1
|
Heimfarth L, Rezende MM, Pereira EWM, Passos FRS, Monteiro BS, Santos TKB, Lima NT, Souza ICL, de Albuquerque Junior RLC, de Souza Siqueira Lima P, de Souza Araújo AA, Quintans Júnior LJ, Kim B, Coutinho HDM, de Souza Siqueira Quintans J. Pharmacological effects of a complex α-bisabolol/β-cyclodextrin in a mice arthritis model with involvement of IL-1β, IL-6 and MAPK. Biomed Pharmacother 2022; 151:113142. [PMID: 35623175 DOI: 10.1016/j.biopha.2022.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
Inflammatory arthritis is the most prevalent chronic inflammatory disease worldwide. The pathology of the disease is characterized by increased inflammation and oxidative stress, which leads to chronic pain and functional loss in the joints. Conventional anti-arthritic drugs used to relieve pain and other arthritic symptoms often cause severe side effects. α-bisabolol (BIS) is a sesquiterpene that exhibits high anti-inflammatory potential and a significant antinociceptive effect. This study evaluates the anti-arthritic, anti-inflammatory and antihyperalgesic effects of BIS alone and in a β-cyclodextrin (βCD/BIS) inclusion complex in a CFA-induced arthritis model. Following the intra-articular administration of CFA, male mice were treated with vehicle, BIS and βCD/BIS (50 mg/kg, p.o.) or a positive control and pain-related behaviors, knee edema and inflammatory and oxidative parameters were evaluated on days 4, 11, 18 and/or 25. Ours findings shows that the oral administration of BIS and βCD/BIS significantly attenuated spontaneous pain-like behaviors, mechanical hyperalgesia, grip strength deficit and knee edema induced by repeated injections of CFA, reducing the joint pain and functional disability associated with arthritis. BIS and βCD/BIS also inhibited the generation of inflammatory and oxidative markers in the knee and blocked MAPK in the spinal cord. In addition, ours results also showed that the incorporation of BIS in cyclodextrin as a drug delivery system improved the pharmacological profile of this substance. Therefore, these results contribute to the pharmacological knowledge of BIS and demonstrated that this terpene appears to be able to mitigate deleterious symptoms of arthritis.
Collapse
Affiliation(s)
- Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Marília Matos Rezende
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Erik Willyame Menezes Pereira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Tiffany Karoline Barroso Santos
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Natália Teles Lima
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Isana Carla Leal Souza
- Laboratory of Morphology and Experimental Pathology, Research and Technology Institute, Tiradentes University (UNIT), Aracaju, SE, Brazil
| | | | - Pollyana de Souza Siqueira Lima
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Lucindo José Quintans Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri - URCA, Crato, Brazil.
| | - Jullyana de Souza Siqueira Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
2
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
3
|
Heimfarth L, Dos Anjos KS, de Carvalho YMBG, Dos Santos BL, Serafini MR, de Carvalho Neto AG, Nunes PS, Beserra Filho JIA, da Silva SP, Ribeiro AM, Bezerra DP, Marreto RN, de Souza Siqueira Quintans J, de Souza Araújo AA, Melo Coutinho HD, Scotti MT, Scotti L, Quintans-Júnior LJ. Characterization of β-cyclodextrin/myrtenol complex and its protective effect against nociceptive behavior and cognitive impairment in a chronic musculoskeletal pain model. Carbohydr Polym 2020; 244:116448. [PMID: 32536383 DOI: 10.1016/j.carbpol.2020.116448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Myrtenol has gained wide interest because of its pharmacological profiles, mainly for treatment of chronic diseases. To improve the solubility of myrtenol, the formation of inclusion complexes with β-cyclodextrin was performed by physical mixture, kneading process or slurry complexation (SC) methods and characterized using thermal analysis, XRD, SEM and NMR. From these results, myrtenol complexed by SC was successfully complexed into β-cyclodextrin cavity. The interaction between myrtenol and β-cyclodextrin was confirmed by molecular docking. Hence, the SC β-cyclodextrin-myrtenol complex was evaluate for its anti-hyperalgesic, anxiolytic and antioxidant activity in a fibromyalgia model. Results show that myrtenol and β-cyclodextrin form a stable complex and have anti-hyperalgesic effect, improve the cognitive impairment caused and have an anxiolytic-like effect. Furthermore, the β-cyclodextrin/myrtenol complex decrease lipoperoxidation, increased catalase activity and a reduce SOD/CAT ratio. Therefore, β-cyclodextrin/myrtenol complex reduce painful behavior, improves motor skills and emotional behavior and decreases oxidative stress in a fibromyalgia model.
