-aging activities in the skin, there are numerous reports on related products in clinical studies on human subjects, animal experiments, and experimental studies on cell cultures, with a variety of types. Most of the compounds against skin aging are sourced from natural products and their action mechanisms are mainly related to scavenging oxygen free radicals and enhancing antioxidant defenses. This review provides important references for the future research of skin aging and the development of related products. Although there is a great progress in skin aging including related active ingredients, ideal compounds or products are still lacking and need to be further validated. New mechanisms of skin aging, new active ingredients sourced from natural and artificial products, and new pharmaceutical forms including further clinical validations should be further investigated in the future.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Fang Wan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Wenhui Su
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
44
|
Lu Q, Xu S, Hao Z, Li Y, Huang Y, Ying S, Jing W, Zou S, Xu Y, Wang H. Dinotefuran exposure induces autophagy and apoptosis through oxidative stress in Bombyx mori. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131997. [PMID: 37423129 DOI: 10.1016/j.jhazmat.2023.131997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
As a third-generation neonicotinoid insecticide, dinotefuran is extensively used in agriculture, and its residue in the environment has potential effects on nontarget organisms. However, the toxic effects of dinotefuran exposure on nontarget organism remain largely unknown. This study explored the toxic effects of sublethal dose of dinotefuran on Bombyx mori. Dinotefuran upregulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the midgut and fat body of B. mori. Transcriptional analysis revealed that the expression levels of many autophagy and apoptosis-associated genes were significantly altered after dinotefuran exposure, consistent with ultrastructural changes. Moreover, the expression levels of autophagy-related proteins (ATG8-PE and ATG6) and apoptosis-related proteins (BmDredd and BmICE) were increased, whereas the expression level of an autophagic key protein (sequestosome 1) was decreased in the dinotefuran-exposed group. These results indicate that dinotefuran exposure leads to oxidative stress, autophagy, and apoptosis in B. mori. In addition, its effect on the fat body was apparently greater than that on the midgut. In contrast, pretreatment with an autophagy inhibitor effectively downregulated the expression levels of ATG6 and BmDredd, but induced the expression of sequestosome 1, suggesting that dinotefuran-induced autophagy may promote apoptosis. This study reveals that ROS generation regulates the impact of dinotefuran on the crosstalk between autophagy and apoptosis, laying the foundation for studying cell death processes such as autophagy and apoptosis induced by pesticides. Furthermore, this study provides a comprehensive insight into the toxicity of dinotefuran on silkworm and contributes to the ecological risk assessment of dinotefuran in nontarget organisms.
Collapse
Affiliation(s)
- Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuye Ying
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Jing
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Zou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Wang Y, Tong LL, Yuan L, Liu MZ, Du YH, Yang LH, Ren B, Guo DS. Integration of Physiological, Transcriptomic and Metabolomic Reveals Molecular Mechanism of Paraisaria dubia Response to Zn 2+ Stress. J Fungi (Basel) 2023; 9:693. [PMID: 37504682 PMCID: PMC10381912 DOI: 10.3390/jof9070693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Utilizing mycoremediation is an important direction for managing heavy metal pollution. Zn2+ pollution has gradually become apparent, but there are few reports about its pollution remediation. Here, the Zn2+ remediation potential of Paraisaria dubia, an anamorph of the entomopathogenic fungus Ophiocordyceps gracilis, was explored. There was 60% Zn2+ removed by Paraisaria dubia mycelia from a Zn2+-contaminated medium. To reveal the Zn2+ tolerance mechanism of Paraisaria dubia, transcriptomic and metabolomic were executed. Results showed that Zn2+ caused a series of stress responses, such as energy metabolism inhibition, oxidative stress, antioxidant defense system disruption, autophagy obstruction, and DNA damage. Moreover, metabolomic analyses showed that the biosynthesis of some metabolites was affected against Zn2+ stress. In order to improve the tolerance to Zn2+ stress, the metabolic mechanism of metal ion transport, extracellular polysaccharides (EPS) synthesis, and microcycle conidiation were activated in P. dubia. Remarkably, the formation of microcycle conidiation may be triggered by reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) signaling pathways. This study supplemented the gap of the Zn2+ resistance mechanism of Paraisaria dubia and provided a reference for the application of Paraisaria dubia in the bioremediation of heavy metals pollution.