Collapse
Affiliation(s)
- Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | | | | | - Paula Santos Nunes
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Sara Pereira da Silva
- Department of Biosciences, Federal University of São Paulo/UNIFESP, Santos, SP, Brazil
| | | | - Daniel Pereira Bezerra
- Oswaldo Cruz Foundation, Laboratory of Tissue Engineering and Immunopharmacology, Salvador, BA, Brazil
| | | | | | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri, URCA, Av Cel. Antonio Luiz, 1161, Pimenta, Crato, CE, 63105-000, Brazil.
| | - Marcus T Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| | | |
Collapse
|
4
|
Carvalho AMS, Heimfarth L, Pereira EWM, Oliveira FS, Menezes IRA, Coutinho HDM, Picot L, Antoniolli AR, Quintans JSS, Quintans-Júnior LJ. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. JOURNAL OF NATURAL PRODUCTS 2020; 83:1107-1117. [PMID: 32091204 DOI: 10.1021/acs.jnatprod.9b01116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytol is a diterpene constituent of chlorophyll and has been shown to have several pharmacological properties, particularly in relation to the management of painful inflammatory diseases. Arthritis is one of the most common of these inflammatory diseases, mainly affecting the synovial membrane, cartilage, and bone in joints. Proinflammatory cytokines, such as TNF-α and IL-6, and the NFκB signaling pathway play a pivotal role in arthritis. However, as the mechanisms of action of phytol and its ability to reduce the levels of these cytokines are poorly understood, we decided to investigate its pharmacological effects using a mouse model of complete Freund's adjuvant (CFA)-induced arthritis. Our results showed that phytol was able to inhibit joint swelling and hyperalgesia throughout the whole treatment period. Moreover, phytol reduced myeloperoxidase (MPO) activity and proinflammatory cytokine release in synovial fluid and decreased IL-6 production as well as the COX-2 immunocontent in the spinal cord. It also downregulated the p38MAPK and NFκB signaling pathways. Therefore, our findings demonstrated that phytol can be an innovative antiarthritic agent due to its capacity to attenuate inflammatory reactions in joints and the spinal cord, mainly through the modulation of mediators that are key to the establishment of arthritic pain.
Collapse
Affiliation(s)
| | | | | | | | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France
| | | | | | | |
Collapse
|
5
|
Eplingiella fruticosa (Lamiaceae) essential oil complexed with β-cyclodextrin improves its anti-hyperalgesic effect in a chronic widespread non-inflammatory muscle pain animal model. Food Chem Toxicol 2019; 135:110940. [PMID: 31693914 DOI: 10.1016/j.fct.2019.110940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Eplingiella fruticosa (Lamiaceae), formally known as Hyptis fruticosa, is an important aromatic medicinal herb used in folk medicine in northeastern Brazil. We aimed to evaluate the anti-hyperalgesic effect of essential oil obtained from E. fruticosa (HypEO) complexed with βCD (HypEO-βCD) in a chronic widespread non-inflammatory muscle pain animal model (a mice fibromyalgia-like model, FM). The HypEO was extracted by hydro distillation and its chemical composition was determined by GC-MS/FID. Moreover, Fos protein expression in the spinal cord was assessed by immunofluorescence. (E)-caryophyllene, bicyclogermacrene, 1,8-cineole, α-pinene, β-pinene and 21 other compounds were identified in the HypEO. The treatment with HypEO-βCD produced a longer-lasting anti-hyperalgesic effect compared to HypEO, without alterations in motor coordination or myorelaxant effects. Moreover, HypEO and HypEO-βCD produced a significant anti-hyperalgesic effect over 7 consecutive treatment days. Immunofluorescence assay demonstrated a decrease in Fos protein expression in the spinal cord (p < 0.001). We demonstrated that the anti-hyperalgesic effect produced by HypEO was improved after complexation with β-CD and this seems to be related to the central pain-inhibitory pathway, suggesting the possible use of E. fruticosa for chronic pain management.
Collapse
|
6
|
Gouveia DN, Guimarães AG, Santos WBDR, Quintans-Júnior LJ. Natural products as a perspective for cancer pain management: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152766. [PMID: 31005719 DOI: 10.1016/j.phymed.2018.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer is the leading cause of death in the world and one of the main symptoms affecting these individuals is chronic pain, which must be evaluated and treated in its various components. Several drugs are currently used, but beyond the high cost, they have harmful side effects to patients or are transitorily effective. Ergo, there is a need to look for new options for cancer pain relief. Natural products (NPs) present themselves as strong candidates for the development of new drugs for the treatment of chronic pain, such as cancer pain. PURPOSE This systematic review aimed to summarize current knowledge about the analgesic profile of NPs in cancer pain. METHODS The search included PubMed, Scopus and Web of Science (from inception to June 2018) sought to summarize the articles studying new proposals with NPs for the management of oncological pain. Two independent reviewers extracted data on study characteristics, methods and outcomes. RESULTS After an extensive survey, 21 articles were selected, which described the analgesic potential of 15 natural compounds to relieve cancer pain. After analyzing the data, it can be suggested that these NPs, which have targets in central and peripheral mechanisms, are interesting candidates for the treatment of cancer pain for addressing different pharmacological mechanisms (even innovative), but ensuring the safety of these compounds is still a challenge. Likewise, the cannabinoids compounds leave the front as the most promising compounds for direct applicability due to the clinical studies that have already been developed and the background already established about these effects on chronic pain. CONCLUSION Regarding these findings, it can be concluded that the variability of possible biological sites of action is strategic for new perspectives in the development of therapeutic proposals different from those available in the current market.