Collapse
Affiliation(s)
- Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Zhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
46
|
Zhao P, Liu X, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Zhang L, Mi HF, Feng L, Zhou XQ. Novel insights on toxicology of ochratoxin A contaminated diets to skin: Residues, mucus disruption and barrier impairment in teleost model grass carp (Ctenopharyngodon idella). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115153. [PMID: 37348215 DOI: 10.1016/j.ecoenv.2023.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Ochratoxin A (OTA), a notorious pollutant widely present worldwide, seriously pollutes aquafeeds. This paper aims to explore the toxicity effects of OTA by the way of diet on the skin barrier in grass carp (Ctenopharyngodon idella). Results were shown as follows in the skin: (1) OTA increased the mRNA abundances of uptake transporter proteins (e.g., OAT3) and decreased efflux transporter proteins (e.g., ABCG2), which caused the accumulation of OTA in the skin of grass carp. (2) OTA upregulated the gene expression related to ROS production by enhancing the NOX (1, 2, 4) signaling pathway and decreased the ability to ROS elimination with downregulation of GPx1 (a,b), Trx by inhibiting the PGC1-α/Nrf2 signaling pathway, which caused oxidative damage to the skin. (3) OTA exacerbated apoptosis in the skin by upregulating the expression of apoptosis-related proteins mediated by ways of endoplasmic reticulum stress and mitochondrial apoptosis. Moreover, OTA down-regulated the mRNA and protein abundances of tight junction-related proteins by inhibiting the MLCK signaling pathway, which in turn disrupted the tight junctions. (4) OTA reduced the number of mucous cup cells and decreased f LZ activities and IgM contents, and finally down-regulated the mRNA abundances of mucin (2, 3), LEAP-2 (A, B), and β-defensin (1, 2, 3), which in turn resulted in impairing skin chemical barrier. Moreover, based on the antimicrobial-related indexes (LZ activities and IgM contents), the OTA-safe upper doses were 814.827 and 813.601 μg/kg.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, 610041, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, 610041, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China.
| |
Collapse
|
47
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
48
|
Qu M, Miao L, Chen H, Zhang X, Wang Y. SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis modulates transgenerational toxicity induced by nanoplastics with different surface charges in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131840. [PMID: 37327611 DOI: 10.1016/j.jhazmat.2023.131840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of nanoplastics on transgenerational toxicity in environmental organisms and the involved mechanisms remain poorly comprehended. This study aimed to identify the role of SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis in response to transgenerational toxicity caused by changes in nanoplastic surface charges in Caenorhabditis elegans (C. elegans). Our results revealed that compared with the wild-type control and PS exposed groups, exposure to PS-NH2 or PS-SOOOH at environmentally relevant concentrations (ERC) of ≥ 1 μg/L caused transgenerational reproductive toxicity, inhibited mitochondrial unfolded protein responses (UPR) by downregulating the transcription levels of hsp-6, ubl-5, dve-1, atfs-1, haf-1, and clpp-1, membrane potential by downregulating phb-1 and phb-2, and promoted mitochondrial apoptosis by downregulating ced-4 and ced-3 and upregulating ced-9, DNA damage by upregulating hus-1, cep-1, egl-1, reactive oxygen species (ROS) by upregulating nduf-7 and nuo-6, ultimately resulting in mitochondrial homeostasis. Additionally, further study indicated that SKN-1/Nrf2 mediated antioxidant response to alleviate PS-induced toxicity in the P0 generation and dysregulated mitochondrial homeostasis to enhance PS-NH2 or PS-SOOOH-induced transgenerational toxicity. Our study highlights the momentous role of SKN-1/Nrf2 mediated mitochondrial homeostasis in the response to nanoplastics caused transgenerational toxicity in environmental organisms.
Collapse
Affiliation(s)
- Man Qu
- School of Public Health, Yangzhou University, Yangzhou 225000, China.
| | - Long Miao
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210009, China
| | - Yang Wang
- Yangzhou Hospital of Traditional Chinese Medicine Affiliated to the School of Clinical Chinese Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
49
|
Jiang SJ, Xiao X, Li J, Mu Y. Lycium barbarum polysaccharide-glycoprotein ameliorates ionizing radiation-induced epithelial injury by regulating oxidative stress and ferroptosis via the Nrf2 pathway. Free Radic Biol Med 2023; 204:84-94. [PMID: 37119863 DOI: 10.1016/j.freeradbiomed.2023.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Radiation-induced oral mucositis (RIOM) is considered to be the most common acute side effect of radiation therapy and occurs during intentional or accidental radiation exposure. Antioxidant synthesis agents have been reported to protect against or alleviate the development of mucositis, but the resulting side effects of chemical synthesis agents limit their use in clinical practice. Lycium barbarum polysaccharide-glycoprotein (LBP), a polysaccharide extract of the Lycium barbarum fruit, has superior antioxidant capacity and biosafety and is a potential option for radiation prevention and treatment. Here, we aimed to investigate whether LBP conferred radioprotection against ionizing radiation-induced oral mucosal damage. We found that LBP exerted radioprotective effects in irradiated HaCaT cells, improving cell viability, stabilizing mitochondrial membrane potential, and decreasing cell death. LBP pretreatment reduced oxidative stress and ferroptosis in radioactivity-damaged cells by activating the transcription factor Nrf2 and promoting its downstream targets, such as HO-1, NQO1, SLC7A11, and FTH1. Knockdown of Nrf2 eliminated the protective effects of LBP, implying the essential role of Nrf2 in LBP activity. Additionally, the topical application of LBP thermosensitive hydrogel on rat mucosa resulted in a significant decrease in ulcer size in the irradiated group, suggesting that LBP oral mucoadhesive gel may be a potential tool for the treatment of irradiation. In conclusion, we demonstrated that LBP attenuates ionizing radiation-induced oral mucosa injury by reducing oxidative stress and inhibiting ferroptosis via the Nrf2 signaling pathway. LBP may be a promising medical countermeasure against RIOM.
Collapse
Affiliation(s)
- Si-Jing Jiang
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China; Stomatology Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, 610212, China
| | - Xun Xiao
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jing Li
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yangdong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
50
|
Shan W, Niu W, Lin Q, Shen Y, Shen F, Lou K, Zhang Y. Bisphenol S exposure promotes cell apoptosis and mitophagy in murine osteocytes by regulating mtROS signaling. Microsc Res Tech 2023; 86:481-493. [PMID: 36625337 DOI: 10.1002/jemt.24289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Bisphenol S (BPS), a safer alternative to bisphenol A, is commonly used as a plasticizer to manufacture various food-packaging materials. The accumulated BPS inhibits osteoblastic bone formation and promotes osteoclastogenesis, thereby accelerating remarkable bone destruction, but it is unclear whether BPS affects osteocytes, comprising over 95% of all bone cells. This study aimed to investigate the biological effect of BPS on osteocytes in vitro, as well as the detailed mechanism. Results showed that BPS (200, 400 μmol/L) exposure caused dose-dependently cell death of osteocytes MLO-Y4, and increased cell apoptosis. BPS induced loss of mitochondrial membrane potential (MMP) and mitochondria impairment. Furthermore, BPS upregulated expressions of mitophagy-related proteins including microtubule-associated protein light chain 3 (LC-3) II and PTEN-induced putative kinase (PINK) 1, accompanied by elevation of autophagy flux and the accumulation of acidic vacuoles; whereas p62 level was downregulated after BPS treatment. Additionally, BPS triggered the production of intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS), while it decreased expression levels of nuclear factor E2-related factor 2 (Nrf2) and quinone oxidoreductase 1 (NQO1). The specific mtROS scavenger MitoTEMPO reversed cell apoptosis and mitophagy, suggesting that mtROS contributes to BPS exposure-induced apoptosis and mitophagy in MLO-Y4 cells. Our data first provide novel evidence that apoptosis and mitophagy as cellular mechanisms for the toxic effect of BPS on osteocytes, thereby helping our understanding of the potential role of osteocytes in the adverse effect of BPS and its analogs on bone growth, and supporting strategies targeting bone destruction caused by BPS.
Collapse
Affiliation(s)
- Weiyan Shan
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Wanting Niu
- Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiao Lin
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Yuchen Shen
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Fangmin Shen
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Kai Lou
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Yun Zhang
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|