Collapse
Affiliation(s)
- Daniele Nascimento Gouveia
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Adriana Gibara Guimarães
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Av. Governador Marcelo Déda, 13, Lagarto, Sergipe, Brazil.
| | - Wagner Barbosa da Rocha Santos
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| |
Collapse
|
7
|
Siqueira-Lima PS, Passos FR, Lucchese AM, Menezes IR, Coutinho HD, Lima AA, Zengin G, Quintans JS, Quintans-Júnior LJ. Central nervous system and analgesic profiles of Lippia genus. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Beserra-Filho JIA, de Macêdo AM, Leão AHFF, Bispo JMM, Santos JR, de Oliveira-Melo AJ, Menezes PDP, Duarte MC, de Souza Araújo AA, Silva RH, Quintans-Júnior LJ, Ribeiro AM. Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson's disease. Food Chem Toxicol 2018; 124:17-29. [PMID: 30481574 DOI: 10.1016/j.fct.2018.11.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 12/18/2022]
Abstract
Evidence indicates that oxidative stress has an important role in the onset and progression of Parkinson's disease (PD). Antioxidant agents from natural products have shown neuroprotective effects in animal models of PD. Eplingiella fruticosa is an aromatic and medicinal plant of the Lamiaceae family that include culinary herbs. The essential oil (EPL) has anti-inflammatory and antioxidant activities. Cyclodextrins are used to enhances pharmacological profile of essential oil. We obtained the EPL from leaves and complexed with β-cyclodextrin (EPL-βCD). Phytochemical analysis showed as main constituents: β-caryophyllene, bicyclogermacrene and 1,8-cineole. We evaluated the effects of EPL and EPL-βCD (5 mg/kg, p.o. for 40 days) on male mice submitted to the progressive reserpine PD model. Behavioral evaluations, lipid peroxidation quantification and immunohistochemistry for tyrosine hydroxylase were conducted. EPL delayed the onset of catalepsy and decreased membrane lipid peroxides levels in the striatum. EPL-βCD also delayed the onset of catalepsy, reduced the frequency of oral diskynesia, restored memory deficit, produced anxiolytic activity and protected against dopaminergic depletion in the striatum and SNpc. These findings showed that EPL has a potential neuroprotective effect in a progressive PD animal model. Further, EPL-βCD enhanced this protective effects, suggesting a novel therapeutic approach to ameliorate the symptoms of PD.
Collapse
Affiliation(s)
- Jose I A Beserra-Filho
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil
| | - Amanda M de Macêdo
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Universidade Federal de São Paulo, Edificio José Leal Prado, Rua Botucatu, 862, CEP 04023-062, São Paulo, SP, Brazil
| | - Jose Marcos M Bispo
- Department of Biosciences, Universidade Federal de Sergipe, Avenida Ver. Olímpio Grande, s/n, Porto, CEP 49500-000, Itabaiana, SE, Brazil
| | - José R Santos
- Department of Biosciences, Universidade Federal de Sergipe, Avenida Ver. Olímpio Grande, s/n, Porto, CEP 49500-000, Itabaiana, SE, Brazil
| | - Allan John de Oliveira-Melo
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Paula Dos Passos Menezes
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Marcelo C Duarte
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Adriano A de Souza Araújo
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, Edificio José Leal Prado, Rua Botucatu, 862, CEP 04023-062, São Paulo, SP, Brazil
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Alessandra M Ribeiro
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil.
| |
Collapse
|
9
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
10
|
Araújo-Filho HG, Pereira EWM, Campos AR, Quintans-Júnior LJ, Quintans JSS. Chronic orofacial pain animal models - progress and challenges. Expert Opin Drug Discov 2018; 13:949-964. [PMID: 30220225 DOI: 10.1080/17460441.2018.1524458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic orofacial pain is one of the most common pain conditions experienced by adults. Animal models are often selected as the most useful scientific methodology to explore the pathophysiology of the disorders that cause this disabling pain to facilitate the development of new treatments. The creation of new models or the improvement of existing ones is essential for finding new ways to approach the complex neurobiology of this type of pain. Areas covered: The authors describe and discuss a variety of animal models used in chronic orofacial pain (COFP). Furthermore, they examine in detail the mechanisms of action involved in orofacial neuropathic pain and orofacial inflammatory pain. Expert opinion: The use of animal models has several advantages in chronic orofacial pain drug discovery. Choosing an animal model that most closely represents the human disease helps to increase the chances of finding effective new therapies and is key to the successful translation of preclinical research to clinical practice. Models using genetically modified animals seem promising but have not yet been fully developed for use in chronic orofacial pain research. Although animal models have provided significant advances in the pharmacological treatment of orofacial pain, several barriers still need to be overcome for better treatment options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Erik W M Pereira
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Adriana Rolim Campos
- b Experimental Biology Centre (NUBEX) , University of Fortaleza (UNIFOR) , Fortaleza , Brazil
| | - Lucindo J Quintans-Júnior
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Jullyana S S Quintans
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| |
Collapse
|